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Preface 

Molecular physics studies the molecular form of motion, i.e. 
the motion of large aggregates of molecules. Here two aspects 
of the problem are equally important: (1) the investigation of 
the molecular form of motion itself and (2) mastering the 
methods for studying many-particle systems and the concepts 
associated with them. The second aspect is not confined just 
to its application to the molecular form of motion. However, 
it is expedient to familiarize ourselves with the basic concepts 
of statistical physics and thermodynamics as applied to 
molecular systems since these systems are the most abundant 
in everyday practice. This is an important methodical 
argument. Many problems are difficult to study not in view 
of their complexity but since they are not encountered in 
everyday life which is the source of physical concepts of space 
and time. For example, it is assumed that classical mechanics 
is simple and quantum mechanics complicated. However, the 
problem of inertia is undoubtedly more complicated in its 
essence than the problem of quantization, and it is not less 
difficult to understand why two bodies cannot occupy the 
same volume in space than why two fermions cannot have 
the same set of quantum numbers. 

Earlier, when molecular physics was established as a part 
of physics curriculum, the main attention was paid to 
studying the molecular forms of motion itself. Later, the 
emphasis was shifted mainly toward the study of statistical 
laws and the thermodynamic method as applied to molecular 
systems. In this case, the molecular form of motion becomes 
a particular case illustrating general regularities. The 
university courses for students were appropriately modified in 
the light of these trends. This textbook also adheres to these 
trends. 

The book also contains material not covered by 
traditional courses but required for solving a wider range of 
problems than just the study of the properties of molecular 
systems. In the first place this applies to the electron and 
phonon gases. Although this material does not necessarily 
form a part of the existing curriculum, it is recommended as 
an optional reading since it gives the student a better idea 
about the distribution in the statistical description of 
phenomena. 



Preface 

From the relative merits of quantum and classical 
concepts discussed above it follows that quantum-mechanical 
concepts must be invariably introduced whenever the 
opportunity to do so is provided by experimental material. 
Naturally, we mean not the quantitative solution of a quan- 
tum-mechanical problem but the interpretation of 
experimental results with the help of quantum-mechanical 
concepts. For example, when the classical theory of the heat 
capacity of an ideal gas is studied, the experimental 
temperature dependence of the heat capacity of molecular 
hydrogen is as convenient for this purpose as the results of 
the Stern-Gerlach experiments in atomic physics. 

Another important circumstance necessitating the app- 
lication of quantum concepts is the requirement of a fairly 
rigorous substantiation of statistical physics. This can be 
done only with the help of quantum-mechanical concepts. It 
is natural to associate the entropy with the thermodynamic 
probability and the quantum (discrete) nature of a state. It is 
also important from a purely methodical point of view. The 
student is well aware that the general course of physics is not 
preliminary course which will be refined at a later stage. 
Rather, it is a comprehensive course in modern physics 
within whose framework lies the solution of many problems. 

, This book is based on the course of lectures delivered by 
the author for many years at the Lomonosov Moscow State 
University. The author thanks his colleagues at the Moscow 
University, as well as at other universities and institutes, for 
helpful discussions without which it would have been 
impossible to give the book its present form. The author is 
also grateful to Acad. M.A. El’yashevich of the Belorussian 
Academy of Sciences and the staff of the General Physics 
Department of the Ural State University headed by Prof. 
L. Ya. Kobelev for a careful review of the manuscript and 
valuable suggestions. 

A.N. Matveev 
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Chapter 1 

Statistical Method 

Starting point: The dynamic description of a many-particle 
system is technically unrealizable, theoretically unsuitable, 
and practically useless. 

Basic idea: A many-particle system is characterized by 
statistical parameters and laws. 

Mathematical apparatus: Theory of random processes and 
quantities. 

Sec. 1. METHODS OF INVESTIGATING 

MANY-PARTICLE SYSTEMS 

The properties of the states of 
aggregation of matter are con- 
sidered and the models of 
many-particle systems are de- 
scribed. 
It is revealed that the dynamic 
description of many-particle 
systems is not suitable from 
a theoretical point of view, not 
feasible from a technical point 
of view, and not useful from 
a practical point of view. 
The main features of the sta- 
tistical and thermodynamic 
methods are described. 

LIMITS OF APPLICABILITY OF THE MATERIAL POINT 

MODEL AND THE PERFECTLY RIGID BODY MODEL. 

Mechanics deals with the motion of material bodies whose 
properties can be modelled by using the concepts of 
a material point and a perfectly rigid body. This means that 
in the first case, the internal structure and size of the material 
body are not taken into account, while in the second case, 

these properties are considered only to investigate the 
distribution of the inertial property (density) over the volume 
occupied by the material body for the special case when this 
distribution is invariable in time. Thus, the internal properties 
and internal motions of material bodies are not taken into 
account in the second case also. The density distribution is 
assumed to be given for the motion of a perfectly rigid body 
as a whole. Hence, the models of a material point and 
a perfectly rigid body are inapplicable for investigating the 
internal properties of material bodies when their structure 
and the relative motion of the parts of the bodies are 
significant. 
THE MATERIAL BODY MODEL. It is known that material 

bodies consist of atoms and molecules whose structure is also 
known. Hence, the model of a material body is the aggregate 
of atoms and molecules which interact and move according 
to certain laws. In turn, the atoms and molecules constituting 
a material body may be represented by different models 



16 1. Statistical Method 

depending on the circumstances and the nature of the 
phenomena being considered. In some cases, the atoms and 
molecules can be considered as material points, in other cases 
they are treated as perfectly rigid material bodies, while 
sometimes their internal structure and motion have to be 
taken into consideration. Since the structure of atoms and 
molecules can be fully investigated by the quantum-me- 
chanical methods, all their properties are assumed to be 
known. Consequently, the properties of the models used for 
representing them in specific cases are also assumed to be 
known. 

In principle, the interaction of atoms and molecules and 
their motion are also known. In some cases this motion is 
considered purely classically by the same methods which are 
used for investigating the motion of material points and rigid 
bodies, while in some other cases, it is necessary to consider 
quantum-mechanical laws which characterize the motion of 
microparticles. These laws are known from quantum 
mechanics. Their content is not so important here. It is 
important just to state that these laws are known and can be 
used in principle for investigating the interaction and the 
motion of atoms and molecules constituting material bodies. 

Hence, a material body can be modelled as an aggregate of 
atoms and molecules whose properties, laws of motion, and 
interactions are known. 
ATOMIC AND MOLECULAR MASS. In molecular physics, 

the mass of atoms and molecules is characterized not by its 
absolute value (in kilograms), but by relative dimensionless 
quantities called the relative atomic mass A, and the relative 
molecular mase M,. 

For the atomic mass unit my, 1/12 of the mass of !?C 

isotope of carbon is taken: 
12 í 

eo T i (1.1) 
12 

The relative molecular mass, or the relative mass of 

a molecule, is defined by the formula 

Mmol molecular mass 
r = = E -a x 12 (dimensionless), (1.2) 

where mmol is the absolute value of the molecular mass in 

kilograms. The relative atomic mass is also defined by 
a similar formula, but in this case mmo in (1.2) denotes the 

absolute atomic mass. 
In order of magnitude, the absolute values of atomic mass 

approximately lie in the interval 10 ̂ 2?-10 ̂ ?" kg, while the 
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relative atomic masses range from 1! to 10?. The relative 
molecular masses are distributed over a much wider interval 
from unity to several hundreds of thousands (see Sec. 49). 
AMOUNT OF SUBSTANCE. In SI units, the amount of 

substance is characterized by the number of its structural 
elements, and is expressed in moles. A mole is equal to the 
amount of substance of a system in which the number of 
structural elements is the same as the number of structural 
elements (atoms) in 0.012 kg of !?C isotope of carbon. Thus, 
a mole of any substance contains, by definition, the same 

number of atoms, called the Avogadro number. It is equal to 

0.012 k 107? Kk 
Na =— E mol t= gle? 

12m my 

— 602 x 10?? mole" !, (1.3) 

where m, is defined by (1.1) It follows from (1.3) that 

m Na = 107 3 kg/mole. (1.4) 

The concept of a mole reflects the number of structural 
elements in a substance. Hence, these elements must always 
be indicated, otherwise the definition of the amount of 

substance in moles loses its meaning. For example, it is 
incorrect to say that a vessel contains two moles of water. 
The correct way to put it will be "the vessel contains two 
moles of water molecules". This means that the vessel 
contains 2 x 6.02 x 10?? molecules of water. If, for example, 
10?^ free electrons are contained in a certain volume, it can 
be stated that this volume contains 10?*/(6.02 x 10??) — 1.66 
mole of electrons. Or, if a certain quantity of water contains, 
for instance, one mole of water molecules, it will contain two 

moles of hydrogen atoms and one mole of oxygen atoms, or 
10 moles of protons, 8 moles of neutrons, and 10 moles of 

electrons (heavy water molecules and isotopes are not taken 
into consideration). 

In molecular physics, the concept of molar mass is also 
used. It is defined as the mass of one mole of the substance: 

M=mmoNa, (1.5) 

where mmol is the molecular mass. The molar mass is 

expressed in kilograms per mole (kg/mole) Taking into 
account Eqs. (1.2) and (1.4), we can express formula (1.5) in 
the following form: 

M =mmot X 107 3/m, = 10 7? M, kg/mole, (1.6) 

where M, is the dimensionless relative mass defined by (1.2). 
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The state of aggregation of 
a substance is determined by 
the relation between the 
average kinetic energy and 
the average potential energy 
of interaction between 
molecules: the average kinetic 
energy of gases is much 
higher than the average 
potential] energy of 
interaction between 
molecules; in liquids these 
values are nearly equal, while 
in solids the absolute value 
of the average potential 
energy of molecular 
interaction is much higher 
than the average kinetic ` 
energy. (It should be recalled 
that the potential energy of 
interaction is negative in the 
case of attraction.) 

1. Statistical Method 

In particular, the molar mass of a substance consisting of 
'2C carbon isotopes is equal to 12 x 10 ^? kg/mole. The 
relative atomic masses are given in the Mendeleev Periodic 
Table. The relative molecular masses can be determined, with 
a sufficiently high degree of accuracy, as the sum of relative 
masses of atoms constituting the molecule, since the energy of 
the chemical bond of atoms in a molecule and the mass 
defect corresponding to this bond are small. 

The number v of moles of a certain amount of substance is 
connected with the number n of its structural elements 
(molecules) through the relation 

v=n/Na. (1.7) 

Multiplying the numerator and denominator of the right- 
hand side of this equation by the mass of a molecule, 
considering that the mass of a substance is defined as m= 
=Mmoin, and taking into account Eq. (1.5), we obtain 

v=m/M. (1.8) 

STATES OF AGGREGATION OF A SUBSTANCE. An 

investigation of interaction between atoms and molecules 
shows that forces of attraction come into play at relatively 
large distances, while repulsive forces prevail at small 
distances. These forces are electromagnetic in origin. The 
existence of repulsive forces at small distances merely states 
the fact that atoms and molecules occupy a certain volume in 
space, thereby obstructing other atoms and molecules from 
occupying the same volume. 

Atoms and molecules are in perpetual motion and hence 
possess a certain kinetic energy. Obviously, the forces of 
attraction tend to combine atoms and molecules into a single 
entity, while the kinetic energy of molecules and atoms 
hinders this tendency of adhesion between them. The final 
result of the competition between these two tendencies 
depends on their relative intensity. If the tendency to separate 
is stronger than the tendency to unite, the substance is in the 
gaseous state. If, on the other hand, the tendency to unite is 
stronger, the substance is in the solid state. When these two 
tendencies are of nearly the same intensity, the liquid state is 
formed. All these remarks are qualitative since no 
quantitative measures for “intensity” have been given. Such 
quantitative measures are the potential energy of attraction 
and the kinetic energy. If the total kinetic energy of atoms 
and molecules is much higher than the total potential energy 
of their mutual attraction (in absolute value since the 
potential energy of attraction is negative), the substance is in 
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the gaseous state. In the opposite case, the substance is 
a solid. The liquid state indicates that these energies are 
nearly equal. 
The molecular kinetic theory of structure of matter explains the 
properties of substances on the basis of their molecular structure, 
motion, and intermolecular interaction. This theory was developed 
over several hundreds of years, and a significant contribution 
towards this was made by M. V. Lomonosov. 

BASIC FEATURES OF THE STATES OF AGGREGATION. 

Since the gaseous state is formed as a result of a complete 
suppression of the adhesive tendency of molecules, 
a substance in the gaseous state retains neither its shape nor 
its volume. Its volume and shape are determined by the 
vessel in which it is contained. If there is no vessel to contain 
a gas, it tends to fill the entire space. The molecular motion 
in gases proceeds as follows: each molecule moves without 
interaction for most of the time, changing its direction in 
a small region as a result of collision with another molecule. 
The distance covered by a molecule between collisions is 
hundreds and thousands of times larger than its diameter. 
A simultaneous collision of three or more molecules is a rare 
event. The trajectory of an individual molecule looks as 
follows: 

The molecules and atoms in a solid are tightly bound with 
one another. À substance in the solid state retains its shape 
as well as volume. A deformation (change in the shape or 
volume) induces forces which tend to restore both the shape 
and the volume. Molecules or atoms in a solid occupy 
specific positions and form a crystal lattice. They vibrate 
about certain mean positions called the lattice sites of the 
crystal. As a rule, they cannot leave a certain region near the 
lattice sites. The line along which vibrations take place and 
the amplitude of vibrations change with time, but these 
changes occur over a period longer than the period of 
vibrations. Quite a large number of vibrations occur along 
a fixed line before its direction changes. Taking this into 
account, the trajectory of an individual molecule can be 
represented as a sequence of linear vibrations of different 
amplitudes and in different directions: x 
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Ideal gas exists only in 
theory, and simply cannot 
exist in reality: the 
assumption that the 
molecules are noninteracting 
point particles is equivalent 
to the admission of their 
existence outside the space, 
i.e. of their nonexistence. 

The dynamic description of 
a many-particle system is 
technically unrealizable, 
theoretically unsuitable, and 
practically useless. 

The statistical and thermo- 
dynamic methods of 
investigating many-particle 
systems supplement each 
other. 

1. Statistical Method 

In the liquid state, a substance tends to retain its volume, 

but not its shape. It should be noted that the spherical shape 

of liquids under zero gravity does not contradict this 
statement. A liquid always assumes the shape determined by 
the forces acting on it. Under zero gravity, only the forces of 
surface tension act on it, and the spherical shape corresponds 
to the general equilibrium condition. Molecules in a liquid 
are close to each other, being as if in contact. Their relative 
positions, however, are not fixed and vary rather slowly. The 
trajectory of a molecule is schematically represented as 
follows: 

Sometimes, a large number of molecules combine to form 
an aggregate, and their distribution within the aggregate is 
ordered in a certain way. In this case, liquids have some 
properties typical of solid crystals, and are called liquid 
crystals. At present, the theories of gaseous and solid states 
are quite satisfactory. The theory of liquid state is the one 
least developed. 
THE IDEAL GAS MODEL. The simplest model of 

many-particle system is an ideal gas. By definition, this is 
a gas of point particles with a finite mass, which are 
characterized by the absence of long-range forces and by 
elastic collisions. It should be emphasized that the particles 
collide with one another only according to such a mechanism 
since, strictly speaking, point particles undergo only head-on 
collisions, which reverse the direction of velocities of the 
colliding particles, and do not change their velocities by any 
other angle. The closest approximation to an ideal gas is 
a highly rarefied gas. 

The simplicity of the ideal gas model makes it suitable for 
investigating many-particle systems and related concepts. 
THE DYNAMIC METHOD. Between collisions, particles 

move in straight lines. The laws of collisions and impacts 
against the walls of the vessel in which a gas is contained are 
known. Hence, knowing the positions and velocities of all the 
gas particles at a certain instant of time, we can calculate 
their positions and velocities at all subsequent moments of 
time. Moreover, in principle, we can also find the positions 
and velocities of all the particles at all preceding moments of 
time if necessary. The positions and velocities of all particles 
at any instant of time give the most detailed information 
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about a system of particles. However, all this information in 
its direct form is mentally incomprehensible, and the simplest 
interpretation is beyond any technical means, let alone the 
fact that its processing is unrealizable technically. 

Indeed, 1 cm? of air under normal conditions contains 
— 2.7 x 10? molecules. This means that 6x 2.7 x 101° 
numbers have to be fixed in order to describe the positions 
and velocities of all molecules at a certain instant of time. If 
some instrument could fix these numbers at the rate of 
1 million per second, it would take 6x2.7x10Psz6 
milion years. If these data are used for calculating, for 
example, the kinetic energy of particles at a rate of 10° 
operations per second, it would take about 21 million years, 
even if we do not take into account the 2 million years 
required to fix the kinetic energy values for all molecules. On 
top of this, all this information corresponds to a certain 
instant of time for molecules contained in 1 cm? of air under 
normal conditions. Naturally, such a problem is technically 
unrealizable. 

However, it is not just this circumstance that makes the 

dynamic consideration impossible and  impractical. As 
a matter of fact, the information about the individual 

particles in its direct form is unsuitable for theoretical 
analysis. For example, 10? molecules in this volume 
numerically mean less than one person in the universe. 
Hence, if we had detailed information about all the people 
living in this world, the loss of information about one person 
would be more important than the loss of information about 
10? molecules in the system under consideration. Naturally, 
such a volume of information in itself is not important for 
investigating a system of particles as a whole. This is 
important for estimating the role of bits of information 
obtained from a dynamic description. A direct consequence 
of this circumstance is even more important. Suppose that 
the directions of velocities of 10? molecules are changed. 
Obviously, these changes are as insignificant for the system of 
particles on the whole as an acute toothache of a human 
being for the humanity at large. However, insignificant changes 
within a fraction of a second will lead to a complete 
alteration of the positions and velocities of all the particles, 
and consequently, to a complete alteration of the entire 
information in the form under consideration. This is due to 
the fact that each molecule undergoes about. 10° collisions 
per second under normal circumstances. Therefore, if the 
velocity of one of the molecules slightly changes its direction, 
the velocities of 2" molecules will change in n x 10 ^? s. 
Consequently, their positions in space will change in 
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? 
. What are the main features of 

the model of a substance in 
molecular physics? 

. What are the main criteria of 
different states of aggregation 
of a substance? 

. Why is the dynamic description 
of a many-particle system techni- 
cally unrealizable, theoretically 
inapplicable, and practically use- 
less? 

. Outline the main features of the 
thermodynamic method for 
describing a many-particle 
system. 

1. Statistical Method 

comparison with the positions which would be occupied by 
the molecules if the velocity of the initial molecule were 
unchanged. This means that a slight variation, for example, in 
the direction of the velocity of one molecule will soon lead to 
a variation of the velocity and position of all the molecules. 
This shows that such a form of information is unsuitable for 
a theoretical analysis of the behaviour of the system as 
a whole and is useless from a practical point of view. 
On the basis of the above discussion, it can be concluded 

that a dynamic description of a many-particle system is 
technically unrealizable, theoretically inapplicable, and 
practically useless. 
THE STATISTICAL METHOD. The above dynamic 

description immediately leads to the conclusion that for the 
investigation of a many-particle system, the information must 
be of a general nature, pertaining to an aggregate of a large 
number of particles rather than to individual particles. 
Accordingly, the concepts must also refer to aggregates of 
particles. A different approach must be adopted for the new 
type of information and new concepts. This approach is 
called the statistical method. The laws describing the behav- 
iour of aggregates of a large number of particles, which are 
analyzed by the statistical method, are called statistical laws. 
Statistical methods are used more widely in physics than 
dynamic methods. This is due to the fact that a dynamic 
method can be effectively applied only to systems with 
a small number of degrees of freedom. Most physical systems, 
however, have an enormous number of degrees of freedom 
and can be investigated only with the help of statistical 
methods. Besides, the quantum-mechanical laws are also 
statistical in nature. Consequently, it is necessary to use 
statistical methods even for the analysis of systems with 
a small number of degrees of freedom if quantum-mechanical 
effects are significant in their behaviour. All this points 
towards the tremendous role of statistical methods and 
statistical laws 1n physics. 

THE THERMODYNAMIC METHOD. A many-particle 
system can be investigated in a different way without going 
into details of its internal structure. In such an approach, we 
must use the concepts and physical quantities pertaining to 
the system as a whole. For example, the model of an ideal 
gas in the state of equilibrium in this case is characterized by 
the volume, pressure, and temperature. The relations between 
these quantities must be established experimentally, and the 
theory must be based on some general postulates (for 
example, the law of conservation of energy) explaining these 
relations. Such a theory is phenomenological in nature, and 
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does not deal with internal mechanisms of processes 
determining the behaviour of the system as a whole. Such 
a method of investigating many-particle systems is called 
thermodynamic. 

Statistical and thermodynamic methods of investigating 
many-particle systems are complementary to each other. The 
thermodynamic method is of a general nature and can be 
used for studying phenomena without knowing their internal 
mechanisms. The statistical method helps to understand the 
essence of phenomena and establish a relation between the 
behaviour of a system as a whole and the behaviour and 
properties of individual particles and subsystems. A combined 
application of these methods helps in solving scientific 
problems in the most effective way. 

Example 1.1. Find the molar mass of water. How many 
moles of water molecules are contained in 1 kg of water? 
How many molecules of water are contained in 1 g? What is 
the mass of a water molecule? 

The relative mass M, of a water molecule is 18. Hence, the 
molar mass of water is M = 18 x 10^? kg/mole. The number 
of moles v in 1 kg of water is equal to 1] kg/(18 x 
x 1073 kg/mole) = 103/18 = 55.6 moles. The mass of a wa- 
ter molecule m,,, 2 M,m, — 18 x 1.66 x 107?7 kg = 2.99 x 
x 10726 kg. The number of molecules in 1 g = 107? kg is n = 
= m/Mmo = 107 ?/(2.99 x 107 76) = 3.33 x 1077. 
Alternatively, the number of molecules in 1 g of water can 

be found with the help of the Avogadro number. The number 
of moles contained in 10 ^? kg of water is v - [10 ?/(18 x 
x 107 3)] = 0.056 mole. Consequently, the number of 

molecules n 2 vNA = 0.056 x 6.02 x 1073 2 3.33 x 1077, 

Example 1.2. It is known that the volume occupied by 
a water molecule is AV z 3 x 10^ ?? m°. Find the density of 
water. 

Since the mass of a water molecule mnor = 2.99 x 10 ^ ?9 kg, 
its density p =m,,,,/AV= 10? kg/m? (we can assume that the 
molecules are densely packed). 
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Sec. 2. MATHEMATICAL CONCEPTS 

The basic concepts of the prob- 
ability theory and methods of 

studying random phenomena 
are considered. The main 
properties of random quantities 
are analyzed. 

STATEMENT OF THE PROBLEM. It was shown in Sec. 1 
that while the information about the positions and velocities 
of all individual particles of an ideal gas is conceivably the 
most comprehensive information, it is inapplicable for 
analyzing the properties and behaviour of a system in its 
direct form. In order to use the data contained in this 
information, it should be reduced to certain generalized 
characteristics of the aggregates of particles in such a way as 
to reflect the most significant properties of these aggregates 
and to make their concepts and mathematical formulation 
easier. These questions are considered by the probability 
theory and mathematical statistics. Large mathematical 
treatises are devoted to these problems. In this book, only the 
most essential mathematical results are given. The physical 
meaning of the mathematical concepts is mainly illustrated 
by considering the example of an ideal gas. Readers 
interested in details of the mathematical treatment are 
referred to appropriate courses. 
RANDOM EVENTS. The rejection of the dynamic 

description of a many-particle system alters the statement of 
the problem of describing such systems. If we isolate a certain 
small region in the space occupied by an ideal gas, we cannot 
specify the time when an individual particle will be located 
inside this region in the course of its motion. Similarly, it 

cannot be indicated whether this particle will stay in the 
region under consideration for a specific time interval. Hence, 
the location of a particle in a certain region of space is 
a random event. 

The random nature of some phenomena is subjective and is 
due to an insufficient knowledge or lack of technical facilities 
for their exact prediction. More frequently, however, the 
random nature of events is objective in principle and the very 
question of the exact prediction of events is devoid of any 
physical meaning. 

For example, let us consider an “event” involving 
a “collision” of a man with an automobile in a certain region 
of space, i.e. in a certain street. This collision is 
a consequence of a certain sequence of events culminating in 
the arrival of the automobile at the site of accident at an 
appropriate moment of time. Another chain of events is 
linked with the man and culminates in his arrival at the site 
of accident at the same instant of time. The chains of events 
associated with the automobile and the man are not 
connected physically, i.e. a variation in the chain of events 
associated with the automobile does not cause any variation 
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in the chain of events associated with the man. Hence, in 
principle, it is impossible to exactly predict the running over 
of a man by an automobile. Such a formulation of the 
problem has no physical sense by the very nature of the 
events under consideration. Such an event is random in the 
objective sense and not because we lack the knowledge or the 
technical facilities to predict this event. 

The motion of microparticles is described by the laws of 
quantum mechanics. It is impossible in principle to predict 
their exact location. Hence, the position of a microparticle in 
a certain region of space is a random event by nature and 
not because of insufficient knowledge or lack of technical 
facilities for its prediction. This confirms the above statement 
that most of the events in a many-particle system are 
random. 

In order to describe random events, we must use special 
concepts and appropriate mathematical methods. The 
probability theory deals with such problems. 
RANDOM QUANTITIES. The coordinates and velocities of 

individual molecules in an ideal gas at a certain instant of 
time cannot be taken as numbers whose exact values can be 
predicted beforehand. These are random quantities. The 
theory of probability and mathematical statistics deals with 
the laws describing the behaviour of random quantities. 

PROBABILITY. A huge variety of random events is 
analyzed in theory and practice. The general result of such an 
analysis, however, is always formulated in the same way: 
either the event has occurred or it has not occurred. The 
problem of predicting random events is reduced to finding 
the quantitative characteristics of these “either... or” 
possibilities and is solved with the help of the probability 
concept. 

THE DEFINITION OF PROBABILITY IN TERMS OF 

FREQUENCY. Let us divide the volume occupied by an ideal 
gas into two equal parts. We shall assume that we can 
distinguish the particles from one another and can track the 
position of an individual particle without significantly in- 
fluencing the motion of the particle and the state of the 
system as a whole through the act of observation. Suppose 
that the external conditions of the system are invariable. Let 
us consider an event consisting in that the particle under 
consideration is in a particular half of the volume. Then the 
result of each observation is reduced to the statement that 
the event has either occurred, i.e. the particle is located in the 
particular half, or that the event has not occurred, i.e. this 
half does not contain the particle. We use the following 
notation: N is the total number of observations or “trials”, 
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It is meaningless to ask why 
a particular event occurs out 

of two equally probable 
events in a given experiment. 
Such a problem was dis- 
cussed in the Middle Ages. 
Two exactly identical stacks 
of hay are placed 
symmetrically in front of an 
ass (Buridan's ass) so that 
there are no motives for him 
to prefer one stack to the 
other. What will happen to 
the ass? According to one 
opinion, the ass would starve 
to death. Such a logic does 
not satisfy the ass. It does 
not satisfy the scientists 
either. 

1. Statistical Method 

N4 is the number of trials in which the event occurs, i.e. the 

particle is located in the particular half, and A is the event 
itself. The probability of occurrence of the event A is given by 
the formula 

(2.1) 

Here, it is important that the number of trials in a system 
under invariable conditions be very large (N — oo). Instead of 
requiring that the trials be made on the same system under 
invariable conditions, we can consider a set of separate trials 
on a large number of identical systems, called an ensemble of 
systems. Hence, the number Ny in formula (2.1) is the 

number of systems in an ensemble, corresponding to the 
location of a particle in the given half of the volume, and 
N is the total number of systems in the ensemble. Naturally, 
these definitions are exactly equivalent, although one of them 
may turn out to be more convenient for the theoretical 
calculation of probabilities under certain conditions. 

If we make a sufficiently large number of trials, the 
calculation of probability with the help of formula (2.1) is 
a simple mathematical operation. However, it is very difficult 
to calculate the probability of a certain event with the help of 
this formula, since we cannot predict the number of trials N4 

in which this event will occur. But this is exactly the form to 
which the problem is reduced when analyzing any processes 
of probabilistic nature. The combination theory is frequently 
helpful in analyzing such problems. It can be used for 
calculating the factors favouring the occurrence of a certain 
event among many. The intuitive concept of equally probable 
events is the starting point for such an analysis, and its 
mathematical expression merely states that the frequency of 
their occurrence is the same. This sometimes helps in 
calculating the number Na, in formula (2.1) and thus 
determining the probability. This method will be repeatedly 
used in this book. But first let us illustrate it by considering 
some simple examples. 

If a particle moves in a volume mentally divided into two 
equal parts, there are no physical grounds to assume that the 
particle will be located in one of the halves in preference to 
the other. Hence, the probability of the particle occupying 
either half of the volume is the same, and the particle can be 
found in either half with the same probability in each 
observation or trial. Consequently, for a large number of 
observations, the particle will be found in half of the cases in 
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one part of the volume and in half of the cases in the other 
part, which means that N4— N/2 and 2 (A) — 1/2. Similar 
arguments apply to the tossing of a coin for “heads”, casting 
dice, etc. In all cases, the problem boils down to the 

calculation of equally possible outcomes of the trials. There- 
fore, the calculation of probability by formula (2.1) with the 
help of the combination theory methods is carried out as 
follows: if a tria] can lead to N equally probable results, and 
if the event A occurred N 4 times out of these, its probability 
is given by formula (2.1). For example, if we cast dice with six 
faces having numbers 1, 2, 3, 4, 5, and 6 engraved on them, 
equally possible outcomes of N casts of a die is the 
appearance of any of these numbers on the upper face. For 
example, the number I appears on top in N/6 outcomes. 
Consequently, N, — N/6 for this event, and its probability 
4? (1) 2 1/6. The probabilities of appearance of “two”, “three”, 
etc. are calculated in a similar way: 

2)-2Q)-..-4(6-1/6. 

It should be noted that an individual die is a statistical 
system, while a set of N identical dice constitutes an 
ensemble. 
PROBABILITY DENSITY. If an event is characterized by 

continuously varying quantities, there is no sense in 
calculating the probability with the help of formula (2.1). For 
example, it is meaningless to ask "what is the probability that 
a particle has a velocity of 10 m/s?" This is due to the fact 
that "the number" of all possible velocities cannot be 
counted, since the velocity is a continuous quantity. The set 
of events in this case is uncountable, and their probabilistic 
description is carried out by using the concept of probability 
density. 

Imagine a closed vessel with a gas under invariable 
external conditions. The gas molecules move randomly in the 
vessel, although it certainly does not mean that all parts of 
the vessel volume are equivalent for them. For example, if the 
vessel is in a gravitational field, the lower part of the vessel is 
preferable for the molecules as compared to the upper part, 
although the molecules can be found in al] parts of the vessel. 
Suppose that we can somehow determine the location of 
a certain isolated molecule without perturbing its motion or 
altering its location through the act of measurement. In 
different observations the molecule will be found at different 
points. We divide the entire space, including that outside the 

vessel, into small volume elements AV. Obviously, the 

number of such regions is infinite (i= 1, 2, ...). The number 
of acts of observations is denoted by N. In each act, the 
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molecule is found in a certain volume AV;. Suppose that the 
molecule is found N; times in the volume AV, in N acts of 
observation (N — oo). Then, in accordance with the definition 
(2.1, the probability of the molecule being found in the 
volume AV, in the next act of observation will be 

& (AV) = lim ( ce NC 

If we are dealing with a closed vessel, the molecule is never 
observed in all the regions AV, outside the vessel. In other 
words, N,;=0 for these regions, and the probability of the 
molecule being found in the regions outside the vessel will be 
P (AV) =0. 

Inside the vessel, this probability is generally nonzero and 
is not constant even for equal volumes AV. For example, if 
the vessel is in a gravitational field, the probability near the 
bottom of the vessel will be somewhat higher than at the top. 
However, this probability depends on the volume AV, and is 
therefore not suitable as a basic concept. Therefore, we use 
the concept of probability density defined by the formula 

fo yz- =a = à (2.2a) 

where x, y, and z are the coordinates of the point to which 
an infinitely small volume AV, contracts. Thus, the 
probability density is the probability of finding a molecule in 
an infinitely small volume divided by this volume. In other 
words, it is defined like any other density, for example the 
mass density p — lim (Am/AV). In the same way as (2.2a), we 

Voo 

can define the probability density on a two-dimensional 
manifold (surface), one-dimensional manifold, or 

a multidimensional manifold with more than three 
dimensions. 

It follows from (22a) that if Ng observations are made, the 
molecule will be found in the volume dV in the neigh- 
bourhood of the point (x, y, z) in 

dN — Nyf(x, y, z2dV2 Nof(x, y. z) dx dydz 

cases. In a finite volume Vj, the molecule will be observed 

N (V) =No J fe. y, z) dx dy dz 

times. It follows hence that the probability J^(Vj) of 



The admission of the random 

nature of events does not 
mean that there is no causal 
interaction between them. 
The causal interaction 
between events is universal, 
while the nature of 
determinism may be different. 
For example, the determinism 
may be only statistical. 

The random nature of the 
events does not mean that 
they cannot be regulated or 
controlled. In order to 
increase the chances of 
winning a lottery, one should 
buy more tickets. The 
possibility of influencing 
random events was expressed 
long ago in the saying: 
"Trust in God and do the 
right". 
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a molecule being found as a result of observation in the 
volume V, will be 

N(Vj) 
o 

P (V) = - [fe y, z) dx dy dz 

Thus, if we know the probability density, we can find the 
probability for any region in which the density is defined. For 
a gas in a closed vessel, the probability density at the points 
outside the vessel is equal to zero. 

If the entire space V, — oo is taken as the volume M, 
a particle will be found at some point of the space in each 
trial, and hence the number of observations of the particle in 

the volume V, — oo is equal to the number of trials No, Le. 
N(V, > œ)= No. The probability of finding the particle in 
the volume V, —oo (ie. at any point of the space) is 

f f(x, y, z) dx dydz. 
Vio 

The condition 

| fusdgdidydz-] (2.2b) 
Yi, o 

is called the probability density normalization condition. It 
shows that the molecule will be found at some point of the 
space in every act of observation. In other words, it expresses 
the fact of existence of the molecule. 

If it is known that a molecule is in a closed volume 
V confined by the vessel walls, the normalization condition 
assumes the form 

[fdv- 1. 
V 

Suppose that there are no grounds to assume that different 
regions inside the vessel are not equivalent for the molecules. 
For example, the vessel is in an inertial system of coordinates 
(i.e. there is no gravitational field) at a certain temperature. 
In this case, obviously, the probability density has a constant 
value: fọ=const. Its value can be found from the 
normalization condition 

fodV- f [dV - f V 1. y | 
Consequently, the probability density in this case will be 

fo — VV. 
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Fig. 1. Continual interpretation of 
probabilities 

1. Statistical Method 

Next, if the volume V, is a part of the volume V, the 
molecule will be found 

VW 1 
BY) = Mo | Sod Nome | Y= No y- 

times in this volume during Nj observations. Hence, the 
probability of finding the molecule in the volume V, will be 

P(V,)=[NV,/No] = V/V. (2.2c) 
This formula is valid only for a constant probability 

density in the volume V and if it is known that the molecule 
is sure to be found in this volume. However, for the sake of 
clarity, it can be used for illustrating the general theorems of 
the probability theory. A rigorous proof of the theorems can 
be carried out on the basis of the general definition (2.1) of 
probability. 
SUMMATION OF THE PROBABILITIES OF MUTUALLY 

EXCLUSIVE EVENTS. Suppose that we have two mutually 
exclusive events. For example, if there are two 

nonoverlapping regions V, and V, (Fig. 1) in a volume V, the 
presence of a particle in the region V, rules out the possibility 
of this particle being found in the region V,. Consequently, 
the detection of the particle in the volume V, and its presence 
in the volume V, are two mutually exclusive events. 

Let us consider the event when the particle is either in the 
volume V, or in the volume V,. The probability of this event 

V, TV V, V. P+- ANA) e 

is the sum of the probabilities of finding the particle in the 
volumes V, and V,. Formula (2.3) represents the probability 
summation rule for two mutually exclusive events. 

Let us apply this rule to the casting of dice. The 
appearance of the numbers 1, 2, ... on the upper face are 
mutually exclusive events. Hence, the probability that either 
1 or 2 appear on the upper face is equal to 

P(14+2)=PA(l)+ AQ). 
Thus, the general formula for probability summation of 

two mutually exclusive events A and B has the form 

P(A + B) = P (A) + P(B), (2.4) 
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where 2? (A 4- B) is the probability of the occurrence of either 
event A or event B. The simultaneous occurrence of these 
two events is ruled out, while it is possible that neither of the 
events occurs at a certain time. 
NORMALIZATION OF PROBABILITY. Suppose that all 

equally possible outcomes of trials are known for a given 
system and that they comprise a certain number of different 
mutually exclusive events (cases) which can be assigned the 
indices 1, 2, ..., n for the sake of convenience. We denote by 
N; the number of outcomes of trials in which the event 

1 

denoted by the index i is realized. Accordingly, we can write 

N,+Na+...+N,= Y NEN. (2.5) 
n 

This gives 

where 2? ,— Nj/N is the probability of the ith event. The 
formula 

(2.6) 

is called the normalization condition for probabilities. 
According to this condition, the set of mutually exclusive 
events under consideration is complete, i.e. each outcome of 
trials belongs to this set. 
SUMMATION OF PROBABILITIES IN THE GENERAL 

CASE. If a simultaneous occurrence of the events A and B is 
not ruled out, formula (2.4) for the summation of 
probabilities must be altered. Suppose that N is the total 
number of trials. The events A and B occurred in N4 and Ng 

outcomes of these trials respectively. All the remaining 
outcomes involved neither of the two events A and B. 
However, the cases N4 and Ng also include the cases when 

the events A and B occur simultaneously. We shall denote 
the number of such events by N4g. These outcomes were 

taken into account twice: once with the event 4 and once 
with the event B. Therefore, the tota] number of events A or 
B is equal to 

Na4-.B—NA-t Ng— Nag. 

Dividing both sides of this equation by N, we get 
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Fig. 2. To probability summation 
and conditional probability 

1. Statistical Method 

P(A + B) = P(A) + P (B) — P (AB), (2.7) 

where 

is the probability of simultaneous occurrence of the events 
A and B. If it 1s equal to zero, i.e. if the events are mutually 
exclusive, formula (2.7) is reduced to formula (2.4). 

Formula (2.7) assumes an especially clear visual form if we 
turn to the continuum interpretation of the probability [see 
(2.2c)]. Suppose that the regions V, and V, overlap (Fig. 2). 
We denote the region of their intersection by Via. The 
volume of the region obtained as a result of summation of V, 
and V, will be equal to Vi + V, — Vj. Consequently, the 
probability of a particle being found in this volume is 

V, -V,—V 

E EL. Me Viz = PV)+ PV- P(M42) Fx y I f i 
where 2 (Vi;)— V,,/V is the probability of finding the 
particle in the region of intersection of V, and Vz. 
CONDITIONAL PROBABILITY. The probability of 

occurrence of any event A under the condition that an event 
B has occurred is called the conditional probability of the 
occurrence of the event A and is denoted by 2? (A/B). 

Since the total number of outcomes of trials in which the 
event B occurs is equal to Ng, out of which the event A also 

occurs Ng times, we can write 

2 (A/B) — N 4p/ N s. (2.9) 

In the continuum definition of probability, the conditional 
probability 2? (V, /V;) of finding a particle m the volume V, if 
it is contained in the volume V, is reduced to calculating the 
probability of finding the particle in the volume V,, if it is 

contained in the volume V,. Hence, 

P(V,/V,)= Vi2/V2. 

It is convenient to transform formula (2.9) by dividing the 
numerator and the denominator of the right-hand side by N: 

Nap/N _ P(AB) 
P (A/B) = D TRU (2.10) 



Fig. 3. Geometrical meaning of the 
mean value: the area under the 
straight line ( 9», between t, and t, is 
equal to the area under the curve 
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where # (AB) is the probability of simultaneous occurrence 
of events A and B, which is defined by (2.8). 

The expression (2.10) in the form 

P (AB) = P (B) P (A/B) = P (A) P (B/A) (2.11) 

is called the probability multiplication rule. 
INDEPENDENT EVENTS. If the probability of occurrence 

of any event is independent of the occurrence of another 
event, such events are called independent. This means that if, 
for example, the event A is independent of the event B, 
P (A/B)= P(A). For independent events, formula (2.11) 
assumes the form 

P (AB) = P (4) P (B). (212) 

It is often applied for calculating the probability of 
simultaneous occurrence of independent events, as well as for 
verifying the independence of the events under investigation. 

Probability multiplication rule for many events is obtained 
directly from the formula (2.11). For example, the probability 
of simultaneous occurrence of events A, B, and C is defined 

by 

P (ABC) = 9 (AB) P (C/AB) — 2 (A4) P (B/A) P (C/AB). 

(2.13) 

For independent events, we have 

P (ABC) = P (A)P (B2? (C). (2.14) 

This formula expresses the necessary and sufficient 
condition of independence of three events. 
MEAN VALUE OF A DISCRETE RANDOM QUANTITY. If 

a random quantity X assumes a number of values x,, X3, 
xy, its mean value will be defined as 

(2.15) 

Some of the values x; can be identical, hence the sum over 
ion the right-hand side of (2.15) must be regrouped in such 
a way as to contain only different values x;: 

<x> = E(UG/N)x;, (2.16) 
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Fig. 4. Mean value depends on the 
variable over which averaging is 
performed 
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where N=} N, N; being the number of identical terms in 
F 

the sum (2.15), having the same value x;. Since (N;/N) = P; 
is the probability that X assumes the value x,, formula (2.16) 

for the mean value can be written in the following form: 

(2.17) 

This formula defines the expectation of a random quantity in 
terms of probability. 
MEAN VALUE OF A CONTINUOUS VARIABLE. This 

quantity is calculated with the help of a formula similar to 
(2.15). Let c(t) be a function of t. Then its mean value in the 
interval between t, and t, is given by the formula 

t 

(7L feta. 
1 to 

where the subscript t on the angle brackets indicating 
averaging shows the quantity over which the averaging is 
carried out. If it is required to show the interval (to, t4) over 
which the averaging is performed, this can also be done on 
the left-hand side of the angle brackets. However, the variable 
over which the averaging is performed in most cases is 
known, and there is no need to indicate it by the appropriate 
subscripts. Figure 3 gives the geometrical interpretation of 
the mean value (9»,. 

It should be noted that the mean value depends on the 
variable over which the averaging is carried out. For 
example, when a material point moves along a semicircle, its 
mean distance from the diameter will be different (Fig. 4) if 

averaging is performed along the semicircle, from the value 
obtained by the averaging along the projection of this point 
on the diameter of the circle: 

FR e cg 2R 
<d>, = — f Rsin( — }ds = —_, 

© TR $ R T 

i5 TR 
4d, [V Rx dx- o. 

2R ^R 4 
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Expression (2.17) can be generalized for a continuously 
varying random quantity as follows: 

oo 

O9 | x dx, 
— oo 

(2.18) 

where f(x) 1s the probability density of the distribution of the 
variable x. 
VARIANCE. The "spread" of a quantity about its mean is 

characterized by its variance which is defined as the mean 
square deviation of the quantity under consideration from its 
mean and is given by the formula 

o? 2 (x —- GO» = <x? - 2x 62 + (COPD 
= Kx?) — (F. 

(2.19a) 

The square root of the variance is called the standard 

deviation or the root-mean-square deviation. 
Taking (2.17) and (2.18) into account, we can elaborate for- 

mula (2.19a) as follows: 
(a) for a discrete random quantity 

o = Ea- OP; (2.19b) 
J 

(b) for a continuous random quantity 

o? = í (x — Go f (x) dx. (2.19c) 

PROBABILITY DISTRIBUTION FUNCTION. The 

probability that a random variable x assumes values smaller 
than a given number xp, i.e. x < Xo, is given by 

BSüex)ePue e P. (2.20) 
Xj € Xo 

The function F(xg) defined by this formula is called the 

probability distribution function. 
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For a continuous variable, the probability distribution 
function is represented, in accordance with (2.20), through the 
probability density f(x) as follows: 

F (xo) = f f (x)dx. (2.21) 

It follows from this formula that 

f(x) = dF(x)/dx. (2.22) 
With the help of this formula, we can rewrite the 

expressions containing f(x) dx by considering that dF(x)= 
= f(x) dx. For example, formula (2.18) can be rewritten as 
follows: 

(XE Í xdF(x). (2.23) 

Taking into account (2.20) and (2.21), we can express the 
probability of a random variable x assuming a value from the 
interval x, « x « x; in the following form: 

S (x,«x«xj- Wie dx = [dF (x) = F(x,)— F(x,). (2.24) 

Example 2.1. An urn contains n= 30 white and m= 10 
black identical balls. The balls are mixed thoroughly. Find 
the probabilities #(b) and A(w) of drawing a white and 
a black ball in one trial. Verify the normalization condition. 
Find the probability of successively drawing two black balls, 
two white balls, a white ball and a black ball, and a black 
ball and a white ball respectively, if, after the first trial, the 
ball is (a) returned and (b) not returned to the urn. 

Since there are no circumstances favouring the extraction 
of any specific ball (black or white), the probability of 
extracting a ball in a trial is the same and is equal to 1/(n + 
+m). Consequently, according to the probability summation 
rule, the probability of extracting any black ball in a trial is 
equal to 

P (b) = L/(n 4- m) *- L/(n -- m)  ...  l/(n 4 m) — n/n +m) 
e 

n times 

= 0.75. (2.25a) 

Similarly the probability of extracting a white ball is 

P (w) = m/(n + m) = 0.25. (2.25b) 



? 

. Give the definition of prob- 
ability. 

. What property of an aggregate 
of events makes the probability 
normalization possible? 

. What is the significance of the 
quantity distinguishing the 
probability summation formula 
for the general case from the 
corresponding formula for mu- 
tually exclusive events? 

. Does the mean value depend on 
the variable over which the 
averaging is performed? Give 
examples supporting the answer. 

. What is a standard deviation 
and what does it characterize? 
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Since these two events form a complete set of all possible 
outcomes of a trial, they must satisfy the probability 
normalization condition. The verification of this condition 
will simultaneously serve as the verification of the correctness 
of the above calculations: 

2? (b) - 2 (w) 2 n/(n 4- m) 4- m/ (n 4- m) — 1. (2.25c) 

If two balls are extracted successively, there will be four 
possible outcomes: white and white (ww), black and black 
(bb) white and black (wb), and black and white (bw). Since 
these four outcomes form a complete set of possible 
outcomes, their probabilities must satisfy the normalization 
condition: 

P (ww) + 2 (bb) + 2 (wb) 4- 2 (bw) — 1. (2.26) 

If after the first trial the extracted ball is returned to the 
urn, the probability of extracting a ball of a certain colour in 
the second trial will be the same as for the first trial. Hence, 

P(w) = P(w) = n/(n + m) = 0.75, 
(2.27) 

P (b) = P, (b) = m/ (n + m) = 0.25. 

The probability of the outcome of the second trial does not 
depend on the result of the first trial, i.e. the events of the 
first and the second trials are independent. Hence, for the 
probability of the outcome of two successive trials, we obtain, 
in accordance with the probability multiplication rule, 

P (ww) = P, (w) P 3 (w) ^ [n/(n + m)}? = 0,5625; 

P (bb) = Pı (b) P2 (b) = [m/(n -- my]? = 0.0625; 

P (wb) =P, (w)P, (b) = [n/n + m)] [m/(n + m)] = 0.1875; 

P (bw) = P, (b) P(w) = [m/(n 4- m)] [n/(n + m)] = 0.1875. 

The normalization condition has the form 

n eee m E nm E mn 

nim nam (n-my (nemy 

If after the first trial the extracted ball is not returned to 
the urn, the result of the second trial will depend on the 
result of the first trial, i.e. in the second trial we are dealing 
with conditional probability. As in the previous case, the 
probabilities of extracting a white or a black ball in the first 
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trial are given by formulas (2.25a) and (2.25b). The conditions 
are altered for the second trial. If a white ball was extracted 
in the first trial, the probability of extracting a white ball in 
the second trial will be 

2? ,(w/w) — (n — 1)/(n 4- m — 1) 2 0.744, (2.28) 

since for the second trial the urn will contain only n 4-m— 1 
balls of which n—1 are white. Similarly, the conditional 

probabilities of other outcomes of the second trial will be 
given by the formulas 

$9 ,(b/b) 2 (m — 1)/(n -- m — 1) — 0.310; 

2? ,(w/b) 2 n/(n 4- m — 1) 2 0.769; 

P (b/w) = m/(n + m — 1) — 0.256. 

The conditional probabilities do not satisfy the 
normalization condition in the second trial, since the 
corresponding events are not mutually exclusive. For 
example, a white ball may be drawn after a black ball, or 

after a white ball, and so on. 
The probability of successively extracting two white balls 

is given, in accordance with (2.11), by 
f n n—-1 
P (ww) = P, (w)P2 (w/w) = 

n+mn+m-—1 

= 0.75- 0.744 = 0.558. 

Similarly, 

P (bb) = P, (b) P, (b/b) 
= [m/ (n + m}] [(m — 1)/(n +m -— 1)] = 0.25- 0.310 

= 0.0775; 

P (wb) = YF; (w) P 2 (b/w) = [nin + m)] [m/((n + m — 1)] 
= 0.75. 0,256 = 0.192; 

P (bw) = P (b) 7, (w/b) = [m/(n 4 m)] [n/(n 4- m — 1)] 

= 0.25- 0.769 = 0.192. 

The events of two trials constitute a complete system of 
mutually exclusive events and must satisfy the normalization 
condition. Let us verify this: 

n(n— 1) m (m — 1) 

(n4 m)nam-—l1) — (n+m)(n+m-— 1) 

nm " mn a 

m dab Ente d] (n4-m)(n--m—1) ` 



We cannot observe the 
microscopic state of 
a many-particle system for 
the same reasons which 
make a dynamic description 
of their motion impossible. 
The more so, because we are 

not in a position to observe 
the variation of the 
microscopic states. How can 
we prove that such systems 
exist and vary? We can 
Observe and measure various 
parameters characterizing the 
state of individual particles 
as well as their interaction 
with the system as a whole. 
This leads to the conclusion 
about the existence of the 
microscopic state of a system 
of particles and about the 

variation of such states. 
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At the same time, we have verified that all possible 
outcomes of two trials have been taken into account during 
calculations. The fact that the sum of the probabilities of 
individual trials is equal to unity, Le. 

0.558 + 0.0775 + 0.192 + 0.192 = 1.0195 ~ 1, 

may serve as a verification of the correctness of the results of 
numerical calculations. The above result confirms, to within 
the accuracy of calculations, the correctness of the numerical 

values for the probabilities of the individual outcomes of 
trials. 

Since the number of white balls in the urn is nearly thrice 
the number of black balls, the probability of events in which 
at least one of the extracted ball is white is considerably 
higher than the probability of the event when a white ball is 
not extracted, i.e. when two black balls are extracted. In 
nearly 60% of cases, two white balls will be extracted, while 
a black and a white ball will be extracted in about 40% of 
the cases. In less than 10% of cases can two black balls be 
extracted. 

Example 2.2. Many years of meteorological observations at 
a certain place showed that 20% of the days in November are 
cloudless, while it rains on 20°% of the cloudy days. Find the 
percentage of rainy days in November and the probability of 
forecasting rain on a certain day. 

The probability 2? (s) of a sunny (cloudless) day is equal to 
0.2. Consequently, the probability of a cloudy day in #(c)= 
= 1— PA (s)= 08. It can rain only on a cloudy day, hence the 
probability of a rainy day, according to the formulation of 
this problem, is conditional. The probability that a day is 
rainy provided that it is cloudy is #i{r/c)=0.2. The 
probability of rain on a sunny day is #(r/s)=0. Hence, the 
probability of a rainy day is obtained from the probability 
multiplication rule: 

PF (cr) = P (c)? (r/c) = 0.8 -0.2 = 0.16, 

i.e. 16% of the days in November are rainy days at this place. 
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Sec. 3. MACROSCOPIC AND MICROSCOPIC STATES 
OF A SYSTEM 

The definitions of the macro- 
scopic and microscopic states 

of a system are formulated 
and the relation between them 
is analysed. The concept of a 
statistical ensemble is intro- 
duced, and the microcanonical 
ensemble is described. 

If a system is not isolated, it 
can be in a steady state 
which is not an equilibrium 
state. 

À microcanonical ensemble is 
an aggregate of identical 
isolated systems having the 
same energy. 

DEFINITION OF A SYSTEM. À system is a finite region in 
space containing the physical objects of investigation. The 
boundary of a system may be real (for example, the walls of 
a vessel) or imaginary (drawn mentally in the space). It may 
be fixed or movable. A boundary may be penetrable or 
impenetrable for a substance, and it may or may not be able 
to transport energy. In the former case, it is classified 
according to the forms of energy which can be transported 
across it. 

A system is characterized not only by the properties of its 
boundary, but also by the physical or chemical properties of 
the substance in the space occupied by it. As and when 
required, we shall classify systems according to these criteria. 
The first system which we shall consider here is an ideal gas. 
By an ideal gas we mean an aggregate of point particles 
having a finite mass, colliding with one another according to 
the laws of perfectly elastic collisions between balls. There are 
no other means of interaction between particles, i.e. there are 
no forces of interaction between particles at a finite dis- 
tance. 
THE MACROSCOPIC STATE. Suppose that an ideal gas is 

confined within a volume V. We assume that the collisions of 
the particles with the vessel walls are perfectly elastic, and 
that the mass of the vessel is very large, so that the impact of 
particles against its walls do not change its state of motion. 
Thus, the gas contained in a volume V does not exchange 
energy with the material bodies outside the volume V or, in 
other words, it is isolated. Under these conditions, the gas in 

a vessel is isolated from all external influences and all 
variations in it are due to internal reasons. 

After a sufficiently large time interval, during which the 
system is left entirely to itself, the gas attains a steady state 
and no further variations in it will occur with time. In this 
statement the meaning of “a sufficiently large time interval” 
or “the gas attains a steady state” is not clear. An exact 
quantitative interpretation of these expressions and other 
related concepts can be given only at a later stage when the 
behaviour of the gas has been studied. For the present, it is 
sufficient to confine ourselves to the intuitive concept that 
irrespective of the initial pressure and temperature 
distribution in a gas, they stabilize after a certain interval 
over the entire volume and will then remain constant in 
time, i.e. the gas attains a steady state. 
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|. Estimate the order of the 
interval of time for equalization 
of pressure in a gas. 

2. Which quantities characterize 
the macroscopic and microscopic 
states of a gas? 

3. What is the general nature of 
relations between macroscopic 
and microscopic states? 
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“A sufficiently large time interval” is an interval during 
which an equalization of temperatures and pressures over the 
entire volume takes place. It can be estimated from an 
investigation of transport phenomena. Here, we shall just 
remark that the equalization of pressure is determined by the 
velocity of sound v,. If Lis the linear dimension of the vessel, 
the equalization time for pressures 1s equal to L/v, in order of 
magnitude. Since v, — 330 m/s under normal atmospheric 
conditions, this time for L~ 1m is approximately equal to 
3 x 107? s. Judging by our macroscopic perception of time, it 
can be considered to be quite small. However, if we proceed 
from the microscopic properties of molecular motion, this 
time is quite long. For example, a given molecule undergoes 
about 10? collisions per second with other molecules under 
normal conditions. Hence, “from the point of view of this 
molecule", the interval of 3 x 10^? s is quite large, since the 
molecule undergoes over a million collisions with other 
molecules during this period. The state of a gas, characterized 
by its pressure, temperature, and volume, is called the 
macroscopic state. 

THE EQUILIBRIUM STATE. The macroscopic steady state 
of a gas isolated in volume V from the external medium is 
called the equilibrium state. In this case, its macroscopic 
characteristics, viz, its pressure, temperature, and volume, 
retain their constant values in time, the pressure and 
temperature being the same in all parts of the volume. By 
*parts of volume" we mean sufficiently large parts containing 
a very large number of particles. 

The constraint regarding the isolation of the system is 
important in the definition of equilibrium state. If the system 
is not isolated, it can have a steady state which is not an 
equilibrium state. If, for example, different parts of the walls 
of a vessel containing a gas are maintained at different 
constant temperatures with the help of external heat sources, 
a steady state will be established in the gas, i.e. the state of 
the gas will not change with time. This state, however, will 
not be the equilibrium state. In this case, the pressure in all 
parts of the volume will be the same, although the 
temperature will be different in different parts. 

THE MICROSCOPIC STATE. The most complete 
information about a gas can be obtained by ascertaining the 
positions and velocities of all its particles (see Sec. 1). Let us 
label the particles of a gas by the indices i= 1, 2, ..., n. This 
means that the volume under consideration contains 
n particles in all. This is a very large number. If the volume 
B=1cm*, n=2.7x 10)? particles under normal 
atmospheric conditions. The state of a gas, characterized by 
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the positions and velocities of all its particles, is called the 
microscopic state. 

Consequently, the microscopic state of a gas is 
characterized by 6n numbers, viz. 3n coordinates (x; y; z;) of 
all the particles and 3n components (v,, vj, v.) of their 
velocities. These numbers should be treated as random 
quantities (see Sec. 1). 

The macroscopic state is characterized by three quantities, 
viz. pressure, temperature, and volume. In the steady state, 
these quantities are constant. However, the particles in a gas 
are in motion even in the steady state and hence its 
microscopic states keep changing continuously. Thus, an 
enormously large number of microscopic states correspond to 
each macroscopic state. In other words, a given macroscopic 
state is realized through an enormously large number of 
microscopic states. 

The statistical physics aims at establishing a relation 
between the microscopic and macroscopic states of systems. 

THE STATISTICAL ENSEMBLE OF SYSTEMS. The method 

of system ensembles (see Sec. 2) is convenient for analyzing 
the questions of statistical physics. Let us consider an 
extremely large number N of vessels which are exactly 
identical and have a volume V each. Each of the vessels 
contains an identical number n of identical particles. A vessel 
containing such particles is called a statistical system, while 
the aggregate of identical statistical systems is called 
a Statistical ensemble. 

We are not interested in how the particles move or what 
points of the corresponding vessels are occupied by these 
particles at a certain initial moment of time. Our aim is to 
study the microscopic and macroscopic states of the 
individual systems of the ensemble after a sufficiently large 
interval of time, the term “sufficiently large interval of time” 
being understood in the sense described above. 

It is clear from the above description that the same 
macroscopic state is realized in a large number of systems of 
an ensemble, which are in different microscopic states. 
THE MICROCANONICAL ENSEMBLE. A microcanonical 

ensemble consists of identical isolated systems having the 
same energy. Besides microcanonical ensembles, statistical 

physics also considers canonical ensembles (see Sec. 7) as 
well as other ensembles. The method of ensembles was 
introduced into statistical physics in 1902 by the American 
physicist Gibbs (1839-1903). 
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Sec. 4. THE EQUAL PROBABILITY POSTULATE 

AND THE ERGODIC HYPOTHESIS 

The arguments in favour of 
equiprobability postulate are 
analysed. The physical content 
of the ergodic hypothesis is 
considered, and the rela- 
tionship between the equipro- 
bability postulate and the 
ergodic hypothesis are 
revealed. 

DISTINCTION BETWEEN MICROSCOPIC STATES. It has just 

been mentioned that even when a system remains in the same 
macroscopic state, its microscopic states keep changing 
incessantly. Since the microscopic states of a system are 
characterized by continuously varying values of coordinates 
and velocities of particles, one can naturally ask: what 
amount of variation of these quantities is sufficient to 
consider that the microscopic state has changed? What is the 
meaning of the expression “a system is in the given state” if 
this statement refers just to a moment of time which itself has 
no duration but simply separates the past from the future? 
Naturally, such a representation is equivalent to the 
investigation of a system which is beyond time and is not 
compatible with our physical concepts about the 
development of a process in space and time. It can be easily 
seen that these questions are equivalent to those posed by the 
Greek philosopher Zeno concerning stoicism. The paradoxes, 
or aporias, of Zeno formed the subject of numerous 
discussions and reflections by most of the leading intellectuals 
for over two thousand years. Their significance became clear 
only after the appearance of the mathematical set theory and 
quantum mechanics. The difficulties in distinguishing between 
microscopic states can be satisfactorily overcome only by 
using the quantum-mechanical concepts. Here, we shall 
describe a somewhat artificial (and not quite satisfactory) 
method which was used in classical statistical physics. 

The justification for using such an approach is that it led 
to some important results even within the framework of the 
classical statistical physics. Later, these results were 
confirmed more than satisfactorily with the help of quantum 
statistics. 

It is well known that atoms and molecules have certain 
dimensions. Their diameter d is of the order of 107!° m, and 
so each atom or molecule occupies a volume d? œ 1073? m?. 
The expression "occupies a volume" means that if a certain 
particle is present in this volume, no other particle can be 
present in this volume. Hence, a particle is considered to 
have changed its position if it goes over from the volume 
occupied by it to another volume which it is capable of 
occupying. Under such a representation, the entire volume 
V occupied by a gas can be assumed to be divided into cells, 
each having a volume d?, which can be occupied by 
individual particles. The motion of particles involves an 
abrupt transition from one cell to another. The duration of 
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stay of a particle in each cell is of the order of d/v, v being 
the velocity of the particle. 

It is now possible to distinguish between microscopic states 
on the basis of the positions of particles. Depending on the 
positions of particles in space, a microscopic state is 
characterized by a certain distribution of all the particles over 
cells into which the volume under consideration is divided. 
The change in the microscopic state of a system should be 
seen as a transition of particles from one cell to another. In 
order to use such a concept, it is not necessary to assume 
that the particles of a gas really have geometrical dimensions 
of the order d. As before, we can assume that the particles of 
an ideal gas have zero dimensions, but that their laws of 
motion are such that only one particle can exist in a cell at 
one time. It is this concept that we shall be using in this 
book while considering questions concerning an ideal gas. 

According to the above considerations, there are N= 
= 1/d° =~ 10?? cells in 1 m?. On the other hand, the number 
of particles in this volume under normal conditions is n — 
— 2.7 x 1075, This means that under normal conditions, there 
is one particle for every N/n =~ 4 x 10* cells. Consequently, 
most of the cells are empty and only a few of them are 
occupied by particles. If the cells are arranged in the form of 
cubes, one particle will occupy a cube consisting of 40000 
cells. More than 30 cells are situated along each side of such 
a cube. Consequently, the mean distance between occupied 
cells is more than 30 times the linear dimensions of a cell. 

Let us now find a method of distinguishing between the 
microscopic states on the basis of velocities. This problem is 
reduced to finding a change in velocity for which the state of 
motion of a particle can be considered to have changed. In 
other words, we must construct “velocity cells” for velocities 
in the same way as it was done for coordinates. This problem 
could not be solved by the classical theory, and had to await 
the advent of quantum mechanics. Classical mechanics had to 
remain content by assuming that such a subdivision of states 
according to velocities (or momenta) is possible and that it is 
possible, in principle, to count the number of states, although 
it was unable to indicate how this can be actually done. Such 
a description was found to be satisfactory in most cases, since 
“the number of microscopic states according to momentum” 
was either eliminated in the final results, or the numerical 
counting could be replaced by integration over continuous 
variables by passing to the limit. 

It was first shown by quantum mechanics that a particle 
cannot occupy a certain volume in space and a certain 
“volume” in velocities. Its spatial and velocity properties are 



Although all particles are 
identical in terms of their 
internal characteristics, 
a certain "hierarchy" exists 
among the particles at all 
instants of time. For 
example, some particles have 
a higher kinetic energy than 
the others, some particles are 
closer to the centre of the 
vessel in which they are 
contained while others are 
closer to the walls, and so 
on. However, the "hierarchic 

‘positions of the particle 
rapidly vary, and there are 
no hereditary kings or 
perpetual beggars. Over 
a sufficiently large interval of 
time, each particle appears at 
all the steps of the 
“hierarchic” ladder. 
Moreover, all particles spend, 
on the average, the same 
amount of time at each step 
of the ladder. 

” 
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interrelated and cannot be isolated from each other. 
Moreover, the motion of a particle is defined not by its 
velocity v, but rather by its momentum p. The volume of 
cells which can be occupied by one particle is determined not 
in the space of coordinates or space of momenta, but in the 
space of coordinates and momenta, which is called the phase 
space. The volume of a cell occupied by a particle in this 
space is equal to 

(Ax Ay Az) (Ap, Ap, Ap;)o — Qnhy, (4.1) 

where h = 1.05 x 10 ?*J.s is the Planck constant. It should 
be noted that in optics and spectroscopy, the Planck constant 
h = 2nh is frequently used instead of A. This is so because it is 
a more convenient form when we are dealing with the fre- 
quency v— o/(2n) instead of the circular frequency, since 
ho = hv. 

The quantum-mechanical approach described by (4.1) for 
considering microscopic states will be used somewhat later in 
this book. First let us confine ourselves to the analysis of 
different microscopic states in ordinary space, avoiding an 
explicit analysis of states in the momentum space and remain- 
ing content with the knowledge that this can be done if re- 
quired. The methods and concepts used in this case are quite 
simple and clear on the one hand, and on the other hand, 

can be easily extended to the phase space. 
THE EQUIPROBABILITY POSTULATE. The particles in 

each system of a microcanonical ensemble are assumed to be 
numbered, just as the cells in which particles can be located. 
At a certain moment of time, a certain particle may be found 
in different cells in different systems of an ensemble. If 
a sufficient amount of time has elapsed from the initial 
moment, and if all the systems of the ensemble have 
“forgotten” their initial state, the cell in which a specific 
particle may find itself at a particular moment is a random 
one. There are no motives for the particle under 
consideration to be present in a certain cell in preference to 
another. All the cells are equivalent and all the positions of 
the particle are equally probable. If an ensemble contains 
a very large number N, of systems, the number of systems in 
which the particle under consideration will appear in cell 
1 will be equal to the number of systems in which it will 
appear in cell 2, and so on. In other words, all possible 
positions for the particle are equally probable. A microscopic 
state is characterized by the position of all n particles 
comprising the system, i.e. by the specific distribution of 
these particles over cells into which the volume is divided. 
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Since all the cells are equally probable for all the particles, it 
is logical to assume that all distributions of particles over the 
cells are also equivalent. This means that all the microscopic 
states are equally probable. Hence, for example, a system in 
which all the particles are gathered in one corner of the 
volume under consideration and occupy all n cells in this 
corner in a certain way will be encountered in the ensemble 
the same number of times as a system in which particles are 
found in all corners of the volume and correspondingly 
occupy n cells, again in a certain way. 

The statement about equally probable microscopic states is 
called the equiprobability postulate. 

The above discussion, however, does not constitute a proof 
of this statement. 

At present, such a general proof does not exist, and that is 

why this statement is called a postulate. It is of extreme 
importance in statistical physics. 
CALCULATION OF MEAN VALUES OVER AN 

ENSEMBLE. Let us consider some quantity associated with 
a certain particle, for example, the square of its coordinate. 
The arrangement of the coordinate system is arbitrary, and 
the only important point is that the coordinates should be 
identical for all systems of the ensemble (Fig. 5). We shall 
denote the coordinate of a particle in the i-th system of 
a Statistical ensemble by the subscript i. Then, by definition 
of the mean, we get 

1 N, 

Ye. (4.2) 
a i-1 

s 

>: = 

The index a in this equality means that the mean of the 
quantity under consideration is taken over the entire 
ensemble, N, is the number of systems in the ensemble, and 
x, is the coordinate of a particle in the i-th system of the 
ensemble. The number of cells in each system of the ensemble 
is equal to N ~ 107°, while the number N, of systems in the 
ensemble is assumed to be much larger (N,»>N). Hence, it 

can be assumed that the number of systems of the ensemble, 
in which a particle is present in the j-th cell, is large. Suppose 
that this number is equal to N,, From the definition (2.1) of 
the probability in terms of frequency, we obtain the 
probability of finding a particle in the j-th cell: 

p NN. (4.3) 

We transform the sum in (4.2) in such a way that the terms 
corresponding to the same cell in different systems of the 
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č 

ensemble are grouped together. Since, as mentioned earlier, 
a particle appears in the j-th cell in N,, systems of the 
ensemble, we obtain 

N, N 

x= 2 Nap. (4.4) 

where x; is the x-coordinate of the j-th cell, N,, is the number 
of systems in the ensemble containing a particle in the j-th 
cells, and N is the number of cells in each system of the 

statistical ensemble. 
With the help of (4.4) and (4.3), we can express (4.2) in the 
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? 

Suppose that we are watching 
a film showing a fisherman 
catch a fish on his fishing-rod. 
At certain intervals of time, the 

fisherman extracts the hook 
from the water, removes the 

fish, and throws it into a bucket 
containing water. After this, he 
puts the bait on the hook and 
throws it back into the water. 
We can measure the duration of 
these intervals with the help of 
a chronometer. Obviously, the 
total duration of these time 
intervals, divided by the 
duration of the entire film, is 
equal to the number of frames 
containing pictures from the 
moment of extraction of the 
hook from the water to the 
instant of its being thrown into 
the water, divided by the total 
number of frames in the film. 
This is the main part of the 
ergodic hypothesis, but not all 
of it. What else remains to be 
proved? 
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following form: 

(4.5) 

where x; is the x coordinate of the j-th cell, and #, is the 
probability of a particle being present in this cell. This 
expression corresponds to formula (2.17) for the mathematical 
expectation of a random quantity. The ensemble of systems 1s 
not mentioned in explicit terms of the right-hand side of this 
expression. The concept of the ensemble is contained in this 
formula in an implicit form through the probability 2^, of 
finding a particle in the j-th cell. Although formulas (4.2) and 
(4.5) are equivalent, it is sometimes easier to compute the 
mean over an ensemble by using formula (4.5). 
CALCULATION OF MEAN VALUES OVER TIME. Let us 

track the position of the particle under consideration in one 
of the systems of the ensemble over a very large interval of 
time (T— oo) and find the mean value of the square of the 
x coordinate of this particle. In our model, the coordinate 
x(t) of this particle changes abruptly as the particle goes over 
from one cell to another. Then as per definition of the mean 
over time, we can write 

T 
<x?5, = lim A ai (4.6) 

Too T 0 

We denote the successive jumps of the particle through the 
index i; x; is the coordinate of the cell into which the particle 
arrives during its motion as a result of the i-th jump; and At; 
is the duration of the stay of the particle in this cell after its 
arrival there as a result of the i-th jump. On the basis of this, 
the integral in formula (4.6) can be transformed as follows: 

(4.7a) 
i=] 

T m 

f2 tdt= È x At, j ; 

where m is the number of jumps in an interval of time T: 

At; — T. 
t 

(4.7b) ma 
i=l 

For a very large value of time T (T— oo), a particle arrives 
at each cell several times. Thus, the time spent by it in the 
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j-th cell over a period T is given by 

Tie At, (4.8) 

where the sum is taken over all ?s corresponding to the j-th 
cell. 

Formula (4.7b) can be transformed as follows with the help 
of (4.8): 

T- YT. (4.9) 

Taking into account (4.7a), (4.7b), and (4.8), we can rewrite 
(4.6) in the following form: 

(4.10) 

$,- lim (TT). (4.11) 
To 

This is the duration of stay of the particle in the j-th cell 
relative to the entire period of time. In accordance with the 
definition (2.2c) of probability, P, is the probability of the 
particle being present in the j-th cell. 

THE ERGODIC HYPOTHESIS. It can be asked whether the 
probability (4.11) is equal to the probability (4.3). 

The discussion carried out above cannot provide an answer 
to this question, although intuitively it seems obvious that it 
is true. The statement 

P =P, (4.12) 

where #, and ge are defined by formulas (4.3) and (4.11), 
respectively, is called the ergodic hypothesis. It can be 
expressed in another form if we write, on the basis of (4.10), 
(4.5), and (4.12), 

Cx" =F Ds (4.13) 

which means that the mean over the ensemble is equal to the 
mean over time. So far, there is no proof of the validity of 
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Equiprobability postulate is 
the statement about equal 
probability of different 
microscopic states. However, 
the probabilities of different 
macroscopic states drastically 
differ from each other. 

Ergodic hypothesis states that 
in equilibrium, the ensemble 

average quantity is equal to 
the time average quantity. 

1. Statistical Method 

this statement in the general case, and it is taken as one of 
the basic assumptions of statistical physics. 

This hypothesis was first proposed by  Boltzmann 
(1844-1906) in 1871. Later, Maxwell in 1879 analyzed the 
possibility of replacing the mean over time by the mean over 
the ensemble. 
We have illustrated the idea of the ergodic hypothesis by 

an artificial example of “one-particle states” in order to reveal 
its essence in the most visual form. However, we actually deal 
with the state of a system consisting of an enormous number 
n of particles. In this case, the ensemble of systems which is 
investigated at a certain instant of time is an aggregate of 
microscopic states of the system. The ergodic hypothesis 
implies that this aggregate involves all the states of the 
system which are compatible with the possible motion of 
paricles in space and with the law of conservation of energy 
(if we also consider the momentum distribution of particles). 

Any system from the ensemble will pass through all possible 
microscopic states during a sufficiently large interval of time, 
its relative stay in each of the microstates being equal to the 
relative number of systems in the ensemble, which are in 
a given state. These two assumptions lead to the conclusion 
that the mean over the ensemble is equal to the mean over 
time. This statement can serve as the formulation of the 
ergodic hypothesis. 

In other words, the ergodic hypothesis can be expressed by 
the statement that a system, which begins its motion from 
any state must attain a state infinitely close to some other 
state in accordance with the law of conservation of energy. 

The reservation that a system attains a state infinitely close 
to any possible state and not the state itself is quite signi- 
ficant. Let us consider, for example, an ideal gas for which 

the ergodic hypothesis is obviously satisfied, and yet we can 
indicate some states of this system which are never attained. 
Suppose that the gas is contained in a cubic vessel, all the 
particles moving parallel to one of the edges. Suppose further 
that the particles are distributed in space in such a way that 
they do not collide with each other, but just with two 
opposite faces of the cube. In this state the system may stay 
for an infinitely long time, and it is impossible for even 
a single particle to deviate from the direction parallel to the 
chosen edge of the cube. Since the equations of mechanics 
governing the motion of the particles are reversible in time, 
the system cannot come to this state from other states in 
which the particles have velocities noncollinear with the 
selected edge of the cube. But this means that for an ideal gas 
(which can be assumed to be an ergodic system) there are 
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states that cannot be attained. However, the system will 
certainly come infinitely close to these unattainable states. 
THE RELATION BETWEEN THE EQUIPROBABILITY 

POSTULATE AND THE ERGODIC HYPOTHESIS. If we 

assume that the ergodic hypothesis is true, we can prove the 
equiprobability postulate by using the Liouville theorem in 
the classical case and the principle of detailed balance in the 
quantum case. This proof, however, is beyond the scope of 
this book. 

Sec. 5. THE PROBABILITY 

OF A MACROSCOPIC STATE 

The concept of thermodynamic 
probability is defined, and the 
probability of a macroscopic 
state is calculated on the basis 
of the general relation between 
microscopic and macroscopic 
states. 
The connection between the 
equilibrium state and the most 
probable macroscopic state is 
established, and the binomial 

and Poisson distributions are 
introduced. 

? 

. Which model of position and 
motion of gas molecules must be 
accepted in order to ascribe a 
definite meaning to the concept 
of variation of  microscipic 
states? 
Explain the meaning of different 
formulations of the ergodic hy- 
pothesis. 

. Give an example of an unat- 
tainable problem forthe ergodic 
hypothesis of the state, which 
nevertheless is compatible with 
the law of conservation of ener- 

ui 

. What is the source of difficulty 
in counting the number of mic- 
roscopic states in prequantum 

physics? 

4* 

THE PROBABILITY OF A MACROSCOPIC STATE. It is 

established from a large number of microscopic states. If the 
parameters characterizing a given macroscopic state are 
known, we can in principle enumerate all the microscopic 
states which are compatible with these criteria and thus find 
the number of such states. Let us denote the number of 
microscopic states by DL'4, where « describes the microscopic 
state. Of course, we can also describe the parameter of the 
macroscopic state to which I belongs in the form of an 
argument of T, for example, I'(a), or in any other way that 
may turn out to be convenient under the conditions of 
a particular problem. We denote by I, the total number of 
states attainable for a system in accordance with the ergodic 
hypothesis. 

On the basis of the equal probability postulate for 
microscopic states and the definition (2.1) of probability we 
obtain the following expression for the probability A, of the 
macroscopic state under consideration 

P,=T,/To. 

The number Ty, of a microscopic states is also called the 
thermodynamic probability of a macroscopic state. This 
number does not represent probability in the mathematical 
sense since the probability is always equal to or less than 
unity, while Tą is a very large number. Nevertheless, it was 
termed (thermodynamic) probability, since it can be used to 
find the corresponding probability of a macroscopic state in 
accordance with formula (5.1). 

The theory aims at determining the number of states 
appearing in formula (5.1). Of course, a direct count of the 
number of states is possible only in rare cases. Hence, in 

(5.1) 
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most cases, the problem is to find the number of states 
without counting them, or even to find the probability #, 

directly without knowing the number of states. Various 
methods for achieving this will be discussed later. In the case 
of an ideal gas, it is comparatively easy to directly count the 
number of microscopic states with the help of the spatial 
variables. It should be noted that neglecting the states 
obtained from a distribution of particles according to 
momentum does not impose any restrictions on the validity 
of the analysis of the spatial distribution of particles. 
Obviously, the distribution of particles according to 
coordinates (spatial cells) and momenta (momentum cells) 
can be treated as independent. Hence the total number of 
microscopic states of a system is equal to the product of the 
number of spatial microstates and the number of momentum 
microstates. 

In the probability calculations for a certain macroscopic 
spatial distribution, the number of momentum states is the 
same whether we calculate the number of microscopic states 
through which the given macroscopic state has been 
accomplished, or the total number of microscopic states in 
the system. Hence, the number of momentum states appears 
as a multiplier in the numerator and denominator of (5.1) 
and is cancelled out. Thus, while calculating the probability 
of a macroscopic state, the symbols T, and T in the formula 

stand only for the number of spatial microscopic states. 
FORMULAS OF THE BASIC COMBINATION THEORY. In 

order to directly count the number of microscopic states, we 
must know some formulas of the permutation theory. 

Suppose that we have n places and n different objects. One 
can ask: “In how many ways can these n different objects be 
arranged among these n places?". To answer this question, let 
us consider any one of the n different objects. There are 
n ways of putting this object at one of the n available places. 
For each of these n positions, there are n — 1 places at which 
the second object can be placed, and hence there are n(n — 1) 
different ways of putting two objects at n different places. 
There are n — 2 places available for the third object for each 
of the n(n — 1) positions of the first two objects, and hence 
there are n(n — 1) (n — 2) different ways of arranging three 
objects among n places, and so on. Thus, n different objects 
can be arranged at n different places in 

n(n—1)(n—2)..1 2n! (5.2) 

different ways. For example, suppose that we have n identical 
chairs in a row and n different people who can be seated on 
these chairs. The number n! is the total number of different 
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photographs that can be obtained by seating these people in 
different ways on the chairs. For example, three persons (a 
man, a woman, and a child) can be seated on three chairs in 

3!— 6 different ways. 

Á system "does not know" 
its most probable 
macroscopic states. It goes 
over from one microscopic 
state to another without any 
preference for any state. 
However, a vast majority of 
transitions occur towards the 
equilibrium state, and hence 
it can be concluded that the 
completely random 
transitions from one 
microscopic state to another 
give rise to an orderly 
motion of the system to the 
equilibrium state. 

Next, suppose that we have m different objects. In how 
many different ways can these m objects be arranged among 
n places? For each arrangement of m objects, there will be 
n — m free places. If these n — m places were to be occupied 
by different objects, there would be (n — m)! different ways of 
filling these places for each fixed arrangement of m objects. If 
we sort out all the possible arrangements of m objects at 
n places and carry out (n— m)! arrangements of n—m 
different objects at the remaining n — m places in each case, 
we obtain the total number of arrangements of m + (n — m) — 
— n different objects at n different places, 1.e. n! Hence, the 
required number of ways in which m objects can be arranged 
at n different places is 

(n n—m)-n!/n — m) (5.3) 

We must clarify the meaning of the expression "different 
ways of arrangement". Returning to the above examples of 
photographs, we must understand that m is the number of 
different people, while n is the number of chairs on which 
these people can be seated. Then, 2? (n, n — m) indicates the 
number of different photographs, where by different pho- 
tographs we mean not only the photographs in which the 
seating order is different, but also such photographs in which 
the people are seated in the same order but on different 
chairs. Hence, the photograph in which these people are 
seated in a certain order from left to right on the first 
m chairs (the chairs are all in one row) is different from the 
photograph in which the same seating order is maintained, 
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but the people now occupy chairs numbered from 2 to m+ 1. 
For example, the number of ways in which two persons (a 
man and a woman) can be seated on three chairs (n — 3) is 
31/((3 — 2)!] =6. 

Suppose that the m objects required to be arranged at 
n places are identical and indistinguishable from one another. 
In this case, two permutations differing only in that two 
objects interchange their positions are considered to be 
identical. Hence, for each permutation of m objects there are 
m! permutations which can be treated as identical. 
Consequently, in accordance with (5.3), the required number 

of ways will be 

C (n, m) 2 n /[m !(n — m)t]. (5.4) 

In this case, the arrangements are different if different 
combinations of places are occupied, irrespective of the 
combination of m objects occupying these places. Hence, the 
photograph in which m persons occupy seats from | to m is 
different from the one in which they occupy seats from 2 to 
m+1, but is identical to the photograph in which they 
occupy the same seats from 1 to m, but the order in which 
they are seated is altered in some way. For example, two 
identical persons can be seated on three chairs in 3!/[2!(3 — 
— 2)!] =3 different ways. 
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Finally, let us consider one more question. Suppose that 
we have n different objects. In how many different ways can 
we choose a group of m objects so that each group is 
different from the other in its composition? The order in 
which these objects are arranged inside the group is not 
important. 

This problem can be solved as follows. If the group 
consists of only one object, we can form n different groups 
out of n objects. Groups consisting of two objects are formed 
in the following way: each of the n different objects combines 
with the remaining n — | objects and hence the total number 
of combinations is n(n — 1). 

However, combinations differing only in the order of the 
objects are taken to be identical. The number of possible 
permutations for two objects is 2! 2 2, and hence the total 
number of groups of two objects that can be formed out of 
n Objects will be equal to n(n-— 1)/2/ Continuing the 
argument, we come to the conclusion that the number of 
ways in which m different objects can be chosen from 
n different objects is 

n(n — 1)(n — 2)...[n — (m — 1)] 

m! 
C(n, m) = 

n! 

m!(n —- m) ' 

This formula is similar to (5.4), but its meaning and the 
sense of the quantities appearing in it are quite different. 

Suppose that we have a group of three persons (n — 3). 
The *objects" forming the group are a man, a woman, 
and a child, and it is required to choose the sub- 
groups. 

- c 

nu (ot | E 
Clearly, this group of “objects” satisfies the conditions for 

the applicability of formula (5.5). It should be recalled once 
again that sequence of the “objects” or their mutual positions 
are not important in the complete group or in the subgroups 
formed out of them. From this group of three persons, we 
can form subgroups of two persons each (m — 2). The total 
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number of such groups is equal to 3!/[2!(3 —2)!] =3. 

CALCULATIONS OF THE PROBABILITY OF 

A MACROSCOPIC STATE. Let V be the volume occupied by 
an ideal gas and n be the number of particles in this volume. 
The number of cells which can contain the particles is N = 
= V/d?, where d? ~ 107 3° m3, This is a very large number 
and the condition N >n is always satisfied. Let us find the 
probability Z? (Vj, m) of such a macroscopic state of the 
system in which m particles are present in a certain fixed 
volume V, which is a part of the total volume V (see Fig. 6). 
According to the conditions of the problem, V, < V and m < 
X n. Besides, the volume V, must not be too small and must 
contain at least m cells which could be occupied by the 
m particles. The number of cells in the volume V, is N; = 
— V,/d?, hence N, » m. 
The total number of microscopic states is obviously equal 

to the number of ways in which n particles can be distributed 
among N cells. The particles are assumed to be distin- 
guishable (for example, they can be numbered). This means 
that two microscopic states in which the particles occupy the 
same cells will be different if, say, two particles have inter- 

changed their positions in some cells. Here, it should be 

remembered that the particles under consideration have 
exactly identical properties. Consequently, the properties of 
two microscopic states in which the particles have inter- 
changed their positions must be exactly identical, and yet we 
consider these microscopic states to be different. This has 
a definite physical meaning. For example, the system requires 
a certain amount of time to pass these seemingly identical 
microscopic states. Thus, for the total number of microscopic 
states of a system, we get in accordance with formula (5.3): 

To =N!I(N —n)! (5.6) 

Let us calculate the number of microscopic states through 
which the macroscopic state, in which the volume V, contains 
m particles, is realized. We denote this number by ['(V,, m). If 
the volume V, contains any m particles, the total number of 
microscopic states for them will be 

y (V,, m - N,WN, — m! (5.7) 



Fig. 6. To the calculation of the 
probability of a macroscopic state 
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The rest of the volume V— V, contains n — m remaining 
particles. The number of microscopic states available for 
them is given by 

y(V— W, n—m) (N — NJ/[N — N, -(n—m)]! (5.8) 

Thus, for m definite particles occupying the volume V,, the 
total number of microscopic states through which the 
macroscopic state is realized will be Y (Vj, m) y(V— Vj, n— 
— m), since all the microscopic states are combined in the 
volume V— V, with each microscopic state in Vj. However, 
the product y (Vj, m)yY(V— V,, n — m) does not give all the 

microscopic states through which the macroscopic state is 
realized. This is only the number of microscopic states 
corresponding to a certain definite set of particles m in the 
volume V,. However, it can be seen from (5.4) that there are 

nl/[m!(n — m)!] different ways in which m particles can be 
chosen from a total of n. Hence, the total number of 
microscopic states through which the macroscopic state is 
realized is 

n! 
FOR, mec Up eggtV — V de ag. (5.9) 

m!(n — m)! 

Consequently, we obtain the following formula for the 
probability of a macroscopic state on the basis of (5.1): 

I(W,, m) 

lo 
n! N,1(N —N,)!(N —n)! 

es ee ee a 

P (V, m) = 

This also solves the problem of finding the probability of 
a macroscopic state, since all the quantities on the right-hand 
side of this formula are known. However, in order to make 
this formula easier to analyze, we must reduce it to a simpler 
form. This can be done by considering that the numbers 
appearing in this formula are quite large. Indeed, if a gas is 
under normal atmospheric conditions, n œ 101°, N ~ 1074, 
and N, — 10?*(V,/V) for V, =1 cm?. Hence, the number of 
cells in V, will also be extremely large, even if V, is only 

a small part of the volume V. For the conditions in which we 
are interested, we can put N,>»m. This considerably 
simplifies formula (5.10). 

STIRLING’S FORMULA. The following equality is satisfied 
for large n: 

n! ~ (n/ey*. (5.11) 
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This relation, called Stirlings formula, is proved by 
proceeding from the equation 

Inn! 2 Ini -1n24 ...- Inn 7 Y, InnAn, An 1. (5.12) 
n=1 

Since An is assumed to be small for large values of n, we 
can replace the summation in (5.12) by integration: 

n 

Inn! « finndn 2 ninn — n, (5.13) 
1 

where we have neglected unity on the right-hand side, since it 
is small in comparison with n. Taking antilogarithins, we 
arrive at Eq. (5.11). 
FORMULA FOR THE PROBABILITY OF A MACROSCOPIC 

STATE. All factorials in (5.10) must be expressed in terms of 
powers in accordance with (5.11). When using Stirling’s for- 
mula, we must remember that N, » m, N — N,»» n — m, and 
N >n. For example, 

Nm 
wv, =m =( s ) 

(ayy 
where lim (1 + x/n)" = e”. 

no 

Other factorials are calculated in the same way. Con- 
sequently, formula (5.10) assumes the form 

n! — N'N-N,Qyon 
8 (V, m) 2 —— ——À ———À——— 
Iota cum N” 

>o on rr em - 
— ml(n—mM! V N N ` (a 

The meaning of this formula is quite simple: p —(N,/N) — 
— (V, /V) is the probability of finding a particle in the volume 
V,, while q21— N,/N—1-— p is the probability of finding 
the particle in the remaining volume V— V,. Naturally, p 4- 

+q = |, since the particle must be either in the volume V, or 
in the volume V— K,. 

Using the probabilities p and 4 of finding a particle in 
volumes V, and V— Vj, we can write formula (5.14) in a more 



5. Probability of a Macroscopic State 59 

convenient form: 

(5.15a) 

This distribution is called binomial. In this definition of the 
binomial distribution the volume V, is immaterial, since it 
was chosen only in order to graphically illustrate the 
probability p for an individual particle to be found in this 
volume. The meaning of this definition is independent of the 
choice of volume V,, which is reflected by the absence of V, 
in the explicit form on the right-hand side of formula (5.15a). 

Let us give a more general definition for the binomial 
distribution. Suppose that we make a certain experiment 
concerning the occurrence of a certain event. It is assumed 
that in each trial, an event either occurs or does not occur, 
and that there is no third choice. By way of an example, let 
us consider the drawing of balls from an urn. The um 
contains a certain number of balls of different colours. The 
experiment consists in drawing a ball out of the urn at 
random. After the colour of the drawn ball is known, the ball 
is returned to the urn, and all the balls are then thoroughly 
mixed so that the next event occurs in the same conditions as 
the previous event. In other words, the outcome of an event 
must not depend on the outcome of the previous event, and 
the probability of the outcome of an individual trial must be 
constant. Suppose that the event under consideration is the 
drawing of a black ball out of the urn. We denote by p the 
probability of occurrence of this event as a result of an 
individual trial. Then q = 1 — p will be the probability that 
such a ball will not be drawn as a result of this trial. 

Let us determine the probability that a certain event occurs 
m times as a result of n trials. To begin with, let us find the 
probability that the event will occur m times in a certain 
order, for example, 

Lei Sad = =) ale 
—— 

m events, n trials 

where (+) means that the event has occurred, and (—) 

means that the event has not occurred in a certain trial. The 
probability of realizing the sequence of events (*) is obtained 
from the general probability multiplication rule: 

ppil —pipil —pl—p —pp...-—p^u-—pr", 
since the event under consideration occurs m times as a result 
of n trials. However, the event can occur m times not only in 

; (*) 
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The number of microscopic 
states used for accomplishing 
a certain macroscopic state is 
called the thermodynamic 
probability of a macroscopic 
state. This number is very 
large. The probability of 
a macroscopic state of 
a system is the ratio of its 
thermodynamic probability to 
the total number of possible 
microscopic states of the 
system. The most likely state 
of an isolated system on its 
own is its equilibrium state. 

1. Statistical Method 

the order indicated in (*) but in many other ways, whose 
total number is calculated in (5.5). Hence, the probability of 
the event under consideration occuring m times in a sequence 
of n trials is equal to 

n! 
P, (m) = m!(n — (5.156) sa D'(b-py- 

In formula (5.15a), a "trial" means fixing the position of 
a particle. The result of the trial is that either the particle is 
in the volume V, (probability p — V,/V), or is not in it. The 
total number of trials is equal to the total number of particles 
whose position in space has been determined. 

The arguments that led to formula (5.15b) can be 
generalized to the case of several independent events A,, A;, 
..., having probabilities p,, pz, ... in an individual trial. Since 
the events are independent, p, -- p; - ... — 1. The probability 
of a certain sequence of events 4;,, Aj,, Aj,, ... in a certain 

series of n trials is equal to p; , pj,, pj, ... The probability of 
the event A4, occurring m, times, event 4, — m, times, and so 

on, in this sequence of events is 

(5.15c) 

where the factor n!/(m,!m,!...) takes into account the 
number of ways in which m, events A,, m, events A,, etc. 
can be arranged in the sequence of events. The quantity 
fF ,(m,, m,, ...) is the probability that the independent event 
A, occurs m, times in a series of n trials, and so on. 

The binomial distribution (5.15b) is a special case of for- 
mula (5.15c). Here, the event under consideration can either 
occur with a probability p,=p, or not occur with 
a probability p, = 1 — p. Hence, the probability of this event 

occurring m times in a series of n trials (and hence not 
occurring n — m times) is given, according to formula (5.15c), 

by 

(m, +m, +... =n), 

t 

"o Pa pr", 
iat E m!(n— m)! 

which coincides with (5.15b). 
THE MOST PROBABLE NUMBER OF PARTICLES. It can 

be directly seen that for very small m — 0 and for very large 
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m—n, the value of 2^ (V,, m) is very small: 

(V ,m0)-4'"0, (Vi, mon)-p oO. 

This is so because q and p are less than unity and n is large. 
For a certain intermediate value of m, J^ (Vj, m) attains its 
maximum value. In order to find this maximum, we must 
solve the equation d? (V,, m)/dm — O. 

Let us calculate this derivative for the case when V, and 
p are small, while q is close to unity. On the other hand, the 
volume V, must not be too small, otherwise p will become 

negligibly small. In this case, the term p" will be so small 
that the multiplier containing factorials in formula (5.15a) is 
no longer of any importance. Under these conditions, the 
maximum is attained for quite large values of m and the 
factorials in (5.15a and b) can be transformed according to 
Stirling’s formula (5.11), although it is not always possible to 
neglect m in comparison with n. This gives 

n! H (n/e)" ate 7 (1 — m/ny" 

m!(n— m) — (m/le"[n—m)e]" (=) (1 — m/n ' 

(5.16) 

Since noo, (l1 — m/n —e". Hence, formula (5.15a) 
assumes the form 

: nes nep A" 
AV, me (=) ran =( 3 q (5.17) 

m mq 

Differentiating this expression with respect to m and putting 
the derivative equal to zero, we obtain an equation for 
determining the value m, for which the maximum is attained: 

ij = (SH) (5.18) 
moq 

Mo = np/q ~ np, (5.19) 

since q~ 1. 
Since all the calculations were made approximately, the 

relation (5.19) can be considered as an approximate equality. 
More accurate estimates show that this relation is satisfied 
with a remarkable degree of accuracy for a large number n of 
particles in the volume V when the volume V, is not too 
small. The meaning of this result is extremely simple: n/V— 
=n, is the concentration of particles in the volume V, as if 
they were distributed uniformly over the entire volume. On 
the other hand, n,,, — mj/V, is obviously the most probable 

max 
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im» m 

Fig. 7. Binomial distribution for 
large values of n and <m> 
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concentration in volume V,. Considering that p — Vj/V, we 

can express equality (5.19) in the following form: 

nmax = o» (5.20) 

ie. the most probable concentration of particles in volume 
V, corresponds to a uniform distribution of particles over the 
entire volume. Since the location of the volume V, is quite 
arbitrary and may be chosen in any part of the volume V, it 
can be easily concluded that the most probable distribution 
of the particle density in any volume is a uniform 
distribution. Such a state of a system is called the stationary 
equilibrium state (by definition). Hence, the result so obtained 
can be expressed as follows: the equilibrium state of a system 
is its most probable state. 

THE BINOMIAL DISTRIBUTION. Formula (5.15a) is called 
the binomial distribution on account of its analogy with 
Newton’s binomial theorem which has the form 

o spes, A= a a 
(q + př = = gt + pa a 

q U g cip (5.21) 
m! 

If we take (5.5) into consideration, it becomes obvious that 

the probabilities (5.15a) coincide with certain terms of the 
binomial (5.21) if p and q are interpreted as probabilities. In 
this case, p + q — 1, and formula (5.21) is transformed into the 

probability normalization condition: 

x g(V,, m-1. 
m=0 

The dependence of P(V,, m) on m is shown in Fig. 7 as 
a solid curve, since the values of m are very large in the scale 
that can be practically employed, and hence the points on the 
curve merge into a continuous curve. This, however, is 

a characteristic result of graph-plotting and not the possibility 
of passing a continuous curve through a set of points. The curve 
is a sharp and narrow peak having its maximum at m,,, = n/V. 
The height and width of the peak are connected through the 
normalization condition 

Am? (Vi, my) — |, (5.22) 

where Am is the peak width. 
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Thus, the probability that the number of particles in the 
volume V, will deviate from m,,,, even insignificantly is neg- 

ligibly small and falls off rapidly with increasing deviation. 
However, the number of particles is not always exactly equal 
to m,,,, but oscillates around this value. These deviations are 
called fluctuations. 

LIMITING FORMS OF THE BINOMIAL DISTRIBUTION. If 

the number of trials n — oo, the distribution (5.15b) tends to 
a limiting form which depends on the conditions under which 
n tends to infinity. 

There are two important limiting cases: 
(1) if n —^ oo at p — const, we obtain the normal distribution 

(see Sec. 8); 

(2) if noo at np=const, we obtain the Poisson 
distribution. 
THE POISSON DISTRIBUTION. Let <m> denote the average 

number of particles in the volume V, considered for the 
derivation of formula (5.15a) Since n/V is the average 
concentration of particles over the entire volume, ((m»5/Vi) — 
— n/V, or V,/V— (m) /n. Substituting this value for V,/V= 

= p=<m) /n into (5.15a), we get 

B inis n! <m> \" 1 (mp ym 
xxn m! (n — m)! n n ` 

The right-hand side can be transformed as follows: 

3 n(n -— 1)..(n-m+ 1) Km)" ( 7 im» Jy. 

m! n" n 

“(9-3 n n 

pol Ae eer 
= m! (1 —<m) /nyn 

This leads to the limiting form of the binomial distribution 
for n oo: 

n 

& (m) ^ lim 22, (m) — (oo em, (5.23) 
n o0 

where the well-known limit lim ( E. —e * has been 
n 

no 

used. 
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Formula (5.23) is called the Poisson distribution. The 
meaning of this distribution becomes clear during its 
derivation: if <m> events are observed on the average in 

a certain volume, time interval, etc, the probability of 
observing m events is equal to P (m). 

Obviously, this formula can be applied for calculating the 
number of particles in the volume V,, if it is known that the 
average number of particles in this volume is equal to <m>. 
By way of another example, we can consider the flow of a gas 
from a thin-walled vessel through a small hole. In order to 
ensure that the escape of individual molecules is independent 
of the fate of other molecules, we shall assume that there is 

vacuum outside the vessel while inside the vessel the gas is in 
a rarefied state and the collisions between molecules are rare. 
In any case, there are no collisions between molecules as they 
escape through the hole. Besides, in order to ensure that the 
conditions in the vessel remain unaltered as the molecules 
escape through the hole, we shall assume that the volume of 
the vessel and the number of molecules in it are quite large, 
while the size of the hole and the number of molecules 
escaping through it during the experiment are quite small. 

Clearly, the number of molecules escaping through the hole 
is proportional to the time interval. Let us count the number 
of molecules escaping through the hole over an interval At. 
Having conducted a large number of experiments, we can 
find the mean value, which is proportional to At, i.e. has the 
form p At. where p depends on the experimental conditions. 
One can ask: "What is the probability that m molecules will 
be observed in the time interval At in the course of an 
experiment?” This probability is given by the Poisson 
distribution: 

a ee 
m! 

The normalization condition for the Poisson distribution is 
satisfied in view of the obvious equality 

P (m) (5.24) 

y (<m>)" aay 

m=0 m! 

It is also worthwhile to note that for large values of <m> = 
— m, we have 

no. eV (mV 

where Stirling's formula m!zx(m/e)" has been used. This 
means that the probability P (m x (m5) — 0 for large m, and 
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the distribution of probabilities near m = (m? rapidly falls 
from its peak value for m=<m> as shown in Fig. 7. 

Example 5.1. There are 10 white balls and 5 black balls in 
an urn. Five draws are made from the urn, and the ball is 
returned to the urn each time after the draw. Find the 
probability of drawing three white balls and two black balls 
in this experiment. 

This is a typical example in which the distribution (5.15c) is 
applicable. We have 

so. S $e ari 
Ff, (3,2)= E ~ 0.329. 
oat (as) Gs) (3) (5) Se 

Example 3.2. Long-term observations at one of the metro 
stations revealed that between 8:45 and 8:50a.m. on 
a certain day of the week, 707; of the passengers pass the 
turnstiles, by paying through the slot-machine, 20°% use 
season tickets, while 10% buy their tickets at the window. 
What is the probability that out of 10 randomly selected 
passengers, 7 will use the turnstiles, 2 will produce season 
tickets, and one passenger will buy his ticket at the window? 

Since these three alternatives constitute the complete 
system of possibilities for each passenger, we get 

] ! 7 3 1 

$5.2 gc |.) Saree: 
t 7! 2!11!\10 10 10 

Example 5.3. The analysis of a typists work showed that 
on 20% working days in the year she made less than four 
mistakes, on 50% of the days the number of mistakes was 

between 5 and 10, while on the remaining 30% days, the 
number of mistakes exceeded 10. What is the probability that 
she will make more than ten mistakes on three days out of 
five? 

The probability of her making less than four mistakes, 
from five to ten mistakes, and more than ten mistakes on 

a certain day is p, = 0.2, p, = 0.5, and p, = 0.3 respectively. 
The typist can make more than ten mistakes on three days 

in the following three cases: 
(1) the number of mistakes on the remaining two days is 

less than four: 

5! 5 " 
£,(2, 0, 3)= sr (0.2) (0.3)°. 

Here, the argument of the probability. A, shows the number 

of days when the mistakes correspond to the probabilities p,, 
p, and p, respectively, 

(2) the number of mistakes on the remaining two days is 
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between 5 and 10: 

j i 5! 2 dE Ps (0, 2, 377,7 (05)* (0.3); 

(3) the number of mistakes on one day is less than four, 
and between five and ten on the other days: 

5! 
A.,1, 3)— a - (0.3%. 

These three cases exhaust all the possibilities under which 
the typist can make more than ten mistakes on three days 
out of five. The total probability that there will be three days 
in a week of five when the typist will make more than ten 
mistakes on each day is equal to the sum of the individual 
probabilities: 

P = P, (2, 0, 3)+ P, (0, 2, 33+ P;(1, 1, 3) 

5! 
= -yry (©3) [0.2)? + 0.5)? + 2-0.2-0.5] = 0.132. 

In other words, there will be just 13% weeks when the typist 
will make more than ten mistakes on three days. 

Sec. 6. FLUCTUATIONS 

The fluctuations of physical 
quantities are considered by 
taking as an example the num- 
ber of particles in a volume. 
The fluctuations are calculated 
on the basis of the binomial 
distribution. A general conclu- 
sion is drawn about the depen- 
dence of the relative fluctuation 
on the number of particles 
in the system. 

AVERAGE NUMBER OF PARTICLES IN A VOLUME. In 

accordance with the above arguments, it can be concluded 
that the number of particles in a certain volume does not 
remain constant in time, but changes continuously in a small 
interval. In principle, large deviations are also possible, but 
their probability is low and hence they are encountered 
extremely rarely. The time dependence of the number of 
particles in a volume V, is shown in Fig. 8. By definition, the 
average number of particles in the volume V, is equal to 

to T 

<m) = — [ m (t) dt (6.1) 
T fo 

as T oo. The dependence of m on t is not known, and hence 
it is impossible to calculate the mean. However, we can 
reduce the time average to the ensemble average with the 
help of the ergodic hypothesis and use formula (4.5). 

This gives 

n n 

ng X MS WeX 
AED mz2o m!(n — m)! 

n!m canis 
p"q' ". (6.2) 



Fig. 8. Fluctuations of the number 
of particles 
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This quantity can be calculated easily in the following way: 

mn! Ó n! i 
pa "edis L pgs" 

m-o m'(n —m Op ̂ " m!(n — m)! 

ê 
iD (6.3) 

Since p+q=1, we get 

<m), = (m5, — pn. (6.4) 
This means that the average density in the volume V, is 
equal to the average density over the entire volume V. Since 
we are using the ergodic hypothesis, we shall not be 
indicating in future the volume over which the averaging is 
being made. 
FLUCTUATIONS. The measure of fluctuations is the 

standard deviation from the mean, defined by Eq. (2.19). 
While calculating this quantity, we can replace the time 
averaging by ensemble averaging. Formula (2.19) shows that 
in order to find the standard deviation, we must calculate 

<m?» in addition to <m): 

n ! PA 

km?) = Yo — png. (6.5) 
mco m!(n — m)! 

We use the same method that was employed for calculating 
(6.3): 

n n! m? a ô ð n! a 

Dee m!(n — m)! vo Eas Gy mle mie i 

6 ô n n-1 n-2 —P3P3,0*4"-p[n(p* aP + pan — 1p e a7]. 
p p 

(6.6) 

Considering that p -- q — 1, we obtain 

(n?5, — npq * n p?. (6.7) 
Hence, with the help of the dispersion relation (2.26), we get 

<(Am)?> = <m?> — (Km>)? = npg. (6.8) 

Consequently, the standard deviation is equal to 

= /<(Am)?> = V/npa. (6.9) 
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A system in an equilibrium 
state continues to undergo 
constant changes by going 
over from one microscopic 
state into another. Since it 
“is not capable” of preferring 
one microscopic state over 
another, the transitions of 
the system may or may not 
disturb the equilibrium state. 
However, the system cannot 

go very far from the 
equilibrium state, since in 
this case the chaotic 
transitions of the system 
from one microscopic state 
to another lead to an or- 
dered motion towards the 
equilibrium state. 
Consequently, the system 
moves in the neighbourhood 
of the equilibrium state, ie. 
fluctuates. 

1. Statistical Method 

This equality shows that the standard deviation increases 
more slowly than the total number of particles in a system, 
while the mean deviation (6.4) increases in proportion to the 

number of particles in the system. This means that the 
relative standard deviation decreases with increasing number 
of particles in the system: 

V«Am?» B T (6.10) 
<m> p Vn 

The physical meaning of this relation is extremely 
important. For the case under consideration, we can write 
formula (6.10) in the following form: 

2 V am?» Jan "m 
<m> Fs Vn 

As V, — V, the relative value of fluctuations tends to zero, 

and vanishes for V, — V, since the total number of particles 
over the entire volume is fixed and equal to n and there are 
no fluctuations of this number. With decreasing V,, the 
relative value of fluctuations increases. For V,«V, we can 
neglect unity in comparison with (V/V,)»1 in (6.11) and 
write this formula in the following form: 

V Am?» - + EN 
<m>  YViyn ym 

where n 2 (m» WV. It can be seen from (6.12) that the 

relative role of fluctuations increases with a decrease in the 
volume in which these fluctuations are considered. For 
example, if we consider a volume containing only a few 
particles on the average, the relative value of fluctuations 
constitutes a considerable fraction of the number of particles. 
If the volume is so small that it contains only ten particles on 
the average, the relative standard deviation is about 1/3. If, 
on the other hand, we consider a volume 1 mm? = 1073 cm? 
under normal atmospheric conditions, it will contain an 

average number <m> = 2.7 x 10! particles, and the relative 
standard deviation will be less than 107°, which is a very 
small value. Hence, the statistical fluctuations are insigni- 

ficant in macroscopic systems. It can be stated to a great 
degree of accuracy that the quantities are equal to their mean 
values. 

Let us calculate the relative value of fluctuations with the 

, (6.12) 



The relative role of fluc- 
tuations decreases with 
increasing volume and the 
average number of particles 
in it. Hence the statistical 
fluctuations in macroscopic 
systems are insignificant and 
all quantities can be taken 
equal to their mean values 
with a: high degree of 
accuracy. 
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help of Poisson's distribution: 

j-3 BUR MCM)" ceu 
^om 

[m(m — 1) + m] (<m>)™ ee 

m! 

oo 

> 
m=0 

_ e (oor e o S K ea 

siea 2 eo 
= (<m>? + <m>. 

Consequently, <(Am)*> = <m*> — (m)? = <m), and 

y<(Am?> _ 

As expected, this expression is identical with (6.12). 
All the above discussion concerning fluctuations in 

a system of an ideal gas is of a general nature and is also 
applicable to all the other systems as well. This is evident 
from the fact that only the general statistical properties of 
a system have been used in the derivation of all the relations, 
and no special relations have been used which are applicable 
only to the system under consideration. However, it is 
advisable to consider this question for the general case as 
well. 
RELATIVE VALUE OF FLUCTUATIONS. Suppose that 

a system of n particles is characterized by a quantity F which 
is the sum of the corresponding quantities for the particles of 
the system: 

Ms: 
F= 

i 

fi (6.13) 
1 

where f; is the value of f for the i-th particle. For example, if 
F is the kinetic energy of all the particles of the system, f, is 

the kinetic energy of the i-th particle. 
The mean value of quantities appearing in formula (6.13) 

may be calculated over time or over the ensemble. According 
to the ergodic hypothesis, the result will be the same in both 
cases. Hence we shall denote the averaging by the usual 
symbol <>, but shall not indicate the variable over which the 
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? 

Why can’t the fluctuations be 
characterized simply by the 
average value of the deviation 
from the mean? 
What general properties of the 
dependence of the standard 
deviation and the mean value on 
the number of particles in 
a system can be used for 
explaining the decrease in the 
relative role of fluctuations with 
increasing number of particles? 

1. Statistical Method 

averaging is carried out. From (6.13) it follows that 

c4»- Yo. (6.14) 

It should be noted that in this case <F> is not the sum of 

the energies of all the particles of a system at a certain 
instant of time, divided by the total number of particles. This 
quantity is either the time average of the total kinetic energy 
of all particles of the given system, or the ensemble average 
of the system of particles (the number of particles in the 
system is N — oo). The same is true for ¢ f;>. 

Since all the particles in the system are identical, the mean 
value <f> will be the same for all particles: 

Cfo =<fp a HP. (6.15) 

Hence, we can write (6.14) in the form 

CPX Hn Choe (6.16) 

Let us calculate the root-mean-square deviation of F from 
the mean value <F>. By definition, 

AF =F —<F) =) (f-<f>)= YAS. (6.17) 
i=l iz1 

Squaring both sides of this equation and averaging the 
expressions thus obtained, we get 

Q(AFY» —€ 3 A Af = Y, (AR + 2 (Af, Af. — (618) 
WES icd i*j 

The sum on the right-hand side has been split into two 
parts. The first sum contains terms with identical indices, 

while the second sum contains the terms with different indices. 
Naturally, (AfjAf;» —0, since the deviations Af; and Af, 
which correspond to different particles, are not related and 
their averaging gives zero. In the first sum, on the other 
hand, ((Af;?» is the same for all the particles in view of their 

identity. Hence, (6.18) assumes the form 

<((AF)’> =n<(Af)’>. (6.19) 
From (6.16) and (6.19), we get for the relative standard 

deviation 

V«AF»  y«A» 1 (6.20) 
C Gy Ve / 
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Formula (6.20) proves in the general form, that the relative 
standard deviation of a quantity pertaining to a system of 
particles decreases in inverse proportion to the square root of 
the number of particles in the system and becomes negligibly 
small if the number of particles is large. Hence the behaviour 
of a system of a large number of particles can be described 
with the help of the mean values characterizing the system. 

Example 6.1. Gas molecules escape from a very small hole 
of area S — 10^ !? m?, drilled through the wall of a vessel 
containing a highly rarefied gas. The hole is so small that the 
escaping particles do not collide with one another, nor do 
they violate the state of the gas inside the vessel to any 
appreciable extent. The mean frequency of impacts of the 
molecules against the vessel wall is v—1076s^!.m-^?. 
Outside the vessel, the number of escaping molecules is 
measured periodically over time intervals of t — 10 ^? s each. 
Find the relative fluctuation of the molecules escaping during 
one such time interval. 

The average number of molecules escaping during the 
interval t is equal to <n> =vSt. Hence, the relative fluc- 

tuation of the number of escaping molecules is equal to 

y «An?» l 1 1 
9» — Vm» St yio x 1071x107? 
S 

Example 6.2. Find the mean value of the product f, f, of 
two arbitrary physical quantities which fluctuate about their 
mean values <fi) and <f). 

By definition, 

h5 +A, h=» +Ah. 

Hence, 

AS = A A +O A> 

t AL C5» + XAf; Af» 

= Sie (5 x (n? (Af;» cT Afi? > + Af, Af,» 

S Gp (f T Afi Af», (6.21) 

where <Af,> =0, <Af,> = 0. 
The quantities are called statistically independent if 

(Af, Af,» = 0. In this case, formula (6.21) is simplified to the 
following form: 

Khida =K Sa (6.22) 
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Sec. 7. THE CANONICAL ENSEMBLE. 

GIBBS DISTRIBUTION 

The peculiarities of a canonical 
system are compared with those 
of a microcanonical system. 
The Gibbs distribution is intro- 
duced. The role of the partition 

function in the theory is 
described, and an example has 
been given to illustrate the use 
of the partition function for 
calculating the mean. 

THE VELOCITY- AND ENERGY MICROSCOPIC STATES. So 

far, we have been dealing with a microcanonical ensemble 

where we could abstain from an analysis of the velocity 
microscopic states of the particles. This is so because in the 
equilibrium state, the number of velocity microscopic states 
of particles is obviously the same and equal to the maximum 
number of microscopic states compatible with the condition 
that the total energy remains constant. The ergodic hypoth- 
esis and the equal probability postulate were the main 
concepts that were employed for studying the properties of 
a microcanonical ensemble. 
Now we must investigate the velocity distribution of 

microscopic states of particles. We pick up a certain particle 
and observe its velocity in one system of the ensemble at 
different instants of time, as well as in different systems at the 
same instant of time. An investigation of the particle velocity 
also gives a complete picture of its kinetic energy. 1t is quite 
clear that the velocity and kinetic energy of a particle vary as 
a result of collisions with other particles. Thus, a particle in 
different systems of the ensemble is in different velocity- and 
energy states. If we observe this particle in one of the 
systems, its velocity and energy microscopic states will 
change with time. Our task is to determine these velocity- 
and energy microscopic states. 
DEFINITION OF A CANONICAL ENSEMBLE. Let us 

consider the velocity and energy microscopic states of 
a particle, representing the system under consideration. 
However, this system is no longer closed, since it exchanges 
energy with other particles which together with this particle 
form a closed system. The aggregate of closed systems forms 
a  microcanonical ensemble. The aggregate of the 
corresponding open systems constitutes a canonical ensemble. 
Thus, an individual system in the canonical ensemble is 

a part of a large closed system. An individual system of 
a canonical ensemble is a part of a large system not in the 
sense that it occupies a part of its space, but in the sense of 
energy- and velocity states. In the spatial sense, this part may 
coincide with the entire system. A separate part of 
a canonical ensemble may contain one or more particles, the 
only important point being that the number of component 
particles should be much smaller than the number of 
particles in the larger system. Different systems of a canonical 
ensemble have different energies. It is required to find the 
probabilities of different energy states of the systems 
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constituting a canonical ensemble. The solution of this 
problem gives a complete information about all the states in 
a system of the canonical ensemble, since the aggregate of 
states with the same energy constitutes a microcanonical 
ensemble and has already been investigated. An isolated 
system in a canonical ensemble is called a canonical system. 

It follows from the definition of a canonical ensemble that 
an analysis of energy distribution of systems may involve not 
only kinetic energy, but potential energy as well. 

GIBBS CANONICAL DISTRIBUTION. For the sake of 

simplicity, we shall call a canonical system a subsystem, while 
the system whose part this subsystem is will be called 
a system. It should be emphasized once again that the system 
belongs to a microcanonical ensemble and its total energy is 
constant and equal to £y. Let £y be the energy of the 
subsystem. Then the energy of the remaining part of the 
system will be equal to £, — £4. The given state of the 
subsystem is one of the specific microscopic states. Besides 
this (microscopic) state, there may, and, indeed, do exist other 
microscopic states of the subsystem with the same energy £y. 
Since the complete system belongs to a microcanonical 
ensemble, all its states have equal probabilities. Let us denote 
the number of these states of the complete system by Fo. The 
probability of each state is equal to 1/T';. The state of the 

subsystem under consideration is attained through several 
states of the complete system. We denote the number of these 
states by I',. Then, the probability #, of the subsystem being 
in the state with energy £ can be written as follows in 
accordance with the definition of probability in 
microcanonical ensembles: 

Py=Ta/To, (7.1) 

where T, =T, (£o) is the total number of microscopic states 
of the system, and I, (€) — &) is the number of microscopic 
states of the complete system through which we attain the 
state with the energy £y of the subsystem. 

For practical applications, it is more convenient to use for- 
mula (7.1) in a different form. Using the obvious relation a= 
— explna, we can rewrite this formula as 

(7.2) 

The energy £x has a negligibly small value in comparison 
with €,, while the logarithm is a very slowly varying function, 
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especially for large arguments. Hence, In Tą can be expanded 
into a Taylor series at the point £y, confining in the 
expansion to the term linear in £g: 

ô ln Ta (£0) 

Of v 

where L4(z;) is the number of microscopic states of the 
complete system through which we attain the state in which 
the subsystem has zero energy. Clearly, this number does not 
depend on £y, i.e. L'4(£9) 2 Tag. Besides, it is quite obvious 

that the number of microscopic states increases with energy, 
ie. (0ln L'4/0£9) » 0. Hence, 

In Ta (Eo — £x) = In Fa (E0) — Eu (7.3) 

(1.4) 

is a positive constant quantity that does not depend on Egy. 
Since any small part of the system, or any small part of any 
subsystem can be chosen as the subsystem, and since 
according to the above argument B has the same value for all 
of them, we can conclude that B is a fundamental 
characteristic of the canonical as well as the microcanonical 
ensemble containing the complete system under 
consideration. This fundamental quantity is temperature, 
which is related to B through a simple relation [see (8.15)]. 

Taking into account (7.3) and (7.4), we can transform (7.2) 
as follows: 

Py = Ae Pea, (7.5) 
where A = (1/Fo)expln Tao 2 I,5/E', is a constant. 

Formula (7.5) is called the Gibbs distribution and provides 
a solution for the problem formulated above. This formula is 
also called the canonical distribution. It should be noted once 
again that #, in this formula is the probability of one of the 
states of the subsystem with energy £4. 

The states of a subsystem with the same energy £y belong 
to a microcanonical ensemble and are therefore equally 
probable. Hence, if their number is equal to gy, the 
probability 2? (&4) of the subsystem being in the state with 

energy £y is given, according to the probability addition rule, 
by the following relation: 

P (E) = GaP a P Ag,e P, (7.6) 
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If the distribution of the energy states is continuous, we 
can denote the number of microscopic states in the energy 
interval between £y, and ey + dey by 

dg, — p (Eq) deg (7:7) 

and write 

di? (e,) 2 Ae Ps p (e, de, , (7.8) 
where d? (£x) is the probability that the subsystem is in one 

of the states with energy between £y, and £4--dg,. The 
density 

Po (€a) — d? (e,)/de, (7.9) 

is called the probability density for the subsystem having the 
energy £g. Taking into account Eq. (7.8), we can write 

Dp (Ex) ^ Ae Pp (e). (7.10) 

The constant A is found from the normalization condition, 
while the constant p is related with the temperature. 
NORMALIZATION OF DISTRIBUTION. For the sake of 

simplicity of analysis, it is more convenient to use the 
concept of discrete distribution over different states. Let us 
use the index « in formula (7.5) to mark different states, 
including those belonging to the same energy level. All 
possible states of the system form a complete set of possible 
states. Hence the normalization condition must be satisfied: 

Y. -1. (7.11) 
a 

From this, we can calculate the constant 

A= yer, (7.12) 

Consequently, the canonical distribution has the form 

(7.13) 

CALCULATION OF THE MEAN VALUES. Let f be 

a certain quantity having the value f, in the state x. Its mean 
value is equal to 

<f> = Vfe7 Pal Fem Bea, (7.14) 
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Partition function is a very 
important characteristic of 
a system. Since it is the 
result of summation over all 
microscopic states, it is not 
a function of any one of 
them, but is rather 
a function of all these states 
simultaneously, i.e. a function 

of parameters characterizing 
the macroscopic state. Thus 
the partition function allows 
us to express the parameters 
describing the macroscopic 
state of a system in terms of 
quantities characterizing its 
microscopic state. 
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PARTITION FUNCTION. Of special importance is the 
mean value ‘of the energy of the system: 

Kc) = Vee ye ™ = — ð ln Z/P, (7.15) 

where 

(7.16) 

is called the partition function. It plays a very important role, 
since it can be used for expressing many important quantities 
in statistical physics. An example for calculating (7.16) is 
considered in Sec. 12. 
FLUCTUATIONS. These can be easily calculated in 

a canonical system with the help of formula (7.14) for the 
mean value. The dependence of fluctuations on the size of 
a system in the general case was described in Sec. 6. 

Example 7.1. Find the root-mean-square deviation of 
energy from its mean value with the help of the partition 
function. Also find the relative value of fluctuations. 

Proceeding in the same way as Eq. (7.15), we obtain 

oper] 
Next, we get 

_ ey) = 2) eye 1&4 _(1 ZY (e - €) - (6^ - Ke - 7 (52) 

| .0/[102X 0e 

BAZ ap) | op ^ 

Considering that the energy of the system is proportional to 
the total number of particles, i.e. € oc n, we find 

E - o» " | e) |12 ( n ) ER. 
> — > oc c = T 

£ BN 



8. Maxwell Distribution 77 

Sec. 8. MAXWELL DISTRIBUTION 

Two possible approaches are 
indicated for studying the 
distribution of particles in 
a system. The density of states 
is discussed. The main pe- 
culiarities of the Maxwell 
distribution and its relation to 
the Gauss distribution are 
considered. The derivation and 
the applicability conditions of 
the Gauss distribution are 
considered. The experimental 
verification of the Maxwell 
distribution is described. The 
detailed balancing principle is 
discussed. 

TWO APPROACHES TO STUDYING PARTICLE DIS- 

TRIBUTION. Let us consider a velocity (and energy) 
distribution of particles of an ideal gas. We can proceed in 
two ways. We can take the entire system of n particles as 
a canonical system which is a part of a large microcanonical 
system. But a system of n particles can also be treated as an 
aggregate of independent canonical systems each of which 
contains one particle. Such a canonical ensemble was used in 
Sec. 7 for analyzing the main concepts associated with 
canonical ensembles. Calculations using the first method 
involve cumbersome combinatorial methods similar to those 
used in Sec. 5. Here, we shall use the second approach in 
which the calculations are made directly on the basis of the 
probability theory relations and do not involve cumbersome 
calculations. 
DENSITY OF STATES. We start with formula (7.5) in which 

#, for a single particle means the probability of its being 
located in one of the states with energy £g. Ás has already 
been mentioned in connection with formula (4.1), one particle 
occupies a volume (2nh) in the coordinate-momentum 
(phase) space. Then, the number of states of one particle 
contained in a phase volume dx dy dz dp, dp, dp, will be equal 
to 

dl = dx dy dz dp, dp, dp, / 2h? . (8.1) 

Consequently, in analogy with (7.6) we get the following 
relation for the probability of finding a particle in the phase 
volume: 

dP = Ae Pdr. (8.2) 
In order to go over to the probability that the particle has 
the energy £x, we must integrate (8.2) with respect to all the 

elements of the phase volume corresponding to £4. In the 

present case, the energy £ of the particle does not depend on 
the coordinates, and hence integration over dx dy dz gives the 
volume V in which the particle is located. For integration 
over dp,dp,dp,, we must consider that the energy of the 

particle is 

m? m? 2 2 = z y 

S i a 
2 2 2 

Px Py Pz p = Ye Rl 8.3 
2m 2m 1 2m poi 
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Fig. 9. System of coordinates in the 
momentum space 

The energy of molecules 
changes as a result of 
collisions. For a specific 
molecule, the probability of 
gaining or losing energy as 
a result of collisions is not 
the same and depends on the 
ratio of the molecular energy 
and the most probable 
energy of gas molecules. If 
the energy of the molecule is 
less than the most probable 
energy, it is more likely to 
gain energy with a passage 
of time as a result of 
collisions. However, the 
molecule can also lose ener- 
gy. If the molecule has the 
energy higher than the most 
probable energy, there is 
a greater likelihood of its 

d Várm? ( 2 ) Vx E 
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where px = mwy, etc. The surface of constant-energy states in 
the momentum space is the sphere p?^-const (Fig. 9). 
Integration over a spherical layer of thickness dp at the 
surface corresponding to the energy & — p?/(2m) is equivalent 
to the substitution dp, dp, dp, — 4np? dp. Hence, we can write 
instead of (8.1) 

2 8 are Vánp dp z nm = (84) 

(27th) (21h) 

where v= p/m is the varying velocity which is used as an 
independent variable in the analysis of gases. Similarly, 
expressing the energy in terms of the velocity through the for- 
mula £y — mv^/2, we can finally express (8.2) in the form 

Várm? 
— Bm»2;2 2 d 

Quy o o 0m d? (v) - A (8.5) 

where d#(v) is the probability that the magnitude of the 
velocity lies between v and v+dv. The constant A is found 
from the normalization condition 

f dP)-1. 
v-0 

(8.6) 

The problem is thus reduced to the computation of 

. TORPPRO- - pmv2;2,.2 Hem A o [6o e iE je iE) Je "tas s.) zo 80 

where 

oo t yr i 

qum E (8.8) 
ea Te 

Differentiation of (8.8) with respect to parameter B leads to 
the formula 

er. yr 1 
! e "e db pL 

which was used while calculating the integral (8.7). Taking 
(8.7) into account, we obtain from the condition (8.6) 

(8.9) 

"wm : (8.10) 

From this we can find A. Substituting the expression 
obtained in this way into (8.5), we obtain the following final 



losing energy with the 
passage of time as a result 
of collisions. However, the 
possibility of its acquiring 
energy cannot be ruled out 
either. Hence, in some 
respect, a universal justice 
ultimately "triumphs" in 
a system of molecules: 
molecules with a low energy 
gain energy on the average, 
while those with a high 
energy lose it. Over 
a sufficiently long interval of 
time, each individual 

molecule “possesses” low as 
well as high values of energy. 
The average energies of all 
molecules are identical and 
equal to the mean energy of 
all molecules at any instant 
of time (ergodic hypothesis). 
However, at any given 
moment of time, the energies 

of molecules are not equal, 

and that is where the 
Maxwell distribution comes 
into play. 
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expression for the required probability: 

3/2 
Es Ge e Pmii2,2 ay. 
T 2 

MAXWELL DISTRIBUTION. In order to apply (8.11) to 
a system of n particles, we must use the probability 
summation rule, treating each particle of the system as 
independently and randomly moving (which is in complete 
accord with the nature of motion of particles of an ideal gas). 
The number of particles whose velocities lie between v and 
v -- dv is 

d? (v) = (8.11) 

dn(v) 2 n d (v). (8.12) 

Consequently, the relative number of particles with 

velocities in the interval (v, v + dv) will be 

3/2 5 dn(v) _ d? (v) = (=) e- Pre ads. (8.13) 
n Vr 2 

This formula is called the Maxwell distribution. It 
characterizes the velocity distribution of gas particles in the 
equilibrium state. 

Before going over to the analysis of this formula, we must 
find out the meaning of the parameter D. 

The law (8.13) of the velocity distribution of gas molecules was 
first obtained by Maxwell in 1860. A more rigorous proof was given 
in 1866. 

The quantity d^ (v)/dv is the density of the probability 
that the particles have a velocity v, where we are talking 
about magnitude of the velocity. It can be seen from (8.13) 
that the distribution of molecular velocities in all directions is 
isotropic and all the directions are equally probable for 
velocities. 
TEMPERATURE. Let us calculate the mean kinetic energy 

of particles: 

mv? "E acu B (2p puede. (8.14) 

where the integral is evaluated with the help of formula (8.9) 
after differentiation with respect to the parameter f. Thus, 
B characterizes an extremely important quantity describing 
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a statistical system, viz. the mean kinetic energy of the 
particles of the system. The reciprocal of B is called the 
temperature: 

where k is the proportionality factor called the Boltzmann 
constant. 

If we take into account (8.15), the Maxwell distribution 
(8.13) assumes the form 

dn/n = dF (v) — f (v) dv, 

(8.16) 
3/2 

o-4n|—u) e-mekmy. P= | Seer 

The temperature T is introduced through formula (8.15) 
purely formally and by way of a definition. It is called the 
thermodynamic temperature (see Secs. 11 and 21). For the 
time being, it is sufficient to know this without proof and to 
intuitively use the concept of temperature which everybody is 
familiar with. In the SI system, the unit of temperature is 
a kelvin. It is connected to the temperature t°C on the 
Celsius scale through the relation T =t + 273.15. The 
Boltzmann constant k = 1.380662 x 10 7? J/K. The expe- 
rimental determination of this constant is described in 
Sec. 13. 

It can be seen from formula (7.5) that B — 0 In T, /O£g. 

Consequently, the temperature is determined by the 
properties of the system into which the subsystem is placed. 
Thus, the temperature is a characteristic of the system as 
a whole. 

Obviously, all the parts of a system have the same 
temperature. Indeed, any small part of the system can be 
treated as a subsystem. We can then obtain for this 
subsystem formula (7.5) with the same value of f) i.e. all 
parts of the system have the same temperature. For example, 
if we have a mixture of gases, we can consider the 

components of the mixture or parts of these components as 
subsystems and conclude that the components of a mixture of 
gases have the same temperature. In other words, the mean 
kinetic energies of different components in a mixture of gases 
are equal. On the other hand, if the components are 
separated in space but can exchange energy, we can conclude 
on the basis of the above arguments that they will have the 
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same temperature as parts of a total system. In a mixture of 
gases, different types of molecules have the same average 
kinetic energies in the thermodynamic equilibrium [see (8.14) 
and (8.15)]. This can be verified by direct calculations also. 
Let us denote the values corresponding to the first and 
second types of molecules by the indices 1 and 2. We take all 
the possible pairs of molecules and calculate their relative 
velocities v ; —v,, as well as the velocities of their centres of 
mass 

Vem. = (Mv; b may 3) / (m, + m2). 

In view of the random nature of collisions between 
molecules and their rapid "loss of memory" about the 
preceding collisions, the velocities of the centres of mass 
cannot be correlated with the relative velocities. 
Consequently, the mean of their scalar product over all 
molecular pairs is equal to zero, ie. <[vem.&2—vi) > =9. 

This gives 

vem. &2 Wy )> = L1/(m, + m,)] [(m, 7 m; «i-vz;» 

+m <vi>—m, i>] =0. 

Since the velocities of molecules of the first and second 
kinds are not correlated, <(,-v2)> must be equal to zero. 

Hence, m; v2» — m, (v2 ». In other words, 

&m,vi /2) — (movi [25 

Q.E.D. 
CHARACTERISTIC VELOCITIES OF MAXWELL DIS- 

TRIBUTION. The shape of the Maxwell distribution curve is 
shown in Fig. 10. With increasing velocity, the peak of the 
distribution curve is displaced towards higher velocities, while 
its height becomes smaller. The presence of the peak.on the 
curve is the result of two opposite trends: the probability of 
states decreases with increasing velocity, while the density of 
states increases. The dominating trend at low velocities is the 

increase in the density of states, while the tendency towards 
a decrease in the probability of states prevails at velocities 
beyond the maximum. 

The average value of functions « (v) which depend on the 
absolute value of a velocity is calculated in accordance with 
the formula for the mean: 

<P> = f o (0) (») dv. (8.17) 
o 
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We can use this formula for determining <v> and <v’): 

<vy =V/8kT/ (nm), /4»^ » — V3kT[m. (8.18) 

The velocity v, corresponding to the peak is called the most 
probable velocity and is determined from the condition 
d//(v)/dv 20 for the extremum. Its value is equal to 

v, 7 |/ 2kT /m. (8.19) 

A comparison of (8.18) and (8.19) gives the following relation 
between the characteristic velocities for the Maxwell 

distribution: 

Viv? > = 37/8- <0) = 3/2 vp- (8.20) 

The velocities are shown by dashed lines in the figure. Such 
an arrangement is due to the type of distribution, according 
to which a considerable contribution to <v and <v?)> is 
made by comparatively high velocities. The characteristic 
velocities of oxygen and nitrogen molecules in air at room 
temperature are 400-500 m/s. Under similar conditions, the 
velocities of hydrogen molecules are about 4 times higher. 
The molecular velocities increase with temperature as |/ T. 
GAUSS DISTRIBUTION. The probability density of velocity 

in the Maxwell distribution (8.16) is determined by the 
quantity exp [ — mv?/ QkT)], while the factor v? takes into 
account the density of states. Distributions in which the 
probability densities are determined by factors of the type 
exp ( — ax?) are encountered quite frequently in the theory of 
random quantities, and it is important to know the 
circumstances which lead to such a form of the probability 
distribution. 

Suppose that we are shooting at a certain target with 
a view to hit its centre (Fig. 11). As a result of various 
circumstances that cannot even be enumerated, the bullets, as 
a rule, will not hit the centre but will be distributed 

symmetrically and randomly relative to the centre, since all 
directions are equivalent. Let us calculate their distribution. 
We fix the origin of the system of coordinates at the centre of 
the target. The causes deviating a bullet in the Y-direction do 
not depend on the causes deviating it in the X-direction, the 
two directions being equally probable. We denote the density 
of the probability that a bullet is deviated in the X-direction 
by q (x?). It is clear that this quantity depends on x?, since 
the deviations in the positive and negative directions are 
equally probable. The probability density for deviations in 
the Y-direction will be (y^). Let us calculate the relative 
number dn/n of particles hitting an area element dS with 
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coordinates (x, y). According to the probability multiplication 

rule, this quantity is equal to 

dn/n — q (x?) o (y^) dS, (821) 

where n is the total number of particles impinging the target. 
Let us now rotate the system of coordinates in such a way 

that the X-axis passes through the area element under 
consideration. In this system of coordinates, we obtain 

dn/n — o (x?) dS. (8.22) 

Obviously, this quantity is the same as in (8.21). Hence, 

9 (x?) (y?) = 9 (x?) = (x? +9’) 

is the functional equation for determining the form of the 
function q. It must be valid for any independent variations of 
x and y. 

Taking the logarithms of both sides and differentiating, we 
get 

p(x?) p (y) P (x? +y?) 
2xdx + = —,—,— (2x dx 4- 2y dy), 

>) gp 7 uer yon 
or 

ey Oe) ae 
p(x?) = p(x? +-y”) 

gy) g +y) 7 
* E err prz 

In view of the independence of differentials, this gives 

eG) eQ -»y) , eO) eG») | 
oe) pety) " wg erry ' 

Consequently, 

e(x) 90") 
ex) p(y) 

Since x and y are independent, this is possible only if these 
expressions are equal to the same constant, i.e. 

eG) v6) 
g(x?) e?) 

+a. (8.23) 
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Integrating these equations, we get 

e(x?) - Ae ***, o(y?)- Ae t*". 
The function with plus sign in the exponent is not suitable as 

a solution, since it indicates an unlimited increase in the 
probability density as we go away from the centre of the target, 
which is obviously impossible. Denoting the square of the 
distance from the centre by r?— x? - y?, we finally get 

P(r?) = p(x o(y?) » A?e 99 * 0 5 42e 7m (8.24) 

This distribution of probability densities is called the Gaussian 
distribution. 

The exponential factor in the Maxwell distribution has 
a similar form (except that r° is replaced by v’). The factor v? 
has nothing to do with probabilities and simply takes into 
account the density of states. Thus, the velocities in the 
Maxwell distribution deviate from the zero velocity according 
to the probabilistic laws exactly in the same way as the 
deviations of bullets from the centre of the target. 

The maximum probability density in (8.24) is attained at r = 0. 
If this maximum lies at r=p we get 

IEJ EBE E, (8.25) 

where the random variable is denoted by x. Taking into account 
the value of the integral 

fi e? dx V. 

from the normalization condition 

le | fides) eso de = e^ dé 
Ra 

p, Us 
ZI 

a 

we find B= ]|/a/n, whence 

f(x) = (a/n)"? exp [ — a (x — p)? ]. 

Let us calculate the mean value of x and the variance o7: 

65 Sat Sab pan aas 

— (n)? f (6 pexp(— a7) dé =p; (8.26) 
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o? - (x - u 

(wm? P (x-aPexp[-x&-uf]dx-i/Qm) (827) 

Thus, « — 1/(20?), and the probability density distribution 
can be written in the standard form: 

4 A J| (8.28) Vim | | 

Figure 12 shows this distribution and the density for 
different values of c. The smaller the standard deviation o, 
the higher and narrower the maximum. 

In accordance with definition (2.21), the probability 
distribution function has the form 

i exp | = | dx. (8.29) 1 

o 2r oo 

This function represents the Gaussian, or normal, 
distribution. 

Using the substitution z = (x — )/o, we can transform the 
above equation as follows: 

F (x)= 

1 E 

j e 7? dz. (8.30) ®(z)= 

This is the standard form of the normal distribution. There 
are tables from which the values of ®(z) can be found. The 
function F (x) has the form shown in Fig. 13. 

THE FREQUENCY OF MOLECULAR IMPACTS AGAINST 

THE WALL. We direct the X-axis perpendicularly to the wall 
(Fig. 14) and denote the concentration of molecules by nọ. 
Then the flux density of molecules moving towards the wall 
with velocities between v and v+dv will be equal to 

no f (v) vC? dv, (8.31) 

where v‘*) is the velocity component along the positive 
direction of the X-axis (molecules whose velocities are 
directed away from the wall do not participate in the 
formation of the flux). In this case, the frequency of 
impingements of molecules on the unit area of the vessel wall 



86 1. Statistical Method 

is 

v — ng | f (v) v dv 
3/2 œ 

m 
=ü Jf eg — meh + yn dv, dv, 

RT) 7 ” 
c 1/2 

en MUA, dy. = Zi kT ) : (8.32) x 
2nm o 8 

With the help of formula (8.18), we finally get 

v — ngo (C0»/A (8.33) 

NUMBER OF MOLECULES IN DIFFERENT REGIONS OF 
THE MAXWELL DISTRIBUTION. If no is the density of 

molecules, the number N (v,,v,) of molecules with velocities 
between v, and v, will be equal to 

v2 v2 /Up 

N (v1.02) = [ fv) dv =n | e "u du (8.34) 
4 

vy Va vi /Vp 

When deriving this equation, we have replaced 
exp[ — mo? /(2kT)] in f (v) by exp(— v?/v2) in accordance with 
(8.19). This expression is more suitable in the analysis of the 
shape of the Maxwell distribution curve. There are tables for 
the integral 

4 o 

© (x) = = f eu" du. (8.35) 
Vr 

With the help of this expression, we can calculate the value 

of (8.34) by using the following obvious relation: 

N (v4, 05) — no [6 (2 /v,) — o (n, /v, )]. (8.36) 

In particular, we obtain the following values from the 
tables: 

N(v,,0) =0.5724ng; N (0.50,, 1.50, )  0.7053n, ; 

N (20, , 20) = 0.0460n, . 

Thus, a large fraction of all molecules has velocities lying 
in a small interval in the vicinity of the most probable 
velocity. The number of molecules whose velocities are 
considerably different from the most probable velocity is very 
small. 



Fig. 15. Schematic diagram of 
experiments on the verification of 
the Maxwell distribution 
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K 

EXPERIMENTAL VERIFICATION OF THE MAXWELL 

DISTRIBUTION. In view of the fundamental importance of 
the Maxwell distribution in statistical physics, it was 
subjected many times to thorough experimental verification. 
The block diagram of a typical experimental setup consists in 
the following. A gas in a steady-state equilibrium is contained 
in a vessel V (Fig. 15. A beam of molecules under 
investigation escapes through the hole d. The molecules must 
move without practically interacting with one another if their 
distribution in the beam is to remain unchanged. Hence, 
a high vacuum is created in the path of the beam, while the 
gas in the vessel V is at a low pressure. The molecules in the 
beam emerging from the vessel have the same velocity 
distribution as in the vessel if we can ensure a gas flow 
through the hole d without any hydrodynamic pressure. This 
is possible if the molecules do not have time to collide with 
each other in the region surrounding the hole. In this case 
a molecule incident on the hole escapes from the vessel 
without perturbing the states of the remaining molecules in 
the vessel. Consequently, the number of molecules in the 
vessel decreases slowly, although their equilibrium state 
remains unchanged. In order to ensure such a “collision-free” 
departure of molecules from the vessel, the size of the hole 
d should be much smaller than the mean free path of the 
molecules (the mean distance between successive collisions, 
see Sec. 50). 

An idea of the order of magnitude of the quantities can be 
got if we consider that under normal conditions molecules in 
air undergo about 10° collisions per second, while their mean 
free path is of the order of 10^ 7 m. The mean free path 
increases with decreasing pressure, and hence the diameter 
d of the hole must be very small. In experiments involving 
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Fig. 16. Schematic diagram of 
particle exchange, incompatible with 
the detailed balancing principle 

' 
What is the essence of the 
detailed balancing principle? 
The Maxwell distribution allows 
infinitely large velocities and 
kinetic energies of molecules. In 
what way is this compatible with 
the finite total kinetic energy of 
the gas molecules? 

. Due to which properties of the 
Maxwell distribution is the mean 
absolute velocity higher than the 
most probable velocity but lower 
than the root-mean-square 
velocity? 
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molecular beams, its value is a few hundredths of 
a millimeter. The density of the molecular flux along the 
beam is given by the expression (8.31). 

After leaving the hole d, the beam passes through the 
collimator C which consists of consecutive slits and isolates 
the molecules moving almost in parallel. This is followed by 
the device S for sorting molecules according to their 
velocities, and the detector D for registering molecules after 
they have been sorted. 

The molecules are usually sorted by using the method of 
rotating discs with slits along the radius (Fig. 15a). This 
method was employed in the 19th century by Fizeau for 
determining the velocity of light in terrestrial conditions. If 
the slits are rotated at an angle x with respect to each other, 
and if | is the distance between the discs, the discs will be 
rotated by the angle « in a time At — a/o, where c is the 
angular velocity of the disc. Hence, molecules passing 
through both the slits will have velocities v = l/At — lo/« and 
v, — lo/(a -- 2nn) (where n — 1, 2, ...) corresponding to several 
revolutions of the discs while the molecules traverse the 
distance |. The molecules are registered by different methods, 
depending on their properties. In the simplest case they are 
deposited on a screen, and the thickness of the deposited 
layer is used for determining the number of molecules. This 
method is employed, for example, when the object of 
investigation is a beam of silver atoms obtained in the 
volume V as a result of evaporation upon heating. 

In another method (Fig. 15b), the selector and the detector. 
are combined in a rotating cylinder with a slit. When the slit 
coincides with the direction of the beam, a part of molecules 
enters the cylinder through it. Molecules with different 
velocities arrive at the opposite wall of the cylinder at 
different instants with respect to the moment of passage 
through the slit, and hence arrive at different parts of the inner 
wall of the cylinder. A measurement of the number of 
molecules falling on different regions can yield the velocity 
distribution of molecules in the beam. 
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Fig. 17. Schematic diagram of 
particle exchange, corresponding to 
the detailed balancing principle 
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In one of the most elegant experiments, the force of gravity 
was used as a selector (Fig. 15c). Slow molecules deviate 
towards the Earth to a larger extent than faster molecules in 
a gravitational field. The deviation can be easily calculated as 
a function of velocity. In an actual experiment of this kind, 
these deviations were of the order of several tenths of 
a millimeter. However, it was possible to carry out such 
measurements reliably. 

The experimental results confirm the validity of the 
Maxwell distribution. 
DETAILED BALANCING PRINCIPLE. The Maxwell 

distribution is an equilibrium, and hence stationary, state 
which does not vary with time. This means that the number 
of particles in each volume element dv,, dv,, dv, in the 
vicinity of the velocity v in the velocity space does not change 
with time. However, molecules undergo collisions as a result 

of which the number of molecules in each volume element 
continuously changes, although their average number remains 
constant. Hence, the number of particles arriving per unit 
time at each volume element in the velocity space is equal to 
the number of particles leaving it. It can be asked as to which 
volume elements form the origin or destination of these 
particles. One can theoretically consider several ways in 
which the number of particles in all volume elements. remains 
constant. 

Let us consider, for example, any four volume elements /-4 
(Fig. 16a) and imagine that these elements mutually exchange 
particles. Each arrow represents a certain number of particles 
leaving a certain volume or arriving in it per unit time. 
For example, in Fig. 16b particles from the volume 
element J depart for the volume element 2, but an equal 
number of particles arrive at this element from element 4, 
and so on. In Fig. 16c, particles from elements 2 and 4 arrive 
at element 3, but an equal number of particles goes over from 
this element to element 7. As a result of the exchange of 
particles shown: in the figure, it can be ensured that the 
number of particles in all the volume elements remains 
constant. 

However, the state of equilibrium cannot be attained as 
a result of such exchanges. According to the detailed 
balancing principle, the equilibrium is attained in a detailed 
manner, i.e. over all the pairs of volume elements. This 

means that each volume element gives away to any other 
volume element as many particles per unit time as it receives 
in return. Hence, the only possible diagram according to 
which four volume elements can mutually exchange particles 
is the one shown in Fig. 17. Generally speaking, the intensity 
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of exchange between each pair of volume elements is 
different. 

The validity of the detailed balancing principle is due to 
the fact that the equilibrium state is attained as a result of 
the chaotic nature of collisions and disorderliness in the 
motion of molecules. The diagrams shown in Fig. 16 are 
unrealizable, since the exchanges shown in these diagrams 
can take place only as a result of certain ordering in the 
motion of molecules and in their mutual collisions. The 
detailed balancing principle is valid not only for collisions 
but also for all other processes in all systems in which the 
equilibrium state can be attained as a result of completely 
chaotic processes. 

Example 8.1. Find the number of oxygen molecules whose 
velocities lie between 195 and 205 m/s at 0°C. The mass of 
oxygen is 0.1 kg. 

Since the interval of velocities (from 195 to 205 m/s) is 
quite small, we can use the mean value theorem and write, in 
accordance with (8.16), 

A 3/2 

= (zar) a (8.37) 

where v = 200 m/s and dv — 10 m/s. 
The relative molecular mass M, — 32. Consequently, the 

mass of an oxygen molecule m = 32 x 1.66 x 10^?" kg — 
= 5.31 x 10778 kg. The molar mass of oxygen M = 32 x 
x 10~3 kg/mole. Hence, 0.1 kg of oxygen contains n= 
— [0.1/(32 x 107?)] x 602 x 107? 2 1.88 x 10?* — molecules. 
Further, we consider that kT =1.38 x 1077? x 273 J= 
= 3.77 x 107 7! J. Hence, 

5:31 K 1077" ) TUE a a mend a eI0= 

| 5.31 x 107 2° (200)? 
x exp] — 

Seto | x (200)? x 10 x 1.88 x 1074 

= (2.2 x 107°)?/? exp ( — 0.28) x 9.44 x 107° 

= 3.08 exp (— 0.28) x 1022 = 2.3 x 1022, 
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Sec. 9. BOLTZMANN DISTRIBUTION 

The peculiarities of the Boltz- 
mann distribution are discussed 
together with some of its sim- 
plest applications. The relation 
between the Boltzmann distri- 

bution and the Maxwell distri- 
bution are analyzed. Experi- 
mental verification of the Boltz- 
mann distribution is described. 

INDEPENDENCE OF THE PROBABILITY DENSITIES OF 

THE COORDINATES AND VELOCITIES OF PARTICLES. If 

a gas is in an external potential field, the particle energy £, 
appearing in formula (7.6) is equal to 

£&, 7 mv?/2 - U. (9.1) 

The number of states in an element of the phase space is 
given by formula (8.1). Hence, instead of formula (8.2), we 

obtain 

A 
da t ED x? 3 z) — GG Y, Z, Po Py Pa) Cnh 

mv? 
xexp| —Bp 2 + U | |dx dy dz dp, dp, dp,. (9.2) 

Obviously, the probability densities of the coordinates and 
momenta of a particle are independent. Consequently, 

d? (x, y, Z, Pe Py Pp.) =dP, (x, y z)dP, (p,, Dy Pj. (9.3) 

where 

d? (x, y, zi - A,exp[ — BU(x, y, z)] dx dy dz, 

dP Py Dy p, — A;exp( — Bmv? /2) dp, dp, dp, . 

As usual, the constants A, and A, are obtained from the 

normalization condition. The formula for d¥;(p,, p,, p,) was 
discussed in Sec. 8 and leads to the Maxwell distribution, 
while the formula for d#, (x, y, z) leads to the Boltzmann 

distribution. 
BOLTZMANN DISTRIBUTION. The quantity d#, (x, y, z) 

in (9.3) defines the probability that a particle is located in the 
volume element dx dy dz in the vicinity of the point (x, y, z). 
Just as in the derivation of the Maxwell distribution in 
Sec. 8, we go over to a system of n particles, i.e. we consider 
that the particles are independent and use the probability 
distribution formulas. 

If the total number of particles in a canonical system is 
n, we obtain from the probability multiplication rule 
for a volume element dx dy dz in the vicinity of the point 

(x, y, z) 

dn(x, y, z) = A,anexp[ — U(x, y, z)/(kT)] dx dy dz. (9.4) 
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The constant A, is found from the normalization condition 
which in the present case means that there are n particles in 
the volume dx dy dz: 

fdn = Ayn{exp[ — U(x, y, 2)/(kT)]dxdydz =n. (9.5) 
V V 

Consequently, 

—l.2 fexp[— U (x, y, 2/(KT)] dx dy dz. (9.6) 
Ai [b 

The formula 

an ___ 4, exp[— U(x, y, (kT) (9.7) 
ndx dydz 

is called the Boltzmann distribution. It describes the 
distribution of the concentration of particles in space as 
a function of their potential energy. 

It is not always necessary to calculate the normalization 
constant A, since we are often interested only in the 
distribution of the concentration of particles and not in their 
total number. Suppose that the concentration of particles at 
the point (Xo, yo, zo) is given by ng — no(Xo, Yo, zo) ^ dn/ 
f(dxgdygdzg). The potential energy at this point is U, = 
= U (xo yo, zo). We denote the particle concentration at the 
point (x, y, z) by no (x, y, z). Then formula (9.7) for these two 
points has the form 

Tolto yoo) A, exp [— Uo/(kT)], (9.82) 

no(x, y, 2) =A, exp [- U(x, y, 2/(kT)]. (9.8b) 

Substituting the value of A, obtained from (9.8a) into 
(9.8b), we obtain 

No (x, ys z) = No (Xo, yo zg)exp( — [U (x, y» z) S Ug |(kT)} * 

(9.9) 

This is the most commonly used form for the Boltzmann 
formula. It is especially convenient to choose the 
normalization for the potential energy in such a way that at 
the point (Xo, Yo; Zo) the potential energy is equal to zero 
(U, — 0). 



The energy of molecules 
moving upwards in 
a gravitational field decreases, 
but in the case of the 
Maxwell velocity distribution 
the mean energy per 
molecule does not change. 
The constant value of the 
mean energy per molecule 
can be maintained in spite of 
a decrease in the energy of 
individual molecules due to 
the escape of "less energetic" 
particles from the particle 
flux in ascending motion. 
The mean energy of 
molecules moving downwards 
does not change since the 
particles escaping from the 
flux in the upward motion 
join the downward flux. 
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Formula (9.9) is essentially equivalent to (9.7) If the 
concentration of gas molecules is not known at any point, 
and only the total number of molecules in the given volume 
is known, no(Xg, Yo, Zo) 1s constant and is determined from 
the normalization condition for the total number of particles 
in the volume. 
MIXTURE OF GASES IN A VESSEL. Suppose that two 

types of molecules are contained in a closed cylindrical vessel 
with the base area S and height hy. The total number of 
molecules of the first and second types is denoted by n, and 
n, and their corresponding masses are m, and m;. Let us 
find the distribution of molecules over the height of the 
cylinder. 

In the first place, it is obvious that the probability density 
of the location of a molecule of a certain type is independent 
of the position of not only the other molecules of the same 
type, but of molecules of the other type as well. Hence the 
distribution of each type of molecules is given by formula 
(9.9. We denote the height of a molecular layer from the 
bottom of the vessel by ^. The concentration of molecules 
depends only on h. It is convenient to normalize the potential 
energy of the molecules to zero at the bottom of the vessel 
(h = 0). Under such a normalization, the potential energy of 
the molecules at the height h is equal to U = mgh. 
Consequently, the distribution (9.9) of the concentration of 
molecules with the height has the form 

no: (h) = no; (0) exp [ — m,gh/ (kD), 
(9.10) 

o5 (h) 7 ns; (0) exp [ — msgh/ (kT)] . 

From the normalization condition 

ho ho 

Sf no, (h)dh=n,, SJ no, (h)dh =n, (9.11) 
0 0 

we obtain 

= TS | E m;gh; YA]! 
"a O=- SET | exp( kT )| (9.12) 

nm mygh, V | ! 
Ng2 (0) = a [1 -exn(- "| . 

The ratio the concentrations of molecules at different 

heights is equal to 
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no2 (h) 

no, (h) 

LS 1 — exp[ — m,gho/ (k)]J ap] - (m; — m,)gh 

nm, 1 —exp[ —m;gho/(kT)] kT 

(9.13) 

It can be seen from formula (9.10) that the concentration of 
heavier molecules decreases with height more rapidly than for 
the lighter molecules. Formula (9.13) shows that the heavier 
gas is concentrated near the bottom of the vessel, while the 
lighter gas is concentrated near the top. 

Let us estimate the order of magnitude of the quantities. It 
is well known that under normal conditions, the 
concentration of molecules in air is equal to ng =2.7 x 
x 1075 m~3. For the sake of definiteness, we shall assume 

the second gas to be oxygen, while hydrogen is assumed to 
be the first. The temperature T of the air is equal to 300 K 
(t=27°C), m,-334x1077' kg, m,c16m,, kTc4414x 
x 1077! J, and g~9.8 m/s*. Under these conditions, the 
exponents for not very large values of h are extremely 
small. 

For example, m,ghÁkT)-8 x 10755, and m;gh/(kT)- 
c 10^ ̂ h. We can expand the exponential terms into a series 
and retain only the linear term in h: 

oj (h) (mj — m) 
f 

no: (h) ~ | E eai — (1 — 1.2 x 107*A). 

(9.14) 

Thus, the molecular concentration of the heavier 

component decreases in the upper part of the vessel, while 
that of the lighter component increases. This is clearly 
noticeable for large values of h. Suppose that kh ~ 10* m. In 
this case, formula (9.13) assumes the form 

Ho; (h) 

no: (h) 
~ exp(— 1.2 x 1074h). (9.15) 

Since exp (—1.2)~0.3, the ratio of the concentrations of 

particles changes by more than three times from 0 to 10* m. 
It should be also noted that although the change in 
concentration with height is very small for a small difference 
in heights, it nevertheless is responsible for the emergence of 
the lifting force for flying machines that are lighter than air 
(see Sec. 10). 



: 
1. The kinetic energy of particles 

moving upwards in the gravita- 
tional field decreases. Why is the 
temperature in the gravitational 

field in equilibrium independent 
of height? 

2. How can be Boltzmann dist- 
ribution be applied to a gas 
mixture? 

3. How are the Boltzmann and 
Maxwell distributions interrela- 
ted? 
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RELATION BETWEEN THE BOLTZMANN AND 

MAXWELL DISTRIBUTIONS. The Maxwell and Boltzmann 
distributions are parts of the Gibbs distribution. The 
temperature is determined by the mean kinetic energy. Hence 
it can be asked as to why the temperature is constant in 
a potential field although according to the law of 
conservation of energy the kinetic energy of particles must 
change if their potential energy changes, and consequently, as 
it appears at a first glance, the temperature of the particles 
also must change. In other words, we can ask the following 
questions: during the upward motion of particles in 
a gravitational field, why does their kinetic energy decrease 
while their temperature (i.e. their mean kinetic energy) 

remains constant? Why does the energy of all the particles 
increase during their downward motion while their mean 
energy remains constant? 

This can be explained as follows. In the case of upward 
motion, the slowest (i.e. the “coldest”) particles escape from 
the total flux of particles. Hence the mean energy is 
calculated over a smaller number of particles which on the 
average were “hotter” at the initial height. In other words, 
if a certain number of particles arrive at the height h from the 
bottom, the mean energy of these particles at the height 
h will be equal to the mean energy of all the particles at the 
bottom, a part of which could not escape to the height h due 
to inadequate kinetic energy. However, if we calculate at the 
zero height the mean energy of particles that have reached 
the height h, it turnes out to be higher than the average 
energy of all particles at the zero height. Hence we can say 
that the mean energy of particles at the height h indeed 
became lower, and in this sense they were "cooled" during 
the ascent. However, the mean energy of all particles at 
the zero height and at the height h is the same, i.e. the 
temperature is also the same. On the other hand, a decrease 
in number density of the particles with height is also a 
result of escape of particles from the flux. 

Consequently, the law of conservation of energy as applied 
to the upward motion of particles leads to a decrease in their 
kinetic energies and to the escape of particles from the flux. 
Ás a result, the density of particles decreases with height on 
the one hand, while on the other hand their kinetic energy 
is conserved in spite of the fact that the kinetic energy of 
each particle decreases. This can be verified by a direct 
calculation which we recommend to the reader as an 
exercise. 
ATMOSPHERE OF PLANETS. The potential energy of 

a particle of mass m in the gravitational field of a spherical 
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celestial body is equal to 

Mm 

where M is the mass of the body, r is the distance from the 
centre of the body to the particle, and G is the gravitational 
constant. The atmosphere of planets (including the Earth) is 
not in an equilibrium state. For example, one of the 
consequences of a nonequilibrium state of the Earth 
atmosphere is the fact that its temperature is not constant as 
it should be but varies with height (decreases with increasing 
height) We shall show that the atmosphere of a planet 
cannot in principle be in an equilibrium state. If the opposite 
were true, the density of the atmosphere should change with 
height in accordance with formula (9.9) which in this case 
assumes the form 

M fl 1 
nenne | -e (7-7) (9.17) 

0 

where we took into account expression (9.16) for the potential 
energy, and rg is the radius of the planet. According to 
this formula, the density tends to a finite limit as 

r 00: 

: mM 1 
no (r> ©) > no ta)exp(~ 6-77), (9.18) 

kT To 

This means that if there is a finite number of molecules in 
the atmosphere, they should be distributed over the entire 
infinite space, i.e. the atmosphere is diffused. 

Since any system ultimately tends to an equilibrium state, 
the atmospheres of planets gradually dissipate. Some celestial 
bodies such as the Moon completely lost their atmospheres, 
while the others, like the Mars, have a very rarefied 
atmosphere. Thus, the Moon’s atmosphere has already 
attained the equilibrium state, and the Mars’ atmosphere is 
close to it. The atmosphere of the Venus is very dense and 
hence is at the beginning of its way towards the equilibrium 
state. 

In order to consider quantitatively the loss of atmosphere 
in planets, we must take into account the velocity 
distribution of molecules. Only those molecules can overcome 
the gravitational force whose velocities exceed the escape 
velocity. These molecules are in the “tail” of the Maxwell 



Fig. 18. To the calculation of the 
polarization of polar dielectrics 
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distribution, and their relative number is not large. 

Nevertheless, over considerable intervals of time the loss of 
molecules becomes noticeable. Since the escape velocity for 
heavy planets is higher than for light ones, heavy celestial 
bodies lose their atmosphere to a smaller extent than light 
planets, i.e. light planets lose their atmospheres quicker than 
heavier ones. The time during which a planet loses. the 
atmosphere depends on its radius, temperature, composition 
of its atmosphere, and other factors. A complete quanti- 
tative analysis of this phenomenon is a very complicated 
problem. 
TEMPERATURE DEPENDENCE OF POLARIZATION OF 

POLAR DIELECTRICS. Polar dielectrics are the materials 
whose molecules have a permanent dipole electric moment. 
A dipole is a system of two equal and opposite charges 
separated by a distance ! (Fig. 18). The dipole moment p = 
—]|q|l is a vector directed from the negative to positive 
dipole charge, and |q| is the absolute magnitude of the dipole 
charges. Normally, the dipole moment is of the order of 
— 1073? C. m. For example, the dipole moment of an HCl 
molecule is about 3.44 x 10 ^ ?? C. m, for HBr it is 2.33 x 
x 107 3° C-m, and so on. In an external electric field, 
dipoles tend to orient in the direction of the field. As a result, 
the dielectric is polarized, i.e. acquires a macroscopic dipole 
moment characterized by the polarization vector. The 
polarization vector is equal to the sum of molecular dipole 
moments in a small volume, divided by this volume. 

In contrast to the external electric field, thermal motion of 
molecules tends to disturb the orientation of the dipoles. As 
a result, the dipole moments are randomly oriented with 
respect to the direction of the electric field. We shall try to 
find the angular distribution of dipole moments with respect 
to the electric field and the dependence of the polarization 
vector on the temperature. 

It is known from the theory of electricity that a dipole 
(with dipole moment p) placed into an electric field of 
intensity E has the potential energy 

U= —p.E. (9.19) 

The simplest way to derive this formula is as follows. We 
direct the Z-axis along the electric field. The forces acting on 
the charges forming the dipole are directed along the Z-axis 
(Fig. 18) and equal to gE and — qE (here q is assumed to be 
the magnitude of the charge). The general relation between 
forces and the potential energy yields the expressions for the 
potential energies of the two charges: U (z;)— — qEz, and 
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Fig. 19. To the calculation of the 
dipole energy in an electric field 
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U(z,)=qEz,. Hence, the energy of the dipole (in the 
uniform field) is 

U=U(z,)+ U(z,)= — gE(2,—2,)= —qElcos8= —p-E. 

This formula is also valid for the energy of a dipole in an 
alternating electric field, since it does not depend on the 
derivatives with respect to coordinates, and the separation 
between dipole charges can be infinitely small. 

Obviously, the angular distribution of dipoles is symmetric 
with respect to the Z-axis and depends on the angle 
0 (Fig. 19). The potential energy depends on 0 and does not 
depend on the coordinates (the field intensity E is considered 
to be constant within a volume element for which the angular 
distribution is calculated). Denoting the solid angle element 
by dO, we can rewrite formula (9.4) for the Boltzmann 
distribution in the form 

dn(dQ)- AeP; E/&T) do = AePE 08 9/(KT) dey in g dg, — (9.20) 

where A is the normalization constant, and the expression 
dO —dosinOdO for the solid angle in the spherical 
coordinates is used. This formula gives the solution to the 
problem on the angular distribution of dipole moments. 

Due to the axial symmetry, the mean dipole moment has 
a component only along the Z-axis: 

[pcos0 exp (x cos 0)sin 0 d8 

<p,>=2— 
J exp (a cos 6) sin 6 d@ 
o 

d * : 
EC f p exp (a cos 0) sin 0 d8, (9.21) 

0 

where a = pE//kT). Then 

(p,» — pL(au) L(«)—coth a — 1/a. (9.22) 

The form of the function L(a) caled the Langevin 
function, is shown in Fig. 20. The series expansion of 
hyperbolic cotangent has the form 

coth a = 1/4 + a/3 — o3 /45 4- ... (9.23) 

In the case of comparatively weak fields for which 
pE « kT, we can confine ourselves to the linear term, which 
considerably simplifies formula (9.22): 

<P> = PEKT). (9.24) 



Fig. 20. The Langevin function 
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The polarization vector is directed along the Z-axis, and its 
magnitude is equal to the product of expression (9.24) and 
the atomic density. Thus, the polarization of polar dielectrics 
is inversely proportional to the temperature. 
We have considered this example in order to illustrate the 

applicability of the Boltzmann distribution not only for the 
analysis of the spatial distribution of particles but also for the 
analysis of their distribution over other parameters which can 
determine their potential energy. 

EXPERIMENTAL VERIFICATION OF THE BOLTZMANN 

DISTRIBUTION. When deriving the Boltzmann distribution, 
we imposed no restriction on the mass of the particles. 
Hence, it can in principle be applied to heavy particles as 
well. Let us consider grains of sand as such particles. Clearly, 
they will form a certain layer near the bottom of the vessel. 
Strictly speaking, this is a consequence of the Boltzmann 
distribution. For large masses, the exponent changes with 
height so rapidly that it becomes equal to zero everywhere 
beyond the layer of sand. As regards the region within the 
layer, we must take into account the volume of the grains of 
sand. The problem will then be reduced to a purely 
mechanical problem of determining the minimum of the 
potential energy with given constraints. Such problems are 
considered in mechanics rather than in statistical physics. 

In order to prevent heavy particles from "falling to the 
bottom" and obtain their distribution over height in 
a sufficiently thick layer, we must somehow decrease their 
potential energy. This can be done by placing the particles 
into a liquid whose density is only slightly lower than the 
density of the material of the particles. By denoting the 
density and the volume of the particles by p and x and the 
density of the liquid by py, we find that the force acting on 
a particle is equal to t (p — po) g. Consequently, the potential 
energy of such a particle at a height h from the bottom of the 
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vessel is 

U (h)= x (p — po) gh. (9.25) 
Hence the distribution of concentration of these particles 
over height is given by 

no (h) — no (0) exp [ — t (p — po) gh/(kT)]. (9.26) 

To make the effect noticeable, the particles must be 

sufficiently small. The number of such particles at various 
heights in the vessel is counted with the help of a microscope. 
The first experiments of this type were carried out in 1906 by 
J. Perrin (1870-1942). 

After taking measurements, we can verify whether the 
concentration of particles varies with height according to the 
exponential law. Perrin proved that this is really so, and 
hence the Boltzmann distribution is valid. Further, 
proceeding from this assumption and measuring by 
independent methods the volumes and densities of particles, 
we can use the results of the experiment to find the value of 
the Boltzmann constant k since other quantities in (9.26) are 
known. The value of k obtained by Perrin is very close 
to its present-day value. Perrin also measured k by 
another independent method based on the Brownian 
movement. 

Later, other types of experiments completely confirmed the 
Boltzmann distribution. Among these experiments we can 
mention, for example, the verification of the temperature 
dependence of the polarization of polar dielectrics considered 
above. 

Example 9.1. For determining the Avogadro constant, 
Perrin used the distribution of gamboge gum grains in water. 
The density of the gamboge gum particles was p — 1.21 x 
x 10? kg/m?, and their volume :—1.03 x 10^ !? m?. The 
temperature during the experiment was 4°C. Find the height 
h at which the density of grain distribution decreased to 
a half of the initial value. 

Considering that t(p — p,)= 0.22 x 10^ !$ kg, we obtain 
from formula (9.26) 

h —kT In 2/[1(p — po) g] ̂ 12.3- 10 © m. 

Example 9.2. Spherical particles of radius 10^" m are 
suspended in air at temperature 0°C and pressure 1.013 x 
x 10° Pa. The particle concentration was found to decrease 
to half at the height of 20 m. Find the mass of a suspended 
particle. 



Sec. 10. PRESSURE 

The basic equation of the kinetic 
theory of gases is derived and its 
different forms and regularities 
connected with them are dis- 
cussed. 
The barometric formula is 
analyzed and the mechanisms of 
lifting force acting on baloons 
and aerostats are considered. 
The principal methods of mea- 
suring pressure in various ran- 
ges are described. 
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By using formula (9.26), we find t(p — po) = kT In2/(gh) = 
= 1.33 x: 1072? ike: 
Considering that t = 4.19 x 10^?! m?, we find p— po — 

— 3.2x 107? kg/m?. Since po — 1.293 kg/m?, we get p= 
— 1.296 kg/m?, and hence the mass of a particle is 

m — 1.296 x 4.19 x 107?! kg — 5.43 x 107?! kg. 

THE BASIC EQUATION OF THE KINETIC THEORY OF 

GASES. Pressure is created as a result of impacts of molecules 
against the vessel walls. Each molecule imparts to the wall 
the momentum by which the momentum of this molecule 
changes as a result of the collision with the wall. Hence, if we 
direct the X-axis along the normal to the wall (see Fig. 14), 
the momentum transmitted in one collision is 2mv‘*) (m is the 
mass of the molecule). Pressure is equal to the momentum 
imparted to the wall of area 1 m? by the molecules striking 
the wall per second. Therefore, the pressure is equal to twice 
the momentum flux of molecules, normal to the surface of the 

wall. -+ 
According to (8.31), the momentum flux towards the wall, 

created by the molecules whose absolute velocities lie 
between v and v+ dv is 

no f (v) v4? domv C. (10.1) 

The superscript (+) on the velocity indicates that the flux 
is created only by the molecules moving towards the wall (i. e. 

by the half of the total number of molecules) This gives 

p, 7 2ngm f f (o) ((? Y dv = nykT. (10.2) 

In this formula, the integral is evaluated in exactly the same 
way as in (8.32) for which detailed calculations were made. 

The components p, and p, are calculated similarly, the 
result being the same as (10.2): 

Py = Py = Pz = P= NokT. (10.3) 

As expected, the gas pressure is isotropic and can be 
denoted by p without specifying the direction in which it acts. 
Note that it is not always the case. If the mechanical 
properties of a medium are anisotropic, the pressure at a 
given point may be different in different directions. Naturally, 
in the case under consideration we have a gas with 
isotropic properties. 
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Let us express the temperature in (10.3) in terms of 
mean square velocity <v?> defined by formula (8.18). Then 
Eq. (10.3) can be written in the form 

(10.4) 

This equation is called the basic equation of the kinetic 
theory of gases. 
When deriving Eq. (10.4), we made no assumption about 

the nature of molecular impacts against the wall. This 
process is very complicated and depends on the properties 
of molecules as well as on the properties of the wall 
material and its finishing. Generally speaking, the reflection 
of atoms at the wall does not obey the laws of the 
mirror reflection, i.e. the angle of incidence on the wall is not 
equal to the angle of reflection. In most cases the “cosine 
law” is observed, according to which the intensity of 
reflection in a certain direction is proportional to the cosine 
of the angle formed by this direction with the normal to the 
surface. This intensity is almost independent of the angle of 
incidence. If the surface is a face of a single crystal, the law of 
the reflection considerably depends on the properties of the 
crystal and may have minima and maxima in different 
directions, and so on. However, while calculating pressure it 
is not necessary to take into consideration all these aspects, 
since in the steady state tangential components of the 
momentum must ultimately cancel out upon averaging, while 
according to the momentum conservation law for a closed 
system, the normal components will ensure the pressure 
(10.4). 
CLAPEYRON-MENDELEEV EQUATION. Denoting by 

n the total number of molecules in the volume V of a gas and 
considering that ng — n/V, Eq. (10.3) can be represented in the 
form 

pV =nkT. (10.5) 

Since n cannot be directly measured for a given mass of the 
gas, we must impart to the equation a more convenient form. 
For this we shall use the concept of a mole. 

The total number of molecules in v moles is equal to n= 
=vN,. Hence Eq. (10.5) can be written in the form 

pV =vRT, (10.6a) 

where 

R = kN 4= 8.31441 J/ (mole. K) (10.7) 



Dmitrii Ivanovich 
Mendeleev 
(1834-1907) 

! 

For molecules impinging 
a solid, the surface is 
different from the mirror sur- 
face and has an intricate 
topography determined by 
the properties of the solid 
and finishing of the surface. 
Therefore, the impact of 
a molecule or an atom on 
a surface is a complex 
process. The details of this 
process are not important for 
the analysis since the 
momentum conservation law 
for a closed system, used in 
this case, is always valid. 
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is the molar gas constant. The quantities corresponding to 
a mole of a substance are called molar. Equation (10.6a) is 
called the Clapeyron-Mendeleev equation. For T = const, we 
obtain from it Boyle's law, while for p= const, we get 
Gay-Lussac's (Charles) law. 

Equation (10.62) can be given another form if we introduce 
the concept of the molar volume, which is defined as the 
volume of a substance contained in one mole: 

js volume occupied by the gas iiio: 

number of moles in the gas 

We can then write 

(10.6b) 

Sometimes it is expedient to represent Eq. (10.6a) in such 
a form that it contains the mass explicitly. For this purpose 
we use equation (1.8): M — m/v, where M is the molar mass 
and m the mass of the substance. This gives 

(10.8) 

Equation (10.6a) was named after Clapeyron and Mendeleev because 
of the following circumstances. First Clapeyron presented the 
generalized Boyle’s law in the form pV = A(267+1), where A is 
a constant characterizing the given mass of a gas, t is the 
temperature in the Celsius scale. The number 267 was introduced 
into this equation because Clapeyron assumed the thermal 
expansion coefficient to be 1/267 and not 1/273. Subsequently, 
Mendeleev improved this equation by introducing the molar gas 
constant and representing it in the form (10.8). 

DALTON’S LAW. As was repeatedly mentioned above, 
individual components of a mixture can be assumed to be 
independent. Therefore each component creates a pressure 
corresponding to (10.3), the total pressure being equal to the 
sum of the pressures of the components: 

png, KT t ng5kT -- ... - ngkT — py + Pp t+... + Dip 

(10.9) 

where p, is the partial pressure. Equation (10.9) expresses 
Dalton's law of partial pressures. Naturally, at sufficiently 
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high concentrations (pressures) of the gases we should expect 
that there will be deviations from Dalton’s law since the 
interaction which actually exists between the mixture 
components will come into play and these components will 
no longer be independent. Indeed, such deviations from 
Dalton’s law at a sufficiently high pressure are actually 
observed. This law was established in 1801 by Dalton 
(1766-1844) who explained it with the help of the atomistic 
hypothesis. 

Denoting the partial pressures, masses and molar masses of 
the components of a gas mixture by p,, mj, and M, 
respectively, Eq. (10.8) can be represented in accordance with 
Dalton's law (10.9) as follows: 

m. mms s v iens RT. (10.102) Pitot tp) V= M, M, 

If we denote the pressure of the gas mixture by p = p, - p; 
+... + pi, its mass by m =m; +m, +... +m, and introduce 
the mean molar mass <M) of the gas mixture from 
the expression — 1/(M» - (1/m) [(m, /M,) - (m,/M;) 4 ... 
... + (m;/M;)], Eq. (10.10a) can be rewritten in a form similar 
to Eq. (10.8) for a one-component gas: 

(10.10b) 

AVOGADRO’S LAW. The equation of state for an ideal gas 
written in the form (10.5) shows that equal volumes of all 
gases measured at the same temperature and pressure contain 
the same number of molecules. This statement, which was 
formulated in 1811, is called Avogadro’s law. 

Consequently, a mole of any gas at a given temperature 
and pressure occupies the same volume. Under standard 
conditions (p = 101.325 kPa and T = 273.15 K) this volume is 
equal to 

Vn = (RT/p) = 22.41383 -107° m?/mole. 

The concentration of molecules under these conditions is 

given by Loschmidt number 

N, — 2.686754. 10?5 m^ ?. 
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BAROMETRIC FORMULA. Since formula (10.3) unam- 
biguously gives pressure in terms of temperature, we can use 
the Boltzmann distribution to immediately find the 
distribution of pressure under the same conditions for which 
this formula is valid, i.e. in equilibrium conditions (T — 
— const). Hence, for isothermal atmosphere the variation of 
pressure of each component with height h is described by the 
formulas 

pi (h) = no: (h) kT, p: (h) = p; (0) exp[ —mugh/(kT)] — (10.11) 

Atmospheric air mainly consists of oxygen and nitrogen. 
Consequently, the equation expressing the variation of air 
pressure with height can be written in the form 

p (h) = p, (h) + p2 (h) 

-— p, (0) exp [ — m,gh/ (kT)] - p; (0) exp [ — m;gh/ (kT)]. 

(10.12) 

Thus [see (9.13)], the ratio of components, and hence the 
ratio of partial pressures, varies with height. However, the 
molar masses of oxygen and nitrogen are close, and this 
variation is insignificant. We mentioned it only to make the 
picture complete from the theoretical point of view. Actually, 
as regards the pressure, a gas mixture can be treated as 
a one-component gas with the average molecular mass 

<m> = (m,n, t mnj)/(n, 4 n;). 

Considering that [m/(kT)] 2 po/po, where pg and p, are 
the density and pressure at h — 0, the barometric formula can 
be written in the form 

p (h) 7 po exp ( — pogh/po ), (10.13) 

where p, on the Earth surface is taken equal to 101.325 kPa. 
Here we assume that the temperature does not vary with 
height. If we express the height in kilometers and assume that 
the temperature is equal to 0°C, the barometric formula can 
be written in another convenient form: 

p (h) = po exp ( — h/7.99). (10.14) 

In actual practice, however, the atmosphere is not 

stationary and the temperature decreases with height. This 
introduces considerable changes in the dependence of 
pressure on height. For certain average conditions 
corresponding to the mean pressure p, at the sea level and 
the mean temperature 15°C at the sea level up to the height 
11000 m (troposphere), the following expression is used as 
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(b) 
Fig. 21. Schematic diagram — of 
forces resulting in the emergence of 
the Archimedes buoyant force (a) 
and the lifting force of an aerostat (b) 
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the international barometric formula: 

6.5h 5:255 

pth) i013 288 ) ; 

where p is the pressure in kPa and h is the height in km. 
LIFTING FORCE. Let us find out how the lifting force 

acting in air on lighter-than-air aircrafts emerges. Suppose 
that we have a cylindrical rigid envelope whose contents are 
not important for us (Fig. 21a). For the sake of definiteness, 
we shall assume that the side walls of the cylinder of length L 
are vertical and that the upper and lower bases have the area 
S. If the concentration of a gas at the bottom of the cylinder 
is ng, its concentration at the top is equal to n, = 
— ng exp[ — mgL/(kT)] z nj [1 — mgL/(kT)]. Consequently, 
the pressure on the cylinder bottom is pg — ngkT, which is 
larger than the downward pressure p, —n,kT exerted on the 
top. The difference in the forces of pressure acting on the 
bottom and on the top creates the lifting force 

Fin = S (Po — P1 ) = SLnomg. (10.15) 

This force is equal to the weight of the gas which would 
occupy the volume of a body, just as it should be according 
to the Archimedes priħciple. The pressures acting on different 
parts of the body are shown in the figure by arrows. The 
resultant of these forces is the lifting force. 

The mechanism of appearance of the lifting force acting on 
an aerostat is different. The aerostat has a soft envelope with 
a hole in the lower part, which contains a light gas. In order 
to analyze the emergence of the lifting force, we can represent 
the aerostat as a hollow cylinder without a bottom, whose 
lower part is filled with air and the upper part, by a lighter 
gas (Fig. 21b). At the level of contact between the light gas 
and air (dashed line) the pressure of air and the gas is the 
same and equal to the atmospheric pressure outside the 
cylinder. At this level, no force is acting on the side walls. 
With increasing height the pressure in the lighter gas 
decreases slower than in the heavier gas (air). Hence, above 
the level of contact between the light gas and air the pressure 
exerted by the light gas on the inner surface of the cylinder 
walls is higher than the air pressure on the outer surface of 
the walls. Consequently, all parts of the cylinder walls are 
subjected to forces directed outwards. In this case the lifting 
force is created due to a difference in pressure acting on the 
top. Let us determine this force assuming that the light gas 
fills the entire cylinder, i.e. the level of contact between the 

light gas and air coincides with the lower base (this is done 
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to make the comparison with the previous case easier). Then 
the pressures of air and the gas at the lower base are equal, 
and hence the concentration n, of the particles in these gases 
is the same. The concentrations of particles in the light gas 
(molecular mass m,) and in air vary with height at different 
rates, and at the upper base we have 

n, -ngexp[—7mmgL/(kT)], n; —ngoexp[ — m;gL/(kT)]. 

(10.16) 

Thus, the lifting force acting on the top of the cylinder is 

Fig = S (p2 — pi) 7 SkT(n; — nj) 2 SLnogg(m; — mi) — (10.17) 

ie. it is smaller than the lifting force (10.15) acting on the 
closed cylinder. It is clear from (10.17) that the difference is 
equal to the weight of the light gas inside the cylinder. 
Formally, this result can be interpreted as follows: the lifting 
force acts on the cylinder in case (b) as well, but we must add 
the weight of the light gas inside the cylinder to the weight of 
the cylinder and its contents. Such an explanation leads to 
a correct result for the value of the lifting force but does not 
reflect correctly the physical aspect of emergence of the lifting 
force: in the first case the forces of pressure whose resultant 
creates the lifting force tend to compress the cylinder, while 
in the second case they tend to stretch it. 
MEASUREMENT OF PRESSURE. Devices for measuring 

pressure are called manometers. The range of pressures to be 
measured in modern physical studies lies between 10 ̂ !^ and 
10!! Pa. Different methods are used for measuring pressures 
in different ranges of pressure. 

Manometers can be divided into two categories. The first 
type includes those which measure the pressure as a quantity 
equal to the ratio of force to the surface area. They are 
absolute instruments and can be used as primary ones. 
Manometers of the second type measure a certain quantity 
associated with pressure rather than the pressure itself. Such 
manometers are called secondary. 

In this book we do not aim at the description of the 
devices and the measuring techniques, which constitute the 

subject of laboratory practical works. Here, we shall only 
note general features of pressure measurement in different 
ranges. 

In the low pressure region (below 100 Pa) secondary 
manometers are mainly used. Among them ionization and 
thermocouple gauges should be mentioned. The McLeod 
gauge has played a very important role in measuring low 
pressures. A gas whose pressure cannot be measured directly 

4 
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? 

. Why is the expression "a 
mole of water" devoid of any 
meaning? 

. How many moles of oxygen 
atoms are contained in two 
moles of water molecules? 
Do the internal degrees of 
freedom of a molecule affect 
the pressure? 

. Will the pressure of molecules 
on the wall increase or 
decrease if we take into 
account the finite dimensions 
of molecules? 

. How will the pressure change 
if we consider the forces of 
attraction acting among 
molecules? 
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because of its low value is compressed in it to directly 
measurable pressures. If we know the compression 
conditions, it is possible to find the initial pressure. Hence, 
McLeod’s gauge directly measures the pressure although it is 
not an absolute instrument in the strict sense of the word. It 
is still being used in modern laboratories. 

In the atmospheric pressure range  liquid-column 
manometers are used. A manometer consists of a U-shaped 
tube with a high vacuum in one of the arms. Manometers for 
measuring the atmospheric pressure are called barometers. 
Liquid column manometers are primary devices which can 
measure the pressure with high accuracy. 
Among the primary manometers for measuring high 

pressures, piston (free-piston) pressure gauges are the most 
important. In accordance with Pascal’s principle, the pressure 
to be measured is transmitted to the fluid under the piston 
without loss. If the area of the piston is small, even at a very 

high pressure the force acting on the piston can be 
counterbalanced by another force whose magnitude is known. 
Thus, the pressure can be immediately determined. 

Piston gauges are used for graduating secondary high-pres- 
sure gauges which include the widely used Bourdon gauge. 
This instrument is based on the following phenomenon: if the 
pressure of a fluid inside a curved tube is increased, the tube 

tends to straighten out, i.e. its ends move relative to one 
another. This relative motion of the tube ends is unambigu- 
ously connected with the pressure of the fluid inside the tube 
and can obviously be used for measuring pressure. 
MOLAR AND SPECIFIC QUANTITIES. In molecular 

physics, the quantities are often referred to either a mole of 
a substance or its mass. In the former case they are called 
molar, and in the latter case specific quantities. Sometimes 
molar quantities are given the subscript “m”. For example, 
the molar volume is written as V,, — V/v (however, the molar 

gas constant R does not have this index). Specific quantities 
are denoted by the lower case of the same letter as the 
quantity itself, for instance, the specific volume v — V/m. The 
specific gas constant is denoted by R, = R/M = vR/m. 

In many cases the formulas have the same form for molar 
and specific quantities. Hence, there is no need to write 
them twice or to overload them by indices. Therefore, in 

the cases where ambiguity is impossible, we shall omit the 
indices “m” for molar quantities in formulas which, 

depending on circumstances, can represent specific, molar, or 
simply arbitrary quantities. Otherwise, to avoid ambiguity, 
the nature of a quantity will be explicitly reflected by its 
notation. 
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By way of an example, let us consider the equation of state 
for an ideal gas. In the form (10.8), this equation describes the 
state of a gas with the molar mass M, having the mass m and 
occupying the volume V; while in the form 

pV — «RT (v 2 m/M) 

this is the equation for v moles of a gas occupying the 
volume V. If we rewrite it in the form 

PV a = PT (Vo = V/v), 

we get the equation for a mole of a gas occupying the volume 
Vm while in the from 

pr = RoT (v = V/m, Rọ = R/M) 

it refers to the specific volume of the gas. Thus, we must 

always bear in mind quantities which are being considered at 
the moment. 

Example 10.1. An ideal gas contained in a cylinder of 
height zy and radius of the base rg is rotated around the 
cylinder axis at an angular velocity w. Find the pressure of 
the gas on the side wall, if the total number of molecules in 

the cylinder is n and the gas temperature is T. 
In the coordinate system fixed to the rotating cylinder, the 

gas molecules experience the inertial force mo?r directed 
along the radius. It can be easily seen that this is a potential 
force, and hence the Boltzmann distribution can be applied 
to it if we assume that the gas is in the effective potential 
field U = — mw?r?/2. Therefore, we can write the following 
expression for the number dn of molecules in the annular 
layer between r and r+dr of height dz (z is the coordinate 
along the axis of rotation): 

dn — A exp [mo?r?/ QkT)] 2nr dr dz. (10.18) 

Here A is the normalization constant which can be found 
from the condition 

n= ( dn, (10.19) 
V 

where V is the volume of the cylinder. Substituting (10.18) 
into (10.19) and integrating, we obtain 

SPP MOT? ou 
nay us OE d ) 

dom 

bts sur (ve moro i) (10.20) 
"9 mo? 2kT 
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Then the particle distribution along the radius of the cylinder 
is defined by 

n mor? exp [mo?r?/ QkT) 
No (r) = —— 2 e (10.21) 

V 2kT exp[mo?rg/ QAT)] — 1 

where V = nr zo. 
The pressure on the lateral surface is 

P (ro) =n (ro) kT. (10.22) 

Sec. 11. TEMPERATURE 

The construction of an em- 
pirical temperature scale is con- 
sidered and the dependence 
of temperature determined with 
the help of this scale on a 
thermometric body and a ther- 
mometric quantity is estab- 
lished. The temperature scale 
is considered with an ideal 
gas as a thermometric body. 
The International — Practical 
Temperature Scale is described. 
The absolute nature of the 
zero kelvin is pointed out. 

A THERMOMETRIC BODY AND A THERMOMETRIC 

QUANTITY. Temperature is a quantitative measure of the 
"degree of heating" of a body, which has a purely subjective 
meaning. We can define a more heated body and a less 
heated body. A more heated body is an object whose degree 
of heating decreases after a prolonged contact with another 
body which in this case is assumed, by definition, to be less 
heated. After this we could establish a scale of “degrees of 
heating” or “temperatures” in the same way as it was done 
while establishing the hardness scale. However, such 
a method of measuring “degree of heating” is inapplicable 
mainly because it is practically impossible to preserve the 
standards of invariable permanent “degree of heating” at all 
temperatures. The “degree of heating” of a body is 
determined from some characteristics of material bodies, 
which depend on the “degree of heating”. 

It is well known, for example, that the length of a solid 
depends on its “degree of heating”; in gases it is the pressure 
at a constant volume, and so on. The methods of 
measurement of length and pressure are well known. Hence, 
the measurement of the “degree of heating” is reduced to the 
measurement of a certain property of a body which varies 
with the degree of heating. The physical ground in this case is 
ensured by the validity of the statement that after 
a prolonged contact the degree of heating of the contacting 
bodies acquires the same value. 

A body chosen for measuring the “degree of heating” is 
called a thermometric body, while the quantity used for 

determining the “degree of heating” is called a thermometric 
quantity. 
TEMPERATURE SCALE. First of all, let us fix a ther- 

mometric body and denote by / a thermometric quantity. 
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For example, we can take a thermometric body in the 
form of a metallic rod of a certain length, this length 

being the thermometric quantity. Now, we must take for the 
start at least two typical "degrees of heating", or reference 
points which could be easily reproduced. The most easily 
determined and widely known are the "degree of heating" at 
which water boils under atmospheric pressure and that at 
which water freezes. These reference points are called the 
boiling point and freezing point of water. Suppose that the 
values of the thermometric quantity for the thermometric 
body at the boiling and freezing points are equal to l, and l, 
respectively. The numerical value of the quantity used to 
characterize the “degree of heating” of a body is called 
temperature. The temperature itself is not a thermometric 
quantity which is chosen as the basis for its measurement, 
and can be determined from the thermometric quantity as 
follows. 

The temperature is expressed in degrees. The reference 
points can be assigned certain arbitrary temperatures. 
Suppose that the boiling point of water is assigned 
a temperature t, and the freezing point, t,. Then one degree 
of temperature can be defined as 

P= e n]. 

The temperature of a thermometric body is the number 
determined according to the formula 

L-l L-i gan ed 

2m 
t= ti; (11.2) 

where l, is the thermometric quantity for the “degree of 
heating” being measured. It should be emphasized once again 
that the “degree of heating” of a thermometric body is 
assumed to be the same as the “degree of heating” of any 
other body which is in contact with it for a sufficiently long 
time. Consequently, the quantity (11.2) is the temperature of 
the gas whose “degree of heating” is being measured. 

Formulas (11.1) and (11.2) characterize a temperature scale. 
They have an unambiguous meaning only for a fixed 
thermometric body and a thermodynamic quantity. 

Some of the temperature scales commonly used are the 
Celsius, Réaumur, and Fahrenheit scales which differ in the 
values of temperature ascribed to reference points. In the 
Celsius scale, t; — 100 and r, — 0; in the Réaumur scale t; — 
— 80 and t, — 0, while in the Fahrenheit scale t, 2 212 and 
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t, —32. Consequently, the same “degree of heating” is 

characterized by different temperatures on these scales: 

k=l 

te= 100, (11.3a) 
l;—l, 

tg — (I, — 1)-80/(0h — 1), (11.3b) 

tr = 32 + (i, — 1,)- 180/(1, — |). (11.3c) 

In these formulas we presumed that the same thermometric 
body and thermometric quantity are used. Formulas (11.3) 
can be used to recalculate the temperature from one scale to 
another: 

tr = 0.8tc, tp 2 32 4- 1.866. (11.4) 

It should be noted that the magnitude of one degree is not 
the same for different scales. 

Not all of these scales use the melting point of ice and boiling point 
of water as the reference points. The Dutch glass blower D. Fahren- 
heit (1686-1736) established a scale with the melting point of 
a mixture of ice with common salt as the first reference point. This 
point was assigned the temperature 0°F. The ice point was taken as 
the second reference point and ascribed the temperature 32°F. With 
such a choice, the steam point under normal conditions was equal to 
212°F. The thermometric body was mercury or alcohol. 
The French scientist R. Reaumur (1683-1757) proposed his scale in 
1730. He chose the ice point as the initial reference point (t, — O^R) 
and defined a degree as a temperature increase causing the 
expansion of alcohol by 0.001 of its initial volume. On this scale, the 
steam point is t; — 80°R. 
The Swedish astronomer A. Celsius (1701-1744) proposed in 1742 his 
scale with the ice point and steam point as the reference points 
(however, instead of 0° and 100° accepted later, he assigned them the 
values 100 and 0°C). 

THE DEPENDENCE OF TEMPERATURE ON THER- 

MOMETRIC BODY AND THERMOMETRIC QUANTITY. Let 

us choose a thermometric body (for example, an iron wire) 

and a thermometric quantity (for example, its length), and 
construct some temperature scale (for example, Celsius’ scale). 
Let us take another thermometric body (e.g. a copper wire) 
with the same thermometric quantity (its length) and also 
construct the Celsius scale. Let us measure the "degree of 
heating" of some body with the help of these thermometric 
bodies. Generally, we shall obtain different temperatures for 
the same "degree of heating". This is because the dependence 
of the length on the degree of heating is different for different 
bodies. Hence, the value of temperature on the same 
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Temperature is not 
a thermometric quantity. For 
this reason, its measurement 
resembles the measurement of 
altitude with the help of 
a barometer, where depend- 

ing on circumstances this 
can be done either by 
measuring pressure or 
allowing the barometer to 
fall to the ground, and by 
measuring the time of the 
fall However, there is no 

other way of doing this. 

For a fixed scale and 
reference points, the 
temperature depends on the 
choice of a thermometric 
body and thermometric 
quantity. 
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temperature scale depends on thermometric body. If we fix 
the thermometric body and the temperature scale but vary 
the thermometric quantity used for measuring the 
temperature, we shall also obtain, generally speaking, 
different temperatures for the same degree of heating. 
Consequently, temperature depends on the choice of 
a thermometric body. 

This was established experimentally at the beginning of 
19th century by the English chemist H. Davy (1778-1829) 
who showed that thermometers using different liquids as 
thermometric bodies give different temperatures in the 
interval between 0 and 100°C. 

For this reason, it is necessary to agree once and for all 
upon a choice of a thermometric body and a thermometric 
quantity. This choice can in principle be arbitrary, but 
actually, while working out an agreement, we must take into 
account the convenience and precision of measurements, 
preservation of the thermometric body and the thermometric 
quantity, reproducibility of the thermometric body and the 
results of measurement, the interval of “degrees of heating” 
for which the thermometric body can be used, and so on. If 
we consider all these conditions, the arbitrariness in the 
choice of thermometric body is practically eliminated, and 
we ultimately arrive at an ideal gas as the thermometric 
body. 

THERMODYNAMIC TEMPERATURE SCALE. Even a few 

requirements to a thermometric body listed above suggest the 
idea that an ideal gas must be taken as the thermometric 
body. The equation (10.6a) of state for an ideal gas permits to 
take as thermometric quantity either p or V which can be 
measured to a high accuracy. The reproducibility of this 
thermometric body is in principle absolute, as well as 

preservability and invariability. Its only drawback is that it 
does not exist in nature. However, this drawback is not of 

principle importance since physicists always operate with 
abstract idealized models, and it is always possible to find 
out to which extent the real models approach the ideal ones 
and to reveal the difference between them. 
We can choose a gas and after analyzing its behaviour 

determine to which extent it is close to an ideal gas. 
Experiments show that rarefied gases are very close to ideal, 
and therefore we can directly take them as thermometric 
bodies. Equation (10.6a) contains three variables, hence we 
can say that this equation contains the definition of 
temperature and two laws which are usually assumed to be 
the Boyle law and the law of volumes (Gay-Lussac's law). 
Therefore, although this equation forms the basis of the 
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definition of temperature, it can be used to find out how 
close a given thermometric body is to an ideal gas. 

Either p or V can be taken as a thermometric quantity. If 
we choose V as such a quantity, Gay-Lussac's law ceases to 
be a law and becomes a corollary of the adopted definition of 
temperature. In this case the second independent law for 
ideal gases (besides the Boyle law) is the Charles law p,/p, = 

Y/ Tj. 
For reference points we can take the ice point and the 

steam point whose temperatures will be denoted by T, and 
T,. By definition, a degree of temperature can be chosen in 

such a way that the difference between the indicated 
temperatures be equal to 100, i.e. T, — T, 2100. For the 
thermometric quantity we shall take pressure. We can 
measure experimentally the pressure p, of a certain mass of 
a gas close to ideal at the steam point and the pressure p, at 
the ice point. Suppose that the ratio of the experimentally 
measured quantities is 1.3661. Hence, we have two equations 
for calculating T, and 7;: T; — T, 2100 K and T7,/T,= 
= 1.3661, whose solution yields poco and T, = 
= 373.15 K. Thus, the temperature scale is fixed completely. 
However, such an introduction of a temperature scale is 

not quite satisfactory. As a matter of fact, the steam point 
and the ice point depend on pressure which must be 
additionally fixed in the definition. Moreover, the boiling and 
freezing points are fixed with insufficient accuracy. For this 
reason, in the International System the temperature scale is 
defined by a single reference point, viz. the triple point of 
water (see Sec. 47). By definition, the temperature 
corresponding to the triple point of water is taken equal to 
273.16 K. The unit of temperature is defined as 1/273.16 of 
the temperature interval between the triple point and the 
absolute zero which, however, is not a reference point but 
just the temperature 273.16 K below the triple point of water. 

Taking an ideal gas as a thermometric body, we can 
determine temperature by the formula 

B 273.16 

Po 
P, (11.5) 

where pọ is the gas pressure at the temperature corresponding 
to the triple point of water and p is its pressure at the 
temperature being measured. The volume of the gas must be 
constant during measurements. a 

The temperature scale determined above is called the 
absolute thermodynamic temperature scale. 

Since Eq. (11.5) is based on the ideal gas laws, the quantity 
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T defined by this formula coincides with T introduced in 
(8.15) as notation. Hence, the temperature denoted by T in 

the previous discussion is the absolute thermodynamic 
temperature. 

It is called "thermodynamic" since it can be derived from 
purely thermodynamic calculations on the basis of the second 
law of thermodynamics. Formally, we had no grounds to call 
it thermodynamic since a thermodynamic analysis of the 
problem has not been made so far. To avoid excessive 
terminology it is expedient, however, to do it now putting off 
its substantiation till later. 
THERMOMETERS. A rarefied gas is a real thermometric 

body that is closest to an ideal gas. Thermometers on the 
basis of rarefied gases are called gas thermometers. The 
thermodynamic temperature scale can be realized with their 
help in a wide temperature range from several kelvins to 
more than a thousand kelvins. For this reason, the Bureau of 
Standards uses gas thermometers as primary standards in this 
temperature range. The thermometric quantity in gas 
thermometers is the pressure. These thermometers are very 
cumbersome and difficult to use. For this reason, they are 
used only to graduate secondary thermometers employed in 
scientific investigations, in industry, and so on. The most 
common secondary thermometers are  liquid-filled 
thermometers (for example, alcohol and mercury 
thermometers), resistance thermometers, and thermocouples. 
Liquid-filled thermometers are used in the temperature range 
between —200 and 600°C. For example, pentane 
thermometers operate between  — 200 and 20°C, while 
mercury thermometers, from — 38.87 to 600°C. 

Resistance thermometers are based on the dependence of 
the ohmic resistance of a conductor on temperature. Among 
them, platinum resistance thermometers have the widest 
range of temperatures accessible for measurements (from 
— 200 to 1100°C). The International Bureau of Weights and 
Measures recommended the platinum thermometer as 
a standard for reproducing temperatures in the range from 
— 190 to 660°C. Copper resistance thermometer can be used 
for the temperature interval from — 20 to 100°C. Resistance 
thermometers can be used for measuring low temperatures 
(bronze and graphite thermometers). Semiconductors can also 
be used as materials for resistance thermometers. Their 
resistance decreases and not increases with temperature, while 
the rate of temperature variation of resistance is an order of 
magnitude higher than for metals. This property is used for 
manufacturing very sensitive semiconductor thermometers 
called thermistors. 
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? 

. Which body is chosen as the 
thermometric body for the 
absolute thermod ynamic 
temperature scale? What are 
the merits of such a choice? 

. How many reference points 

are used to define the 
absolute thermod ynamic 
temperature scale in SI? 
List the fixed primary points 
for the International Practical 
Temperature Scale. 

. Which thermometers and what 

methods are used for 
measuring temperature in 

various intervals? 

1. Statistical Method 

Physical phenomena occurring in thermocouples will be 
considered in Sec. 56. Temperature measurements with the 
help of thermocouples are reduced to measuring the potential 
difference. With these instruments, temperature can be 

measured over a wide range. For example, a platinum/ 
/platinum-rhodium thermocouple can be used in the interval 
from 0 to 1700°C, and chromel/alumel thermocouple, from 

~ 200 to 1350°C. 
At very high temperatures, materials melt and the types of 

thermometers described above are inapplicable. In this case, 
the body whose temperature is to be measured is taken as the 
thermometric body, while the thermometric quantity is the 
electromagnetic energy emitted by it. The laws of radiation 
are well known and can be used for determining the 
temperature of a body from its radiation. The International 
Bureau of Weights and Measures has established the 
thermodynamic scale for temperature above 1063°C just on 
the basis of the laws of radiation. The instruments used for 
measuring radiant energy are called pyrometers. 

At very low temperatures (~ 1 K) conventional methods of 
measuring temperatures are also inapplicable, since the 
temperatures of bodies in contact level out in this case very 
slowly, and, in addition, the ordinary thermometric quantities 
are “non-operative” (for example, pressure becomes extremely 
low, and resistance is practically independent of temperature). 
In these conditions also the body itself is taken * as 
a thermodynamic body while the characteristics of its 
properties, e. g. magnetic, are used as thermometric quantities. 
The problem of measuring temperature is closely linked with 
the investigation of variation of properties of a substance 
with temperature. 

On the whole, the design of thermometers for various 
temperature intervals and their calibration is a complex 
scientific and technical problem, where physical laws 
established for appropriate temperature ranges are employed. 
INTERNATIONAL PRACTICAL TEMPERATURE SCALE. 

This scale was established for calibrating in comparatively 
simple ways scientific and technical instruments and, at the 

same time, for reproducing the thermodynamic temperature 
scale with the highest possible accuracy. The units of 
temperature are degrees Kelvin or Celsius depending on the 
reference point of temperature. The temperature scale is 
constantly being refined in accordance with the results of 
researches and advances in measuring technique. This scale 
employs as the primary fixed points the readily reproducible 
points to which definite temperatures are ascribed. They are 
used for graduating standard thermometers which are 
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Temperature Scale is defined 
in such a way that measur- 
ing instruments can be easily 
calibrated and thermo- 
dynamic temperature scale 
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Thermodynamic temperature 
cannot be negative. 

Zero thermodynamic 
temperature is unattainable, 
although the possibility of 
approaching it however 
closely is not excluded. 
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Table 1 
Primary Fixed Points on the International Temperature Scale 

(under standard pressure p — 101.325 kPa) 

Fixed points T (K) t (C) 

Triple point of hydrogen 13.81 — 259.34 
Boiling point of oxygen 90.188 — 182.962 
Triple point of water 273.16 0.01 
Boiling point of water 373.15 100.0 
Melting point of zinc 692.73 419.58 
Melting point of silver 1235.08 961.93 
Melting point of gold 1337.58 1064.43 

suitable due to their physical properties for measuring 
temperature in appropriate intervals. Between the primary 
points, the temperature scale is established with the help of 
interpolation formulas according to which the temperature is 
found from the readings of thermometers adopted as 
a standard. 

The scale constructed in this way is on the whole in very 
good accord with the thermodynamic temperature scale at 
the reference points and is sufficiently accurate for all other 
points. 

The temperature corresponding to some primary fixed 
points of the International Temperature Scale is given in 
Table 1 
RELATION BETWEEN THE THERMODYNAMIC AND 

CELSIUS SCALES. The Celsius scale is obtained from the fact 
that the freezing point of water under the pressure of 1.013 x 
x 10° Pa is equal to 0°C, and one degree Celsius is equal to 
one degree Kelvin. On the thermodynamic scale, the ice point 
under these conditions is 273.15 K. Thus, by definition, the 
temperature t on the Celsius scale is given by 

tesqo 998. (11.6) 

ZERO KELVIN. It follows from the definition (11.5) that the 

temperature cannot change sign, since the existence of 
a negative pressure of an ideal gas is ruled out. As the 
reference temperature is assumed to be positive by definition, 
thermodynamic temperature cannot take negative values (this 
question is treated in Sec. 21). 

The existence of states with zero thermodynamic 
temperature is not excluded by these considerations. 
However, an analysis of various processes shows that zero 
kelvin cannot be attained, although the possibility of 
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approaching it however closely is not excluded. The 
statement about the unattainability of zero kelvin is for- 
mulated in thermodynamics as an independent postulate 
called the third law of thermodynamics. 

It can be seen from Eq. (8.18) that (mv?/2» — 3kT/2, and 
hence at 0K the kinetic energy must vanish. In particular, 
thermal vibrations of atoms at the lattice sites must cease. 
This, however, is in contradiction to the basic postulates of 
quantum mechanics. 

According to Heisenberg’s uncertainty relations, a decrease 
in the momentum of particles is inevitably accompanied by 
an increase in the uncertainty in their coordinates. 
Consequently, the assumption that the atoms have stopped 
vibrating at the crystal lattice sites is equivalent to the 
statement that the lattice has ceased to exist. On the other 
hand, a direct solution of the quantum-mechanical problem 
about atomic vibrations at the lattice sites shows that the 
energy of atomic vibrations can never become lower than 
a certain minimum value. The vibrations corresponding to 
this energy are called zero-point vibrations. The existence of 
zero-point vibrations in crystals was confirmed in 
experiments. 

Example 11.1. A constant-volume helium thermometer 
employs pressure as a thermometric quantity. The values 
t( — 0 and t; 2 100 correspond to the ice point and steam 
point. Estimate the error introduced during measurements 
with helium thermometer if it is established experimentally 
that the helium pressure in a thermometer with volume V= 
= 5000 cm? is sufficiently accurately described by the 
equation 

rT a 

Py Ty (T= 273 +t), (11.7) 

where r=2x 10’, a=84x 10°, and p is measured in 
arbitrary units not important for the problem. 

Taking helium as a thermometric body and pressure as 
a thermometric quantity of constant volume, we define 
temperature as it was done in (11.3a): 

P— Po 

Pioo — Po 
r= : 100. (11.8) 

Rewriting this equation as 

'(P1oo — po) ^ 100 (p — pg), 
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we find that 

í 100 r a 1 1 

VV? \ 373 273 

r a 1 1 

E wl: g-a- a) 
or 

t (1 + 4/373) = t [1 + A273 + t)]; A= a/(273rV). (11.9) 

This equation shows that at t, =0°C and t, = 100°C the 
helium thermometer shows t; — 0 and t; — 100, i.e. at this 
points the readings of the thermometer are exact. At other 
points its readings differ from accurate values. Considering 
that 4-844 x 10/(2 x 107 x 273 x 5 x 10) 2 3.1 x 10^ *, 
we can represent t' from (11.9) in the form 

=~ t[1 + 4/273 +2)] (1 ~ 4/273) 
et[1-- AI273 3- — 4/293 4-...], 

whence 

A(100— t 100— t 
UB Q e. ey : 

373 (273 4 t) 273 4t 

i.e. the thermometer is sufficiently accurate. For example, at 
t= 50 the difference :! —t — 64 x 10 5, while at t — 200, 
ť— t= —3.5 x 1075. 

t—t-t 

Sec. 12. DISTRIBUTION OF ENERGY AMONG 
THE DEGREES OF FREEDOM 

The principle of equipartition 
of energy is proved and the 
conditions for its applicability 
to complex particles with inter- 
nal degrees of freedom are 
revealed. 

THE NUMBER OF DEGREES OF FREEDOM. This quantity is 

defined as the number of independent variables which 
determine the state of a system. In order to completely 
describe the energy state of motion of a material point at 
a certain moment, we must assign to it three velocity 
components for determining the kinetic energy and three 
coordinates for the potential energy, i.e. six variables in total. 
In the dynamics analysis of the motion of an individual 
particle, these variables are not independent, since having 
solved the equation of motion, we can express the 

coordinates as functions of time, while the velocities are 
expressed as time derivatives of the coordinates. If, however, 

a particle becomes a part of a statistical system, such an 
approach is impossible, and we must consider the particle 
with all its six degrees of freedom. 
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A statistical system comprising n point particles has 6n 
degrees of freedom of which 3n determine the kinetic energy 
of the system and 3n, the potential energy (if the system is in 
an external potential field or if its particles interact with each 
other through potential forces). For an ideal gas it is assumed 
that this type of interaction does not exist. 
THE 6n-DIMENSIONAL PHASE SPACE METHOD. Two 

methods are used for describing many-particle systems (see 
Sec. 8). The problem can be reduced to the analysis of the 
motion of the totality of n particles in the 6n-dimensional 
phase space of the variables x, y, Z, Px» Py, Pz- This method 
has been used so far, since it provides a more graphic picture. 
We shall turn, however, to a different method to prove the 
principle of equipartition of energy among the degrees of 
freedom. 

In this case, in the Gibbs distribution (7.5) £&, should be 

treated as the energy of a certain state of a system of 
n particles. The entire system is submerged into a very large 
system with temperature T. Here the canonical ensemble will 
be a large number of such systems containing n particles 
each. 

The energy & of the system is the sum of the kinetic 
energies of the particles plus the sum of their potential 
energies. A certain specific state of the system is characterized 
by the values of all momentum components and coordi- 
nates of all particles constituting the system, ie. by 6n 
variables. f 

Hence we can assume that the state of a system 
corresponds to a point in the 6n-dimensional phase space. 
Essentially, it is as difficult to imagine the 6n-dimensional 
space as a six-dimensional one since in both cases the visual 
representation such as we have for a three-dimensional space 
is impossible. For this reason, the two-dimensional phase 
space will be the initial space described by one coordinate 
and one momentum. Such a space can be shown graphically. 
Then, we can go over to a four-dimensional, six-dimensional, 
and so on, phase space, all these multidimensional spaces 
being equally abstract for our imagination. The elementary 
phase volume in a 6n-dimensional space is expressed as 

dx, dy, dz, dp, dp, dp, ERA dx, dy, dz, OP xn dp,, dp,, , (12.1) 

i.e. the product of phase volumes occupied by each particle 
of the system. In order to simplify the notation, we shall 
denote the product of all differentials of coordinates by {dx} 
and of momenta by {dp}, i.e. an element of the phase volume 
will be written as {dx} {dp}. 
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According to (4.1), each particle in its phase space occupies 
the volume (2zxAj. Consequently, n particles in the 

6n-dimensional space occupy the volume (2nA)"", and hence 
instead of (8.1) we have 

dT = {dx} {dp}/(2nh)>". (122) 
Instead of formula (8.2), for the probability that particles 

can be found in the volume element {dx} {dp} of the 
6n-dimensional space, we get 

dF? = Aexp(— Be,)dT. (12.3) 

As before, the constant A is determined from the 
normalization conditions. To calculate the probability that 
a system of particles has a given energy £,, we must integrate 
(12.3) over all elements of the phase space, that correspond to 
the energy £,. Thus we shall take into account the 
contribution to the probability from all states described by 
the same energy ¢,. So, the method of the 6n-dimensional 
phase space employs the same concepts and methods that 
were used more graphically in Secs. 7-9 when we introduced 
the six-dimensional phase space. The procedure for 
calculating the mean values will also be similar. 
CALCULATION OF THE MEAN VALUE COR- 

RESPONDING TO ONE DEGREE OF FREEDOM. Let us 

calculate the mean value of the kinetic energy corresponding 
to the x-component of the ith particle: 

. 2, 2. 

CE WES A (124) 
2m, 

Here the mass of the particle is marked with the subscript 
i since the masses of the particles can in general be different. 
The energy of the system can be written as 

Ea = pz / Qm) + & (12.5) 

where £/ is the total energy of the system less p2/(2mj) 
whose mean value is to be determined. The volume element 
of the phase space can be written in the form 

{dx}- {dp} = {dx} dp,; {dpy’, (12.6) 

where {dp} is the product of all differentials of momenta of 
particles except the differential dp,, which is factorized from 
the product: (dp) — dp, dp]. The value of the quantity 
(12.4) is determined by the mean value formula: 
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The law of equipartition of 
energy concerns the mean 
energy per degree of freedom. 
At a certain instant of time, 

the energy associated with 
a given degree of freedom 
may acquire various values 
which in general differ from 
the energies corresponding to 
other degrees of freedom. 
The energies connected with 
different degrees of freedom 
are equal only when aver- 
aged, over a sufficiently long 
interval of time. By the ergo- 
dic hypothesis, this also 
means that the values of 
energy corresponding to 
specific degrees of freedom, 
averaged over the ensemble, 
are also equal to each other. 
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< 

p 

f exp [ — BpZ/ Qm)] — am -dp, fexp( — Pea) {dx} {dp} 

fexp [ m Bp2; /(2m,)] cent — pe) {dx} {dp} i 

(12.7) 
where the denominator is the quantity reciprocal to the 
normalization constant A, that emerges due to 
a normalization of (12.3) to unity. The integrals in the 
numerator and denominator of (12.7) over all variables 
excluding p,; cancel out, after which we have 

f exp[ — Bpz;/(2m;)] [pz;/(2m;)] dp. 

Iun LM n M e 
2m. 
^ J exp [= Bpm) dps: 

ĝ — pp pon x] dpi- ap n f en ( 5 2m, ) Pi 

We have already used such a representation of the mean 
value in (7.15). The integral similar to the one under the 
logarithm sign in (12.8) is known from (8.8), hence 

(12.8) 

(12.9) 

This formula expresses a very important statement: in 
a system consisting of n particles, each degree of freedom 
contributing to the kinetic energy of the system has the same 
energy equal to kT/2. It should be emphasized once again 
that this conclusion is valid for the case when the masses of 
particles are different. Using (12.9), we can write the following 
expression for the total kinetic energy of the system: 

W = 3nkT/2, (12.10) 

since the system has 3n degrees of freedom contributing to 
the kinetic energy. 

There is no general rule of this type for the potential 
energy of different degrees of freedom. However, if the 
potential energy has a specific but very important and fre- 
quently encountered form, there exists a certain rule for it, 
which we shall now prove. 
COMPLEX PARTICLES WITH MANY DEGREES OF 

FREEDOM. Suppose that each of n particles of a system is 
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not a point particle but consists of several point particles 
coupled into a single entity by some forces which, without 
any loss of generality, can be considered potential forces, 
since otherwise the energy of complex particles would not be 
conserved and they cannot be assumea 10 exist in stationary 
conditions. So, the system of n complex particles is 
transformed into a system of N particles, when N represents 
the number of all point particles comprising n complex 
particles. In this case we need not assume that all n complex 
particles are identical and consist of the same number of 
point particles. It follows from the derivation of the Gibbs 
canonical distribution (7.5) that it can be applied to an 
ensemble of N point particles. 

Let us now consider one of the complex particles. Suppose 
that it consists of s point particles. The motion of the 
complex particle as a whole is characterized by the motion of 
its constituent particles, i.e. it has 6s degrees of freedom. 
However, it is expedient to represent these 6s degrees of 
freedom in a more convenient form, as it was done in the 
case of a rigid body with six degrees of freedom. If the point 
particles are fixed in the centre of mass coordinate system for 
a complex particle, the complex particle behaves as a set of 
motions of the centre of mass and rotations around it. The 
formula for describing the kinetic energy of the particle is 
well known. The only difference between this complex 
particle and a rigid body is that the rotation is not possible 
about all principal central axes. For example, if a complex 
particle consists of two point particles, the rotation about the 
axis passing through the point particles is impossible. The 
formula for kinetic energy contains the term corresponding to 
this axis, but the moment of inertia J with respect to this axis 
is equal to zero. Hence, the kinetic energy of a complex 
particle, associated with its translatory motion and rotation, 
can be written in the form 

Wo = my? /2 + (J,0? 4- J 092 4 J403)/2, (12.11) 

where m; is the mass of a complex particle, equal to the sum 
of the masses of point particles constituting it, v; is the 
velocity of its centre of mass, Jį, Jz, Ja, and 06, €, €, are 

the moments of inertia and angular velocities of rotation of 
the complex particle, corresponding to its principal central 
axes. 

The total energy of a complex particle consists not only of 
its kinetic energy (12.11). The point particles constituting it 
are not at rest but rather move in the vicinity of their 
equilibrium positions. These deviations are small, and hence 
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the motion of particles can be reduced to vibrations about 
equilibrium positions, i.e. the motion of linear oscillators. Let 
us consider one of the vibrational motions of the jth point 
particle about its equilibrium position. We denote its 
deviation from the equilibrium position by §, and the 
velocity by n; Its kinetic and potential energies are 
respectively given by 

W=mgng/2s Ug= hyp. (12.12) 

Here the first index in the subscript denotes the number of 
a complex particle, while the second labels the point particle 
inside it. These energies are added to the energy (12.11) of 
motion of the centre of mass and rotation. Hence the total 
energy of the ith particle can be represented as 

1 1 
Eia = jme T 5 Vac at Jin}, sr J 3073) 

2 2 

y ey ee ee: a) (12.13) 
J J 

where U;(x, y, z; is the potential energy of the complex 
particle as a whole in external fields. We did not explicitly 
indicate how many values the index j assumes in the sums of 
(12.13). It assumes as many values as is required to exhaust 
all degrees of freedom of the complex particle. There is no 
need to specify this number at the moment. The fact that the 
kinetic energy in (12.13) is indeed represented as the sum of 
the squares of velocities can be proved as follows. 

Suppose that r; is the radius vector of the jth point 
particle in the centre of mass system. By definition of the 
centre of mass, 

Ingo. (12.14) 

' The velocity of the jth particle in the centre of mass system 
is r; = Vij, and hence the following equality must hold in 

accordance with (12.14): 

Yi myviy = 0. (12.15) 
j 
The total kinetic energy of a ere particle is 

mi mi;(vi 2 Vij "d mi tue iVij i) miti; W = ij J +2 ERE J eu Ae ee DE 

w + m LM (1 2.16) 

J J = 

where v; is the velocity of the centre of mass. 

ij 
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The second term in this equation is equal to zero (see 
(12.15), while the first term is the kinetic energy m,v2 /2 due 
to the motion of the centre of mass. The velocity vj; can be 
decomposed into two components: the velocity o x rj; of 
rotation of the complex particle as a whole around an 
instantaneous axis of rotation at the angular velocity œ and 
the velocity v;; of vibrational motion: 

Vij =O X ty + Vij, (12.17) 

whence 
12 "A 

fut s. us (y Mij Vai L 2 L p 0 (Q9 x ri vi Y 3^ 
J 

(12.18) 
The first term in this formula can be transformed to the 

term containing the squares of the angular velocity 
components in (12.13), the second term vanishes since the 
velocities à x r;; and vj; are mutually perpendicular, while the 
third term written for the projections on the coordinate axes 
in (12.13) just gives components containing nj. As regards 
the terms containing $2, their presence is obvious from the 
form of the potential energy for an oscilator and the 
additivity of the potential energy. Thus, we have completely 
justified the expression (12.13) for the energy of a complex 
particle. 

The volume (12.1) of an elementary cell of the phase space 
must now include the degrees of freedom of all the particles. 
Hence, the set of differentials (dx] (dp] must comprise the 
coordinates and momenta of the centres of mass of complex 
particles, the differentials d$;; of the variables taking into 
account the internal potential energy of a complex particle 
associated with the corresponding degree of freedom, the 
differentials dq; of the variables responsible for the kinetic 
energy of the internal degrees of freedom of the particle, as 
well as the differentials do;,, do;;, and do;4 which take into 
consideration the rotational energy of the complex particle. 
Strictly speaking, the differentials dn;; and dœ; (Y= 1, 2, 3) 
must be expressed as variables having the dimensions of 
momentum, which is not difficult. However, we need not do 
this while calculating the mean values because the factors 
appearing in this case cancel out. 
PRINCIPLE OF THE EQUIPARTITION OF ENERGY 

AMONG THE DEGREES OF FREEDOM. We can now find 

the mean energy per degree of freedom of a particle by the 
formulas for the mean values and those similar to (12.7). Let 
us determine, for example, the mean energy per rotational 
degree of freedom iy, i.e. per rotational degree of freedom of 
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the ith particle with the component y: 

1 
< F Jno 

f o exp (— BJ;, 0? /2)/2] de, f exp ( — Be) {dx} {dp}’ 

fexp( — 87407, /2)do,, [ exp( — Be) {dx} {dp} 7 

(12.19) 

where {dp} is the totality of all differentials excluding the 
one appearing in the first integral. Calculating in the same 
way as in (12.7), we get 

Cot? - . (12.20) 

Similarly, we can find the expressions for the mean kinetic 
and mean potential energies per vibrational degree of 
freedom: 

(mpi) lign (ui - Lr. 5 (12.21) 

The mean kinetic energy per degree of freedom in the 
motion of the centre of mass of a complex particle is 
calculated in absolutely the same way as in (12.7) and is 
equal to kT/2. Thus we have proved that the energy 
corresponding to a degree of freedom of a statistical system is 
the same and equal to kT/2. This statement is called the 
principle of equipartition of energy among the degrees of 
freedom. It is appropriate to emphasize once more that this 
does not refer to the potential energy of particles in external 
fields, where it may have a mean value different from kT/2. 

The law of equipartition of energy is of great importance. 
Due to this law, the mixture of ideal gases which had the 
same initial temperature before mixing has a temperature 
equal to that of the components being mixed, while the 
pressure of the mixture thus obtained obeys the Dalton law. 

Example 12.1. Calculate the partition function (7.16) for 
a monoatomic gas. 

The energy £, in the exponent of (7.16) is equal to the sum 
of the kinetic energies of n particles under consideration: 

E, = [1/(2m)] (pi, + Pia + +--+ Dd), (12.22) 
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where the first subscript on p numbers the particles, while the 
index a characterizes different states of the system of 
n particles, and m is the mass of particles. The potential 
energy of the particles is equal to zero, and the internal 
degrees of freedom are absent. 

Let us go over from summation to integration in (7.16). 
For this, we multiply each term in (7.16) by dI given by 
(12.2) and integrate over I. We get the statistical integral 

zc pen NE te * p2)/ QmkT)] dT, (12.23) 

where I" is the domain of integration over the entire phase 
space I minus physically equivalent points of this space. 

Integration over I' presumes the integration over the set of 
spatial variables {x} and momentum variables {p}. Since the 
integrand in (12.23) does not contain spatial variables, the 
integration over {x} gives the factor V", where V is the 
volume occupied by the gas. While integrating over [p], we 
must exclude physically equivalent states. This means that the 
transpositions of particles must not be taken into account, 
ie. we must integrate over the entire domain of [p] and 
divide the result by n!: 

++.. . +p} f dp}. (12.24 "usps: fe P| - 2mkT n c BER) 

The integrals. with respect to each of the variables p,, Py P- 
in (12.24a) are identical and equal to 

f exp [ — p?/ QmkT)] dp 2 QrmkT) "^, 

whence 

f. fexp[ — (p? +p? +... + p2)/ QmkT)] (dp] 

={ i exp[ — p?/ QmkT)] dp)?" — (2numk Tf"? (12.24b) 

Taking into account the Stirling formula (5.11), we finally 
get for the statistical integral (12.24a) 

Z= zx QnmkTy"?. (12.25) 
erp” 

If we mi the partition function (statistical integral), we 
can determine the thermodynamic functions and quantities 
characterizing the system. Examples of this type of 
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Sec. 13. 

The elementary theory of ran- 
dom wandering is exposed by 
using the Brownian movement 
as an example. The experimen- 
tal determination of Boltz- 
mann's constant on the basis 
of the results of observation 

of the Brownian movement is 

discussed. Rotational Brownian 
movement and manifestations 
of this movement in macro- 
scopic phenomena are consi- 
dered. 

1. Statistical Method 

calculations will be considered below. Let us calculate the 
mean energy of a monoatomic gas with the help of formula 
(7.45) Taking logarithms of both sides of (12.25), we find 

$ (2xumk TP? V 
InZ = ene | + |j. 

Considering that B = 1(kT) and using formula (7.15), we 
obtain from (12.26) 

Q 1 3 
(£5 — — op aj In s] Sein p 

This is just the mean energy of a gas consisting of n similar 
monoatomic molecules. The energy per molecule is (£5 /n — 
—(3/2kT, while the energy per degree of freedom of 
translational motion of a molecule is equal to (1/2)kT,; in 

accordance with the law of equipartition of energy. 

(12.26) 

= kT (12.27) 

BROWNIAN MOVEMENT 

ESSENCE. Tiny particles held in suspension in a liquid are 
seen through a microscope as performing unceasing 
vibrations. These vibrations do not change with time and 
may continue indefinitely. They can be observed in liquid 
inclusions of minerals formed many thousands of years ago. 
This movement is called Brownian after the English botanist 
R. Brown who discovered it in 1827. 

The molecular-kinetic account of this phenomenon was given in 
1905 by A. Einstein and independently in 1906 by the Polish 
physicist M. Smoluchowski (1872-1917). They developed the theory of 
the phenomenon, which made it possible to use the Brownian motion 
to confirm the molecular-kinetic theory. 

Essentially, this phenomenon consists in the following. 
Suspended particles form, together with liquid molecules, 
a single statistical system. In accordance with the principle of 
equipartition of energy, the energy per degree of freedom of 
a Brownian particle is equal to (1/2)kT. The energy of 
(3/2)kT corresponding to three translational degrees of 
freedom of a particle leads to the motion of its centre of 
mass, which is observed through the microscope as vibration. 
If a Brownian particle behaves like a rigid body, its 
vibrational degrees of freedom are responsible for another 
(3/2) kT of energy. Therefore, the particle experiences constant 
changes in spatial orientation during its vibrational motion. 
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It is easier to observe rotational Brownian motion not of the 
particles suspended in water but of some other objects. 
Hence, when we consider the Brownian movement of 
particles suspended in water, we mean the vibration of their 

> centres of mass. 
T= RANDOM WANDERING. As a result of random collisions 

between particles, their mean kinetic energies level out, while 
the motion of each of the colliding particles is a random 
process. Let us consider the position of a Brownian particle 
in certain fixed intervals of time. We place the origin of 
coordinates at the point O at which the particle was at the 
initial instant of time. Let us denote by q, the vector 
characterizing the displacement of the particle between the 
(i— l)st and ith observations. After n observations, the 
particle will move from the initial position to a point 
characterized by the radius vector r, (Fig. 22): 

pea (13.1) 
i-1 

Albert i : ‘ ‘ 
Einstein In the intervals of time between observations, the particle 
(1879-1955) moves not along a straight line but along a broken line as 

complex as the one describing the movement from the initial 
point to the point having the radius vector r,. We can carry 
out a series of experiments with a Brownian particle starting 
from the origin and arriving after n steps at a certain point 
with a radius vector r,. Clearly, all r,’s will be different. 

Let us calculate the mean square of the separation of 
a particle from the origin after n steps in a large series of 
experiments. Obviously, 

<ry= < E ara) = È <a + Y <ava,>, (13.2) 
1 i=] ixj 5Jj- 

where <q?> is the mean square of the displacement during 
the ith step in the series of experiments (naturally, it will be 
the same for all the steps and equal to a certain positive 
quantity a^), and (q;-q;» in the second sum on the right- 

hand side is the mean value of the scalar product of the 
displacements made during the ith and the jth steps. It is 
obvious that these displacements are quite independent of 
one another, and the scalar product has positive values as 
frequently as negative ones. For this reason, all the 
summands of the second sum <q;-q,;>=0 (i#/j), and Eq. 

(13.2) becomes 

9— 761 
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Fig. 22. Motion of a particle in the 
Brownian movement. Curved line 
depicts the motion from the 6th to 
(n — l)st step 

1. Statistical Method 

(13.3) 

where At is the interval of time between observations and t — 
=Atn is the time during which the mean square of 
separation of the particle became equal to <r?>. 
Consequently, in spite of the fact that the directions along 
which the particle moves in each step are equally probable, 
the particle will on the average move away from the origin. 
This becomes especially clear if instead of many experiments 
with different Brownian particles we imagine a single 
experiment with many similar Brownian particles placed at 
the origin. Obviously, this “spot” of Brownian particles will 
spread from the origin, which just means that the 
root-mean-square deviation increases with time. It is essential 
that the mean square deviation in (13.3) grows in exact 
proportion to the first power of time. 
CALCULATION OF THE MOTION OF A BROWNIAN 

PARTICLE. In order to characterize the Brownian movement, 
we must determine « in formula (13.3). On the one hand, it 
can be found experimentally by measuring <r?) or calculated 
theoretically on the other hand. 

A Brownian particle moves under the action of a random 
force appearing as a result of random collisions of molecules 
with the particle. We denote by b the friction coefficient for 
a particle in a liquid due to its viscosity. The equation of 
motion of the particle has the form 

mx- —bx-F, (13.4) 

where m is the particle mass and F, is the random force 
acting on it. 

It should be noted that the term  — bx is also due to 
bombardment of molecules. However, as the Brownian 
particle systematically moves at a velocity x, the momentum 
due to random impacts of molecules in the direction opposite 
to the motion of the particle is on the average larger than the 
momentum due to random impacts in the direction of 
motion. This leads to a force of friction characterized by the 
quantity — bx. 

The equations of motion for quantities corresponding to 
other coordinate axes have a similar form. 

Let us multiply both sides of this equation by x and 
transform the terms xx and xx: 

xX 2 (^2y — Q9, xx 9 (cay (13.5) 
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Equation (13.4) then assumes the form 

(m/2) G?' - m — — (5/2) Gy + Fx. (13.6) 

Let us average both sides of this equation over the 
Brownian particle ensemble considering that the average time 
derivative is equal to the derivative of the mean value, since 
the averaging is carried out over the ensemble of particles 
and is consequently transposable with the differentiation with 
respect to time. As a result of averaging Eq. (13.6), we obtain 

(m/2) (<x?) — <m (F> = — (/2)(Kx?>Y + KF). (13.7) 

Since the deviation of a Brownian particle is equally 
probable in all directions, we obtain (x?» = <y?) =¢z7) = 
— (7»/3. Hence Eq. (13.3) gives <x?) =at/3, and 
consequently ((x?») =a/3 and (<x*>)'=0. The random 
nature of the force F, and the particle coordinate x, as well 
as their independence from each other imply that (F,x» — 0. 
Consequently, Eq. (13.7) can be reduced to the form 

<m(x} > = ab/6. (13.8) 

According to the law of equipartition of energy among the 
degrees of freedom, we have <m(x)?)> =kT. This gives the 
following expression for « from Eq. (13.8): 

a = 6kT/b, (13.9) 

where b which characterizes the force of liquid friction acting 
on a Brownian particle can be expressed theoretically (Stokes 
formula) measured experimentally, and assumed to be 
known. The temperature T is also known. Hence, formula 
(13.3) provides the following solution for the Brownian 
movement of suspended particles if we take into account 
Eq. (13.9): 

«y - 6kTt jb. (13.10) 

If k is assumed to be measured in experiments on the 
verification of the Boltzmann distribution (see Sec. 9), all the 

quantities in this formula are known. We can experimentally 
verify this relation concerning the correctness of dependence 
on different parameters. The dependencies predicted by for- 
mula (13.10) were confirmed in experiments carried out from 
1908 onwards by J. B. Perrin (1870-1942). Assuming now that 
this formula is valid, we can use it for refining and 
determining the value of the Boltzmann constant k, since all 
the remaining quantities in this formula can be measured 
independently. Such measurements of k were also carried out 
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? 

The average velocity of 
a Brownian particle depends 
on its mass, while the mean 

square deviation of the 
particle from the origin over 
a fixed interval of time is 
independent of its mass. Why 
are light particles involved in 
“much movement and no 
results” unlike heavier 
particles that move slowly? 

Explain why average force 
acting on a particle at rest 
due to impacts of molecules is 
equal to zero, while the force 
acting on a moving particle is 

not equal to zero. Prove that 
this force is proportional to 
the first power of the particle 
velocity and is directed 
against the motion. 
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by Perrin, and the results were in good agreement with the 
value of k obtained from the measurements concerning the 
Boltzmann distribution. The closeness of these results was 
a great triumph for the molecular-kinetic concepts at that 
time (the first quarter of the 20th century). 

The following question arises in connection with (13.10). 
The quantity <r?) is independent of mass, since, as it can be 
directly seen from the Stokes formula, b depends only on the 
radius of the particle and not on its mass: 

b = nuro, (13.11) 

where p is the viscosity of the liquid, and r, is the radius of 

a spherical particle moving in the liquid. 
On the other hand, the average velocity of the particle 

decreases with increasing mass for the same value of the 
mean energy. Hence the heavier particles vibrate less intensely 
than the lighter particles, other conditions being the same. It 
can be asked: how can light and heavy particles, which have 
entirely different intensities of vibrations, escape from the origin 
with identical average velocities? The answer is that the lighter 
particles really move more intensely than the heavier particles, 
but the ultimate result is that the mean velocity of escape 
from the origin is the same for all motions. In this respect, it 
can be stated that the motion of light particles can be 
characterized as “much movement and no results”. 
ROTATIONAL BROWNIAN MOVEMENT. A quantitative 

investigation of the rotational Brownian movement is difficult 
for particles suspended in a liquid. This can be done more 
easily with the help of a small light mirror suspended from 
an elastic string. The interaction with air molecules results in 
a statistical equilibrium, and each degree of freedom of the 
mirror must have an energy equal to kT/2. Consequently, the 
mirror will undergo torsional vibrations about an axis 
coinciding with the vertical string from which it is suspended. 
If the mirror surface is illuminated by a ray of light, the 
reflected ray is strongly deviated even for quite small 
rotations of the mirror. Consequently, even small torsional 
vibrations can be observed and measured. 

Let us calculate the mean square angular amplitude of 
these vibrations. Let D be the torsion modulus of the thread, 

and J the moment of inertia of the mirror with respect to the 
torsion axis. The angle of rotation of the mirror with respect 
to the equilibrium position is denoted by . The equation for 
torsional vibrations has the form 

Jo= —Do, (13.12) 
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where the minus sign indicates that the moment of elastic 
forces of the string tends to return the mirror to its equilibri- 
um position. Multiplying both sides of the above equation by 
@ and integrating, we obtain the law of conservation of 
energy for vibrations of the string: 

(1/2) J@? + (1/2)D@? = const. (13.13) 

Since the small torsional vibrations are harmonic, we get 

(1/2) J <@?> = (1/2) D <p? = (1/2)KT, (13.14) 

where we have used the law of equipartition of energy. This 
gives the following expression for the Brownian torsional 
vibrations of the mirror: 

«9?» — kTJD. (13.15) 

This quantity can be measured. For example, at T~ 290 K, 
and D 107!5 N.m, we get (Q?» — 4 x 1075, which can be 
measured experimentally. Knowing the parameters of the 
string and the temperature, and measuring (Q?», we can find 
the value of the constant k with the help of formula (13.14). 
The values of k obtained in this way are in good agreement 
with those given by the Boltzmann distribution and the 
translational Brownian movement. 

Thus, the Brownian movement offers a direct method of 
determining the molecular constant k by measuring the 
macroscopic parameters. On the other hand, an analysis of 

gases which can be described quite well by the ideal gas 
equation pV — vRT gives the molar gas constant which is also 
a macroscopic quantity. Knowing R and k, we can use for- 
mula (10.7) to determine another important quantity 
characterizing the microscopic properties of systems, viz. the 
Avogadro number (see (10.6)): 

Na=Ryjk. (13.16) 

Example 13.1. Find the maximum sensitivity of a mirror 
galvanometer with internal resistance R=200kQ. The 
maximum deviation of the mirror in an aperiodic regime is 
attained after the passage of time t= 20s. The fraction of 
energy q stored as the potential energy of the wound spring is 
equal to 0.3 of the supplied energy. The temperature is equal 
to 27°C. The minimum current that can be reliably detected 
by the galvanometer is assumed to cause deviations which 
must exceed the thermal vibrations of the pointer by n=3 
times. 

The energy supplied to the galvanometer from the external 
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circuit during the establishment of the steady state is 

W=tRE, (13.17) 

A part of this energy (q) is stored as the potential energy of 
the galvanometer spring: 

U =qW=qtRI’. (13.18) 

According to the equipartition law, the mean thermal 
vibration energy of the galvanometer is equal to (WP — 
=kT/2. In accordance with (13.18), such vibrations are 
equivalent to current spikes 

(AI? 2 (Was? /qtR — kT/ QqtR). (13.19) 

The minimum current I 

((AP5)!?. Hence 
must be n times larger than min 

Inin = n((AIP5)? — n[kT/QqtR)]'? — 125-1071? A. 

From a pack of n cards, take m « n cards set beforehand. Find the 
probability that m cards taken at random from the pack will all be 
set beforehand? 
An urn contains n white and m black balls. Find the probability that 
a white ball will be taken out in three successive trials (a) if the 
previously extracted ball is returned into the urn and (b) if it is not 
returned. 
An urn contains n different balls. We fix a sequence of m specific 
balls. Find the probability of extracting these balls in the sequence if 
they are extracted at random and are not returned. 
Find the relative number of nitrogen molecules at 27^C, whose 
velocities lie in the interval from 260 to 270 m/s. 
Find the mean absolute velocity and the variance of velocity of 
hydrogen molecules at 27°C. 
At what height will the partial pressure of nitrogen decrease to 3/2 
of its initial value? Assume that the temperature of atmosphere is 
constant and equal to 0°C. 
Find the mean fluctuational deviation of a pendulum whose mass is 
30 mg and length 3 cm at 27°C. 
Find the sensitivity limit for a galvanometer with internal resistance 
R=50kQ. The maximum deviation in an aperiodic regime is 
attained in t = 10 s. When deflection is established, 807; of energy is 
converted into Joule's heat. The temperature is 27°C. For a reliable 
detection of the current it is necessary that it cause 3 times larger 
deflection than thermal fluctuations. 
Find the frequency of collisions of H, molecules with the surface 
area of !cm? at a pressure p=9.8 x 10t Pa and t= 300°C. 
A balloon with 1 m diameter contains 4 kg of helium at 300 K. Find 
the frequency of collisions of a molecule with the wall. 
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The moment of inertia of an oxygen molecule with respect to the 
rotational axis is J — 1.9 x 10^ ^9 kg. m?. Find the mean cyclic fre- 
quency of rotation at 50°C. 
An ideal gas is under standard conditions. Find volume V in which 
the mean square fluctuation of the number of particles amounts to 
1078 of the average number of particles in this volume. 
Calculate the fluctuation of the kinetic energy of translatory motion 
of an ideal gas molecule at a temperature T. 
Find the mean square velocity of a hydrogen molecule at T = 10° K. 
Find the total mean kinetic energy of motion of diatomic gas 
molecules contained in a 4 1 vessel under the pressure 1.47 x 10° Pa. 
A typist has typed 1000 pages of a text and made 140 mistakes. 
What is the probability that a page taken at random contains no 
mistakes? Has one mistake? Two mistakes? Error distribution is 
described by the Poisson law. 
Estimate the order of magnitude of the total number of molecules in 
the Earth atmosphere considering that the density of molecules is 
described by the barometric formula at T = 273 K (the Earth radius 
is 6370 km). 
Find the mean value of the x-component of the velocity of gas 
molecules moving in the positive direction of the X-axis. The 
temperature is T and the mass of the molecules m. 
Using the Poisson distribution (5.23), find the mean square fluc- 
tuations of the number of particles in a certain small volume of the 
gas. 
Natural carbon is a mixture of !?C and !?C isotopes (we neglect the 
14C isotope). The atomic mass of natural carbon is A = 12.01115. 
Find the number of moles.of !?C and '3C isotopes contained in 
a mole of natural carbon. 

11. PY -—m!(n—m)/(n!). 12. P =[n/(n¢+m]}>; P = 
-n(n—i1)(n—2)/[n-- mn m—1)m—2)]. 13. P =n- 
—m)!/(n!), 1.4, dn/n - 0017. L5. q]v|» =1775 m/s; a — 749 m/s. 
16. 3346 m. 17. (95 —22x1075, 18. L4, 43 x 107? A. 
19. v- L1 x 1022 s-?*, 119. 1320 s", 111. <o?) = 4.7 x 
x10!2s7!, 112.V23.7x1079 m. 1.13. /«[A(mv?/2]?» — 
- 3/2 kT. 1.44. & 5 x 105 m/s. 1.15. & 1500 J. 1.16. 0.79; 0.19; 
002. LIT. «10**. 118. [kT/(2xm)]'?. — 1.19. (Am = <m). 
1.20. v, = 0.98885; vz = 0.01115. 





Chapter 2 

Thermodynamic Method 

Main idea: a many-particle system must obey certain 
general laws like the law of conservation of energy. These 
laws are called the laws of thermodynamics. The 
macroscopic state of a system is characterized by 
parameters which have quite definite values. The behaviour 
of the system is described phenomenologically on the basis 
of the laws of thermodynamics. 

Mathematical apparatus: the theory of differential forms 
and partial differential equations. 

Sec. 14. THE FIRST LAW OF THERMODYNAMICS 

The objectives of thermodyna- THE OBJECTIVES OF THERMODYNAMICS. Thermodyna- 

mics are discussed and the mics aims at studying phenomenologically the properties 
definitions of work, amount of material bodies, characterized by macroscopic parameters, 
of heat, and internal energy on the basis of general laws called the laws of thermo- 
a Foul ue 2l dynamics without resorting to the microscopic mechanisms 
infomufated. y of phenomena under investigation (see Sec. 1). Thermody- 

namics is based on three laws. The first law is the law 
of conservation of energy, applied to thermodynamics pheno- 
mena. The second law determines the direction of the 
evolution of thermodynamic processes. The third law imposes 
constraints on the processes, thus excluding processes which 
lead to zero thermodynamic temperature. 

As in the previous chapter dealing with statistical method, 
the ideal gas model will be used here for illustrating the 
thermodynamic method. However, the method studied with 
the help of this simplest model is itself applicable to other 
models of specific substances, just as in the case of the 
statistical method. 

WORK. In order to reduce the volume occupied by a gas, 
a certain amount of work must be done to overcome the 
forces of pressure in the gas. Suppose that a gas is contained 
in a cylindrical vessel with a piston by moving which we can 
change the volume of the gas (Fig. 23). The force acting on 
the piston with area S due to pressure p is equal to pS, and 



dx 

Fig. 23. To the derivation of the 
expression for work 
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hence the work done in displacing the piston by dx is 
pS dx — pdV, where dV is the change in the gas volume. It is 
assumed that the work done on the gas by external forces is 
negative, while the work performed by the expanding gas is 
positive. Hence, the work 5A done by the gas in changing 
its volume by dV is 

8A — pdV. (14.1) 

This and subsequent formulas were derived in the assumption 
of equilibrium process (see Sec. 16) 

The rationale for the notation ôA rather than dA for work 
will be given later. 

If we consider a more complex system instead of an ideal 
gas, other ways of performing work on the system or by the 
system are also possible. The typical feature of this processes 
is that by changing certain macroscopic parameters, energy is 
supplied or taken away from the system. This statement is 
very important, since energy can be supplied to or taken 
away from a system without changing its macroscopic 
parameters. We cannot say that work is done in this case. By 
way of an example, we can consider the transfer of energy to 
a system by supplying heat. In this case it cannot be said that 
work is done on the system. Macroscopic parameters of the 
system are changed as a result of heat transfer. 

In the general case, the expression for work has the 
following form. We denote the parameters whose change is 
associated with accomplishing work by ¢,, C,, .... For an 
infinitely small change in the parameter €; by d{,, the work 
5A — fidi; is done, where f; 1s the generalized force. The signs 

are chosen in the same way as in (14.1): if the work is done 

on the system, the ôA must have the negative sign. The total 
work involving a change in all the parameters is 

SA=f, do, +f, do, +... (14.2) 

The term given by (14.1) can be considered to be included 
among the terms f,d¢;. For example, the generalized force 
f,=p and the generalized coordinate 6, — V, i.e. dt, — dV. 
However, for simplifying the notation and retaining the visual 
form, we shall usually write only the term (14.1) omitting all 
the other terms in (14.2), which are possible in principle. We 
shall write additional generalized forces and corresponding 
coordinates explicitly only when it is required for a specific 
problem. However, it is expedient to consider some examples. 

Under the action of force f, a rod is either stretched or 
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nature of a process. 
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occurring in a thermo- 
dynamic system must obey 
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study the peculiarities of 
various processes with the 
help of this law. 
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compressed. The work done upon a change in its length by dl 
is 

6A = — f dil, 

where f is the magnitude of the force. The minus sign 
indicates that in order to elongate the rod, the work must be 
done on the system. Consequently, in accordance with the 
sign rule adopted in (14.2), the work is negative. 

The work done in the transfer of electric charge dq 
between two points with the potential difference « is equal to 

where « is the absolute value of the potential difference. The 
charge dq is transferred in the direction of increasing 
potential. This example illustrates the fact that generalized 
forces and coordinates in (14.2) do not necessarily resemble 
ordinary forces and coordinates. 

HEAT. It is known from experiments that when two bodies 
are brought into contact, their thermal states equalize. It is 
said that heat is transferred from the warmer body to the 
colder one. Heat is a special form of energy, viz. the form of 
molecular motion. We shall denote by 8Q an infinitely small 
amount of this energy having the indicated specific form. In 
this form, i.e. in the form of heat, the energy can be either 
supplied to a system or removed from it. It was assumed that 
5Q is positive if heat is supplied to a system and negative if 
heat is removed from it. 

The concept of work appeared in engineering in the middle of the 
18th century as a measure of efficiency of water-lifting machines. 
Later, this concept was used in mechanics. L. Carnot (1753-1823) was 

the first to define this quantity as the product of the force, distance, 
and the cosine of the angle between them. In the first half of the 
19th century this term was used more and more widely in applied 
mechanics. On the other hand, it is employed in the analysis of the 
processes of mutual conversion of heat and work, which was started 
by S. Carnot in 1824. 

INTERNAL ENERGY. This is the energy associated with all 
possible movements of particles constituting a system and 
their interactions, including the energy due to the interaction 
and motion of particles constituting complex particles. It 
follows from this definition that the internal energy does not 
include the kinetic energy of the motion of the centre of mass 
of the system, i.e. the motion of the system as a whole, and 

the potential energy of the system in external fields. All other 
types of kinetic and potential energies of the particles in the 
system, including the energies of particles constituting 
complex particles, pertain to internal energy: 



140 

Hermann Ludwig 
Ferdinand 
von Helmholtz 

(1821-1894 ) 

1 
The internal energy, as well as 
heat, is determined by the 
energy conditions on molecular 
level. What is the difference 
between them? 
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An infinitely small change in internal energy is denoted by 
dU. It is assumed that dU is positive if the internal energy of 
the system increases and negative if it decreases. 

The parameters can be divided into intrinsic and extrinsic. 
Extrinsic parameters characterize external conditions of the 
system, while intrinsic parameters are those which are 
established in the system after we fix external conditions. 
Depending on circumstances, the same parameter may be 
extrinsic or intrinsic. For example, we can fix the volume V of 
a gas. This is an extrinsic parameter. At a given temperature, 
a definite pressure p will be established in the system, which 
is an intrinsic parameter. 

Let us imagine another situation. A volume is bounded by 
a sliding piston moving vertically. A certain load is placed on 
the piston. In this case the pressure p of the gas is determined 
by external conditions, while the volume at a given 
temperature will be established in accordance with this 
pressure. Thus, here volume is an intrinsic parameter, while 
pressure is an extrinsic parameter. 
THE FIRST LAW OF THERMODYNAMICS. The law of 

conservation of energy for heat as a form of energy, internal 
energy and the work done, taking into account the sign rule 
for these quantities, can be written in the following obvious 
form: 

8Q — dU —- 8A. (14.3) 

The law of conservation of energy in the form (14.3) is 

called the first law of thermodynamics. It differs in principle 
from the law of conservation of energy in mechanics in the 
quantity Q called an infinitely small amount of heat. 
Thermodynamics studies the motion and transformation of 
this form of energy. 

Below, we shall mainly consider the work connected with 
forces of pressure and changes in volume. Hence, we shall use 
the following form of the first law of thermodynamics: 

6Q =dU + pd¥V, (14.4) 

since the term pdV is always present on the right-hand side 
of (14.3), while other terms that are possible in principle are 
absent. However, when necessary, the right-hand side of for- 
mula (14.4) can always be supplemented with the terms of the 
form (14.2). 

Just as in mechanics, the law (14.3) of conservation of 



The first law of thermo- 
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the law of conservation of 
energy for processes involving 
heat. The work is associated 
with the energy transfer by 
changing macroscopic 
parameters, while heat 
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through the transfer of 
energy of molecular motion. 
The change of macroscopic 
parameters occurring in this 
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energy cannot predict the direction of evolution of a process. 
It can only be used to indicate how the quantities change 
during a process. In mechanics, the motion is described by 
equations of motion. The direction of evolution of processes 
in thermodynamics is described by the second law of 
thermodynamics (see Secs. 20, 22). 
The establishment of the first law of thermodynamics is connected 
with the discovery of the law of conservation and transformation of 
energy, which emerged as a result of the evolution of physics by the 
middle of the 19th century. The merit of establishing the 
conservation law belongs to R. Mayer, J. Joule, and H. Helmholtz. 

The first work by Mayer in this field was published in 1840. The 
works by Joule and Helmholtz where this law was formulated 
appeared in 1847. They had to overcome considerable difficulties 
before the validity of this law was recognized. 

Example 14.1. Calculate the internal energy of 1 1 of helium 
under a pressure p — 9.8 x 10* Pa and t=0°C. 

According to the law of equipartition of energy, the mean 
energy per helium atom is (£5 — (3/2) k T. In the volume V of 
a gas, there are n— Vp/(kT) particles. Consequently, the 
internal energy of 11 of helium is 

Vp  3Vp 3 
U = —kT— =—— = 147]. 

2* kT 2 i 

Example 14.2. Analyze the process of transformation of 
energy when work is done on a gas. 

Suppose that v moles of a gas are contained in a vertical 
cylinder under the piston of area S and mass m, compressed 
by the weight of the piston and the external atmospheric 
pressure p,. Thus, the initial pressure under the piston is 
Pa, + Mog/S. Suppose that the piston consists of a thin plate 
loaded by sand. We can remove a grain of sand of mass dm. 
As a result, the piston goes up by a distance dx. This rise 
occurs so slowly that the temperature of the gas under the 
piston is equal to a constant temperature T, of the 
atmospheric air, and the gas pressure under the piston 
becomes p, 4 (mg — dm)g/S. In this case, the volume of the 
gas under the piston increases by dV=Sdx. The work 
performed by the gas is (p — p,) Sdx 2 (p — p,)dV. The work 
done for increasing volume from V, to V is equal to 

V 

A- [o — p,) dV. (14.5) 

Since the process occurs infinitely slowly, we can assume 
that the gas under the piston is in an equilibrium state, and 
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the following relation holds between its pressure and volume: 
p-— vRTS/V. Substituting this expression into (14.5) for p 
and integrating, we obtain the work performed by the gas to 
increase its volume from V, to V: 

A=VRToIn(V/Vo) — p, (V— V9). (14.6) 

In this case, the piston is lifted by Ax 2 (V— V,)/S, and the 

gas energy is converted into the potential energy of the piston 
and the grains of sand. To verify this, let us calculate the 
work done to lift the piston with sand. The force of gravity 
against which this work is done is F = m(x)g, where m(x) is 
the mass of the piston with sand at a height x. Measuring the 
coordinate x from the bottom of the cylinder, we obtain 
m(xy) 2 mg, x9S = Vo, and xS=V. 

The work done in lifting a varying mass is 

A= f m(x)g dx. 
xo 

For determining m(x), we use the inequality 

m(x)g = S(p — Pa) = SVRT9/V— Spay = VRT 9 /X — SPa 

whence 

A f m(x)gdx — vRT,In (x/xo) — Sp, (x — xo). (14.7) 
xo 

which coincides with (14.6). The gas in the cylinder is the 
source of energy for accomplishing this work. It will be seen 
later, however, that the internal energy of an ideal gas does 
not change in this case, and the entire energy converted into 
the potential energy is supplied in the form of heat to the gas 
by the surrounding medium. 

Considering (14.7), Eq. (14.5) can be written in the form 

V V x 

[orsa p pr J m(x)gdx. (14.8) 
o L^ xo 

This means that the work accomplished by the gas during 
its expansion in the cylinder is spent to overcome the 
atmospheric pressure on the piston and to surmount the 
weight of the piston (with sand). The weight of the gas in the 
cylinder is ignored. 

Using (14.5), relation (14.8) can be written in a different 
form. It will be shown later that the internal energy U of an 
ideal gas depends only on temperature. The process under 
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consideration occurs at a constant temperature, and hence 
dU =0 for this process. Substituting pdV=6Q from (14.5) 
into (14.8), we get 

V x 

í 8Q- ] p, dv J m(x)gdx. (14.9) 
0 =const xo 

In this expression, 6Q denotes the amount of heat supplied 
to the gas under the piston by the surrounding medium at 
a constant temperature (thermostat). Thus, the work 
performed by an ideal gas in expansion at a constant 
temperature is done at the expense of the energy supplied to 
the gas in the form of heat by the surrounding medium 
(thermostat). If the cylinder walls are heatproof (adiabatic), 
heat cannot be transferred from the surrounding medium. In 
this case, the work on expansion of the gas is done at the 
expense of its internal energy: the internal energy decreases, 
and the gas temperature becomes lower. Under these 
conditions, we have the following expression for the law of 
conservation of energy instead of (14.9): 

V x 

dU = ( p, dV f m(x)gdx. (14.10) 
Yo Xo 

ed 
8Q-o 

Here, however, the dependence of m on x is quite different 
from that in (14.9). This dependence is determined by the law 
of adiabatic expansion of a gas (see Sec. 18). 

Sec. 15. DIFFERENTIAL FORMS 
AND TOTAL DIFFERENTIALS 

The conditions under which 

a differential form is a total 

differentia] are analyzed. The 
connection between the total 
differential and the existence of 

a function of state is discussed. 

DIFFERENTIAL FORMS. Infinitesimal quantities 6Q, dU, and 

A in (14.3) are denoted differently: some by using the 
symbol d and the others with the help of the symbol à. The 
reason behind the use of different notations is the difference 
in the properties of these infinitesimals. 
Suppose that we have certain independent variables. At first 

we consider one independent variable, for example, x. The 
differential of this quantity is dx. Let f(x) dx be an infinitely 
small quantity, where f(x) is an arbitrary function. It can be 
asked whether this infinitesimal quantity can be represented 
as an infinitesimal increment of a certain function F(x) at 
two neighbouring points separated by dx, i.e. in the form 

f(x) dx = F(x + dx) — F(x). (15.1) 
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In most cases it is possible. Here, however, we shall not 
stop to consider certain mathematical details connected with 
nondifferentiable functions, and so on. It would be sufficient 

to state that it can be done if for F(x) we take the primitive 
of f(x), ie. 

F (x) = | f(x)dx. (15.2) 

Hence, in the case of one variable, it is almost always 
possible to consider an infinitesimal as an infinitely small 
increment of a certain function. In this case, the infinitely 
small quantity f(x)dx is called the total differential. As an 
infinitely small increment of the function F, it can be written 
in the form 

dF (x) = f(x) dx. (15.3) 

Here the symbol d denotes an infinitely small increment of 
the function. 

For most cases of two and more variables, the situation is 
different. Suppose that for two variables there exists an 
infinitely small quantity 

o — 4 (x, ydx *- Qc y)dy, (15.4) 

where P? (x, y) and Q(x, y) are certain functions of x and y. 
Here we did not use symbols d or to denote an 
infinitesimal, since it is not yet clear which of the symbols 
must be used. We must find out whether this quantity can be 
represented as an increment of a certain function F(x, y) of 
the variables x and y at two neighbouring points, i.e. in the 
form F(x+dx, y+dy)—F(x, y)=o provided that such 
a representation must be possible for independent variations 
of the arguments. It turns out that in the general case of 
arbitrary # and Q this is impossible. 
TOTAL DIFFERENTIAL. The representation is possible 

only if a certain relation exists between # and Q. Let us 
write the required condition: 

Pix, yydx+ Q(x, y)dy = F(x +dx, yt+dy)— F(x, y). (15.5) 

We expand F(x +dx, y+dy) into a series in dx and dy 
and confine ourselves to the first term: 

OF OF 
F(x+dx, y+dy)=F(x, y) +—dx +——dy. (15.6) 

Ox oy 

Then Eq. (15.5) becomes 

OF OF 
P dx + Qdy = —dx + —dy. (15.7) 

Ox oy 
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Since x and y are independent quantities, it follows from this 
equation that 

pa ge (15.8) 
= Fe 2H ôy ` ' 

Differentiating # with respect to y and Q with respect to x, 
we obtain 

0p CF ô CF E c (15.9) 
oy Oyéx Ox | OxOy 

Mixed derivatives are independent of the order of 
differentiation: 67F/(@xéy) = 6*F/(@yéx), and hence 

(15.10) 

Thus we have proved that an infinitely small quantity 
(15.4) can be represented as an infinitesimal increment of 
another function F(x, y) in the form (15.5) or (15.7), if the 
functions # and Q satisfy condition (15.10) which is the 
necessary and sufficient condition. In this case, an infinitely 
small quantity (15.4) is called the total differential and is 
denoted with the help of (15.7) as 

OF OF 
wu Bou cH dicm (15.11) 

This symbol indicates in an explicit form the quantity 
F whose increment is considered. 

On the other hand, if condition (15.10) did not hold, 
c would be an infinitesimal that cannot be represented as an 
increment of the other function. This quantity could be 
denoted, for example, by the symbol 6L. In this case, 
however, L does not denote a quantity which can be ascribed 
a definite meaning under given conditions. Letter L in this 
type of expressions denotes the property of a physical 
quantity under consideration which distinguishes it from 
other quantities, symbol 6 indicating that we are dealing with 
an infinitely small amount of this quantity. Hence symbol 9L 
is a single entity having a quantitative significance only for 
infinitely small value. 

The basic property of infinitesimals that are total 
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differentials is that the value of the integral 

(x2, y2} 

J (Pdx + Qdy) (15.12) 
G5, yi 

over these quantities between two arbitrary points (x,, y,) 
and (x,, y,) depends on the positions of the initial and final 

points but is independent of the integration path. It should 
be noted that if condition (15.11) is satisfied, the integral 
(15.12) is evaluated by the formula 

(X2, yz) (X25 y2) 

J (Pdx+Qdyy= J dF = F(xz y2) — F(xs yi). 
Xi yi) Gas yi) 

(15.13) 

This formula shows explicitly that the integral over an 
infinitely small quantity that is the total differential is indeed 
independent of the integration path and depends only on the 
initial and final points. 

If the variables x and y characterize a state of some system 
and if infinitesimal of the form (15.4) is the total differential 
of the function F, the function F is said to be a function of 
state, i.e. the function which has a quite definite value in 
a given state of the system, and this value does not depend 
on the way or method by which the system is transferred to 
this state. 

The functions of state are its most important 
characteristics. 

Let us consider two differential forms: 

Oo, =xdy+ydx, (15.14) 

o,=xdy— ydx (15.15) 

and evaluate the integrals between the points (x, yg) and 
(x1, 1) along two different paths parallel to coordinate axes 
(Fig. 24). We denote the path (xo, yo) ^ (x9, y4) (X1; yı ) by 

L, and (xo, yg) 5 (X41, yo) 2 (x4. y1) by L;. Then 

(xo, yi) 

1, (0,)= f (xdy-ydx)2 f (xdyt+ydx) 
L, (x0, yo) 

(x1, 91) 

+ f (xdy+ydx) 
(xo, yi) 

— xo(y1 — Yo) t y1 6 — X9) 2 YiX1 — Xoyo; (15.16) 



X 

Fig. 24. Different integration paths 
for the transition from point (xg, Yo) 

to (xy yi) 
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e (x dy + ydx) 

(x1, 90) G1.) 

= f (xdytydx)+ f (xdy+ydx) 
(xo » 0) Gi») 

— yox, — Xo) x4 (91 — Yo) 9 Y1X1 — Xoyo- (15.17) 

Obviously, l,(0,)— 1;(o;) For the form o, we have 

L (o3) T (xdy— ydx) 2 xo(y4 — yo) - ya 61 — Xo) 

` 

— 2XoJ1 — XoJo — JaX1; (15.18) 

nes] (x dy — y dx) = yo (x; — xo ) — x; (Yı — Yo ) 
2 

= 2X1 Yo — XoYo — X1 Y1 - (15.19) 

Naturally, 1, (0;) € 1; (0;). Hence we can conclude that o, 
is not a total differential, i.e. there is no function F (x, y) for 
which dF (x, y) 2 x dy — y dx. We can also verify this with the 
help of (15.10). In the case under consideration, PW = — y, 

Q — x, 027/0y 2 — 1, and 0Q/Ox — 1, and hence ae i 
oy Ox 

In the case of o, the matter is not as simple. We can 
conclude on the basis of equality I; (0,) — 1; (0,) that o, is 
the total differential only if we prove that this equality is 
valid for any paths connecting the initial and final points. We 
have checked this only for two paths. Thus, in order to be 
able to conclude definitely that o, is the total differential we 
must either prove the equality [,(o,)=J,(0,) for an 
arbitrary path, or use the criterion (15.10). The latter way is 
easier. 
We have # = y and Q = x, and 6#/éy = 0Q/0x indeed. It 

can be easily seen that in this case F(x, y) = xy + a, where a 
is an arbitrary constant. This gives 

dF (x, y) = d (xy + a) = x dy + y dx. (15.20) 

The integral between points (xo, Yo) and (x,, y, ) along L 
is calculated as follows: 

Qu. y) (x, y 

J (xdyt+ydx)= [f d(xy+a) 
(Xo. Yo) (Xo, Yo) 

= [xy + a] 2 xiyi — Xoyo- (15:21) 
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Sec. 16. REVERSIBLE AND IRREVERSIBLE PROCESSES 

The characteristics of processes 
and their classification are con- 
sidered. The relationship be- 
tween equilibrium and nonequi- 
librium, and reversible and 

irreversible processes is ana- 
lyzed. It is noted that the con- 
cepts of infinitely slow and 
reversible processes are not 
equivalent. 

All intermediate states in an 
equilibrium process are 
equilibrium states, while the 
intermediate states of 
a nonequilibrium process 
include nonequilibrium states. 

Equilibrium processes are 
reversible, while nonequilib- 
rium processes are 

irreversible. 

An infinitely slow process is 
not necessarily an equilib- 
rium and a reversible 
process. 

PROCESSES. Án equilibrium state is characterized by the 
values of macroscopic parameters p, V, and T. The 
macroscopic values and methods of measuring p and V do 
not require additional explanations. As regards temperature, 
we refer the reader to Sec. 11. However, we have not clarified 
within the framework of thermodynamic treatment what we 
mean by an ideal gas. 

An ideal gas can be defined as the gas obeying the Boyle 
law in the following formulation: for a fixed mass of the gas, 
the product of pressure by the volume depends only on 
temperature. We have already established what is a constant 
“degree of heating”, i.e. constant temperature. Therefore it is 
quite clear what we mean by verifying the validity of Boyle’s 
law pV=const for all possible temperatures, although the 
temperature itself is not yet determined. Consequently, we 
can check whether or not a gas is ideal even before we define 
how to measure temperature. If it is established that the gas 
is ideal we can postulate the temperature dependence of pV 
in the form (10.5). After this, the ideal gas is used as 

a thermometric body, while temperature is determined in 
accordance with (10.5) by taking, for example, p as the 
thermometric quantity. It is just the quantity defined in this 
way that will be called temperature and denoted below 
as T. 

It is already almost clear that it is the same temperature 
T which was used in Chap. 1. A detailed justification of this 
concept will be given later. Thus it can be assumed that the 
third macroscopic parameter T characterizing an equilibrium 
state of the system is also defined. 

We shall call a process the transition from one equilibrium 
state to another, i.e. from some values p, Vi, T, of the 
parameters to others, p;, V5, T. In this definition, it is 
essential that the initial and final states are equilibrium states. 
NONEQUILIBRIUM PROCESSES. Suppose, for example, 

that we must go over to a state with a different volume. 
Clearly, if we do it not very slowly, the pressure, as well as 
temperature, will no longer be constant over the volume. It 
would be in general meaningless to speak about any definite 
pressure or temperature, since they will be different at 
different points. Moreover, the distribution of pressure and 
temperature over the volume depends not only on the initial 
and final states but also on the way in which this transition is 
realized. Thus, intermediate states in such a process are 
nonequilibrium ones. This process is called nonequilibrium 
process. 



The change of state of 
a system is always associated 
with a transition to 
a nonequilibrium state. The 
departure from the 
nonequilibrium state is the 
more significant, the faster 
the change in the system. 
A return to the equilibrium 
state requires a certain 
amount of time. Hence, by 
changing the state of 
a system quite slowly, we 
shall not take the system 
away from the equilibrium 
state on the one hand, and 
on the other hand, provide 
sufficient time for the system 
to return to the equilibrium 
state at each intermediate 
stage. Consequently, the 
system passes through 
a sequence of equilibrium 
states. It would be wrong to 
consider this statement to be 
approximate, and to assume 
that the system passes 
through a sequence of only 
nearly equilibrium, and not 
exactly equilibrium, states. As 
a matter of fact, the equilib- 
rium state itself is attained 
through fluctuations via 
nonequilibrium states. Hence, 
if “nearly equilibrium states” 
differ from the equilibrium 
state by an amount smaller 
than the fluctuation states, 
they can be simply considered 
as equilibrium states. This 

can be always attained if the 
process is sufficiently slow. 
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EQUILIBRIUM PROCESSES. A transition can be accomp- 
lished in a different way, i.e. infinitely slowly. After an infinitely 
small change in parameters the next change is not made until 
the system attains an equilibrium state, i.e. all macroscopic 
parameters assume constant values over the entire system. 
After this the next step is made, and so on. Thus, the entire 
process consists of a sequence of equilibrium states. Such 
a process is called equilibrium process. It can be depicted on 
the diagrams by continuous curves. In the equation of state 
for an ideal gas, pV, — RT, any two parameters can be 
considered as independent parameters characterizing the 
process. An example of the process of transition from the 
state p,, V, to the state p;, V; is shown in Fig. 25. At each 
point of the process, the temperature is uniquely determined 
by the equation of state. 
REVERSIBLE AND IRREVERSIBLE PROCESSES. A process 

for which a reverse transition from the final state to the 
initial state occurs via the same intermediate states as for the 
forward process is called reversible. 

A process is irreversible if the reverse process via the same 
intermediate state is impossible. 

Obviously, a nonequilibrium process in principle cannot be 
reversible. On the other hand, an equilibrium process is 
always reversible. 

it does not mean, however, that the concept of reversible 

process is equivalent to that of an infinitely slow process. 
Some infinitely slow processes are irreversible. For example, 
the plastic deformation of solids may occur infinitely slowly, 
but is nevertheless an irreversible process. 

Unless otherwise stated, we shall be henceforth considering 
reversible processes only. 

Let us return to Example 14.2 of isothermic expansion of 
a gas. After the gas has been expanded from V, to V, further 
removal of sand grains from the piston is discontinued. The 
gas has passed through a sequence of stages, in each of which 
it had definite values of pressure and volume, while the 
temperature was constant. As a result of the work done by 
the gas, the atmospheric air was pushed out of the volume 
which is now occupied by the gas in the cylinder, and the 
piston with sand was raised to a certain height. The grains of 
sand which are removed in order to raise the piston are 
located at different heights. Let us now gradually reload the 
piston with sand grains, which were removed earlier in order 
to raise the piston, and bring it to the initial height. This 
increases the mass of the piston with sand grains. 
Consequently, the pressure on the gas increases and it starts 
getting compressed, while its volume decreases. The entire 
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Fig. 25. A curve corresponding to 
an equilibrium process 
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process occurs in the reverse direction, and the temperature is 
maintained at a constant value due to heat exchange with the 
surrounding medium. The pressure of the gas in the cylinder 
corresponding to each position of the piston is the same as 
during the process of gas expansion. Consequently, with the 
decrease in volume, the gas in the cylinder passes through all 
the states which it passed during expansion, but the order is 
now reversed. When the gas is compressed to the volume V,, 
the piston carries all the sand grains that were earlier 
removed. The mass of the piston with sand is now m(xo) — 
= mo. The entire system has thus returned to its initial 
position. The expansion and compression of the gas have 
taken place reversibly. 

The gas can be irreversibly expanded, for example, by 
quickly removing all the sand grains at the lower position of 
the piston, assuming the mass of the piston without sand to 
be sufficiently small. Under this condition, the piston moves 
upwards with a large acceleration, and the gas volume 
correspondingly increases. In this case, the temperature varies 
and has different values in different parts of the cylinder 
volume. The gas pressure also has different values in different 
parts of the volume. Only the volume of the gas has 
a definite numerical value. The state of the gas in the cylinder 
cannot be characterized by any values of p and T. For this 
reason, the process cannot be depicted by a continuous line 
as in the case of reversible processes. 

Sec. 17. HEAT CAPACITY 

Heat capacity at a constant 
volume and at a constant 
pressure as well as their ratio are 
considered for an ideal gas. The 
discrepancy between theoretical 
and experimental results is 
analyzed. A qualitative account 
of the temperature dependence 
of heat capacity is given. 

DEFINITION. When a quantity of heat 5Q is supplied to 
a system, its temperature changes by dT. The quantity 

is called the heat capacity. Heat capacity is a measure of the 
quantity of heat required to raise the temperature of a body 
by one kelvin. Obviously, heat capacity depends on the mass 
of the body. The heat capacity per unit mass is called specific 
heat capacity. It is most convenient to consider a mole of the 
substance. Heat capacity of a mole of molecules of 
a substance is called the molar heat capacity. Unless 
otherwise stated, it is molar heat capacity that is usually 
meant by the heat capacity of a substance. 

Heat capacity depends on conditions under which heat is 

(17.1) 



In the general case, heat 
capacity does not 
characterize the properties of 
a body. It characterizes 
a body as well as the 
conditions under which it is 
heated. Hence it does not 
have a definite numerical 
value. However, if the 
conditions under which the 
body is heated are fixed, the 
heat capacity becomes its 
characteristic property and 
acquires a certain numerical 
value. It is values of heat 
capacity that are given in 
tables. The most important 
of them are heat capacities 
of a gas at constant volume 
and at constant pressure. 
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supplied to a body and its temperature changes. For example, 
if a quantity of heat 6Q supplied to a gas makes it to expand 
and perform work, its temperature increases to a value which 
is lower than that attained by supplying the same heat 5Q at 
a constant volume. Hence, according to formula (17.1), the 
heat capacity is higher in the case of expansion. This means 
that the quantity defined by (17.1) is not definite and may 
assume any value. To ascribe a definite value to the heat 
capacity (17.1), it is necessary to indicate the conditions 
mentioned above. These conditions are specified in the form 
of subscripts under the quantities appearing in (17.1). 

The concept of heat capacity was gradually adopted in natural 
science in the 18th century. As early as 1744 G.W. Rikhman 
(1711-1753) established the formula for the temperature of mixtures. 
The theory of heat was refined and by 1780's the basic concepts of 
this theory were formulated in the final form. The results obtained 
by this time were summarized in "Mémoire Sur La Chaleur" by 
A. L. Lavoisier (1743-1794) and P.S. Laplace (1749-1827), published 
in 1783. 

INTERNAL ENERGY AS A FUNCTION OF STATE. It 

follows from the definition of internal energy that it has quite 
a definite value in any state of a system. This means that the 

internal energy U is a function of state, and dU is the total 
differential. In further analysis, we shall more frequently use 
for other quantities the inverse statement: if an infinitely 
small quantity is a total differential, the corresponding 
function is a function of state. 

The quantities, p, V, and T have quite definite values in 

any state of a system and characterize this state. Thus, dp, 
dV, and dT are total differentials. 
HEAT CAPACITY AT CONSTANT VOLUME. This quantity 

is defined as 

C, = (6Q/d T), . 

In thermodynamics, the ratio of infinitesimals is usually 
enclosed in parentheses, as in (17.2), the subscript indicating 
the quantity which is assumed to be constant in calculation 
or measurement of this ratio. It should be noted that the 
ratio of infinitely small quantities is, in general not 
a derivative or a partial derivative, since, strictly speaking, 
infinitesimals are not total differentials. 

At a constant volume, dV —0, and hence Eq. (144) 
assumes the form 

(6Q)y = dU. 

(17.2) 

(17.3). 



152 

Heat capacity depends on 
the nature of a process and 
may change from infinite 
positive values to infinite 
negative values. 

Heat capacities at constant 
pressure and at constant 
volume are functions of state. 

The internal energy of an 
ideal gas does not depend on 
its volume. 

The temperature independ- 
ence of the heat capacity of 
a gas is not confirmed, for 
example, in experiments with 
molecular hydrogen. 

2. Thermodynamic Method 

This means that at V = const, Q is a total differential. 

Formula (17.2) then assumes the form 

Therefore, Cy is a function of state, which makes this 
quantity very important. 

HEAT CAPACITY AT CONSTANT PRESSURE. When p= 

= const, Eq. (14.4) can be written in the form 

(17.4) 

(5Q),=dU +(pdV), =d(U + pV). (17.5) 

This means that (6Q), is a total differential, and 

(17.6) 

is a function of state. 
The function of state 

appearing in (17.5) is called the enthalpy. The expression 
(17.6) for C, can then be transformed as 

(17.8) 

RELATION BETWEEN HEAT CAPACITIES. We are 

considering a thermodynamic system characterized by three 
macroscopic parameters p, V, and T. These parameters are 
not independent. There exists a relation between them, called 
the equation of state. For an ideal gas, the equation of state 
has the form pV,,= RT. In the general case, the exact form 
of this dependence is unknown. Therefore, we can only state 
that there exists a functional dependence between these 
quantities, e.g. 

p=p(T,V). (17.9) 

Of course, depending on the choice of independent 
variables, we can assume that T = T (p, V) or V = V (p, T). If 
we take V and T as independent variables, the internal 
energy of the system depends on them, i.e. U = U (T, V). 
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Substituting the expression 

QU òU dis are ap 17.1 Gar ae pon 

for the total differential into (14.4), we obtain 

QU QU 
6Q-[——|d —— dV. 17.11 o7 Gor) pr Ge). iun 

Formula (17.1) for the heat capacity can then be written as 

8Q QU QU dV 
C-2——-|[—— —]|[— 17. dT (SF), *le+(4r),| dT on) 

where dV/dT on the right-hand side depends on the nature 
of the process. If V =const, this quantity vanishes, and for- 
mula (17.12) becomes (17.4) for Cy since (see (17.10) 
(dU/d T), — (QU/OT), — Cy for dV —0. If p—const, (17.12) 
becomes the expression for the heat capacity at constant 
pressure: 

er) n) Js) 
JG). B 

Consequently, expression (17.11) for 6Q can be represented in 
the form 

(17.14) 

RELATION BETWEEN HEAT CAPACITIES FOR AN IDEAL 

GAS. By definition, an ideal gas consists of particles colliding 
in accordance with the laws of elastic collisions. The particles 
are assumed to be infinitely small, and long-range forces of 
interaction between them are assumed to be absent. However, 
the particles constituting an ideal gas may themselves be 
complex (see Sec. 12). The energy of a complex particle is the 
sum of the kinetic energy of its centre of mass, and the 
kinetic energy of rotation and vibrations. Each degree of 
freedom has an energy kT/2 corresponding to it, which 
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Fig. 26. The model of a diatomic 
molecule 

2. Thermodynamic Method 

depends only on the temperature. Thus, the internal energy of 
an ideal gas depends only on temperature and does not 
depend on the gas volume. This is obvious in the case of the 
statistical theory of ideal gas (see Chap. 1). However, in the 
framework of the thermodynamic method this statement 
must be proved without resorting to molecular concepts. The 
proof is based on the second law of thermodynamics, i.e. it is 
shown that for a system whose equation of state coincides 
with the equation of state for an ideal gas, the internal energy 
depends only on temperature. This could not be done if we 
did not know the second law of thermodynamics, hence here 
we must be content with the existence of such a possibility. 

Since U = U (T) for an ideal gas, and the equation of state 
can be written in the form 

V =RT/p, (17.15) 

we find 

oU oV R 
——|-20 [L| -2—. 17.16 
& i i3) [4 l 

Substituting (17.16) into (17.13), we obtain 

C,- Cy 4 R. (17.172) 

Relation (17.17a) for heat capacities C, and Cy in the case 
of an ideal gas is called Mayer's equation. It should be 
recalled that C, and Cy in (17.17a) correspond to a mole of 

gas molecules, i.e. they are molar quantities. 
By dividing both sides of (17.17a) into the molar mass 

M of the gas, we get 

€,— cy t Re, (17.176) 

where c, — C,/M and cy — Cy/M are specific heat capacities 
at constant pressure and at constant volume, and Ry = R/M 
is the specific gas constant. 
HEAT CAPACITY OF AN IDEAL GAS. If a particle of an 

ideal gas is simple, it has only three degrees of freedom of 
translational motion. Its energy is equal to (3/2)k T. If, on the 
other hand, such a particle is complex, it has more degrees of 
freedom, and hence a higher energy. For example, if 
a complex particle consists of two point particles, there are 
two possibilities. If the point particles are rigidly connected 
and behave like a rigid dumb-bell (Fig. 26) the complex 
particle has five degrees of freedom of which three are 
translational and two rotational (by definition, rotation about 
the axis passing through the point particles is impossible). In 
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this case, the energy of the particle is equal to (5/2)kT. If, in 
addition, the particles are not rigidly connected, and the 

vibrational motion along the line joining them is possible, 
a kinetic energy of vibration equal to kT/2 and a potential 
energy equal to kT/2 are additionally introduced. In other 
words, two additional degrees of freedom appear. Thus the 
total energy of a single complex particle is (7/2)kT. The 
energy of more complex particles can be calculated in 
a similar manner. If a complex particle has i degrees of 
freedom, its energy is (i/2)kT. There are Ny, particles in 
a mole, and hence the internal energy of one mole of an ideal 

gas is equal to 

U = (i/2) NakT = (i/2) RT (17.18) 

Using formulas (17.4) and (17.17a), we obtain 

(17.19) 

DISCREPANCY BETWEEN THE SPECIFIC HEAT THEORY 

FOR AN IDEAL GAS AND EXPERIMENTAL RESULTS. The 

results given by these simple formulas are in good agreement 
with experiments for monoatomic and many diatomic gases 
at room temperature, for example, hydrogen, nitrogen, and 
oxygen. Their molar heat capacity turns out to be quite close 
to Cy — (5/2) R. 

However, the heat capacity of diatomic chlorine gas Cl, is 
about (6/2) R, which cannot be explained by the specific heat 
theory (Cy of a diatomic molecule can in principle be either 
(5/2) R or (7/2) R). 

The predictions of the theory are systematically violated 
for triatomic gases. 

The heat capacity of rigid molecules of a triatomic gas (if 
only they do not lie on the same straight line) must be equal 
to (6/2) R. The experimentally obtained value is somewhat 
higher, and this cannot be explained as due to the excitation 
of an additional degree of freedom. It was found 
experimentally that heat capacity depends on temperature, 
which completely contradicts the results obtained from for- 
mulas (17.19). By way of an example, let us consider in 
greater detail the heat capacity of molecular hydrogen. Hydr- 
ogen molecules are diatomic. Highly rarefied hydrogen gas is 
very close to an ideal gas and is a convenient object for the 
verification of the theory. For a diatomic gas, Cy is equal to 
either (5/2)R or (7/2)R and must be independent of 
temperature. In actual practice however, the heat capacity of 
molecular hydrogen depends on temperature (Fig. 27): at 
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Fig. 27. Experimental dependence 
of C, for molecular hydrogen on the 
temperature T 

? 
. Which physical considerations 

lead to the conclusion that the 
heat capacity of an ideal gas 
at constant pressure is larger 
than the heat capacity at 
constant volume? 

. Does heat capacity depend on 
the potential energy of 
interaction between molecules 
in the general case? 

. Does the heat capacity of 

a gas depend on the 
gravitational field in which the 
gas is? 
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a low temperature (about 50 K) its heat capacity 1s (3/2) R, 
while at room temperature, it is (5/2) R, and at very high 
temperatures the heat capacity becomes equal to (7/2) R. 
Thus, at low temperatures, a molecule of hydrogen behaves 
as a point particle without any internal motions. The 
molecule behaves like a rigid dumb-bell at normal 
temperature and performs rotational motion in addition to 
the translational one. At very high temperatures, these 
motions are supplemented by the vibrational motions of the 
atoms constituting the molecule. It appears as if a change in 
temperature results in the inclusion (or exclusion) of different 
degrees of freedom: at low temperatures, only the 
translational degrees of freedom are included; the rotational 

degrees of freedom come into play when the temperature is 
increased, while a further increase in temperature leads to the 
introduction of the vibrational degrees of freedom. 

However, the transition from one type of motion to 
another does not occur abruptly at a certain temperature, but 
takes place slowly over a certain interval of temperature. This 
is due to the fact that at a certain temperature it becomes 
possible for the molecules to go over from one type of 
motion to another, although this possibility is not realized at 
once by all the molecules but just by some of them. As the 
temperature changes, more and more molecules go over to 

the other type of motion, and hence the heat capacity curve 
changes smoothly over a certain interval of temperatures. 

At a sufficiently low temperature, the motion of hydrogen 
molecules between collisions is similar to the translatory 
motion of solids: 

35883335303 — $—— 
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As the temperature is increased, the rotational degrees of 
freedom appear, and the pattern of motion of molecules 
somewhat changes in that a molecule rotates during its 
translatory motion between collisions: 

f Were Ph, = H- 
Vibrational degrees of freedom appear upon a further 

increase in temperature, and the molecular motion becomes 
even more complicated. This is so because during the 
translational motion the atoms comprising a molecule vibrate 
about the axis, thus changing their orientation in space: 

he 

Lp Sete 
The classical theory was not able to explain the 

dependence of heat capacity on temperature. A quantitative 
account of the dependence which is described by quantum- 
mechanical laws of motion can be given only by solving 
quantum-mechanical equations of motion. The physical sig- 
nificance of the process can, however, be understood even 

without solving these equations. 
QUALITATIVE EXPLANATION OF THE TEMPERATURE 

DEPENDENCE OF THE HEAT CAPACITY OF MOLECULAR 

HYDROGEN. A striking feature of the motion of microscopic 
particles is that they can have only discrete values of energy. 
Whenever the motion of a particle is restricted to a finite 
region, it can assume only a discrete set of values. As this 
region is extended, the distance between the energy levels 
decreases, and for a sufficiently large region of motion, the 
energy spectrum of a particle can be considered as 
continuous with a fairly high degree of accuracy, although in 
principle it remains discrete. Another case when this 
spectrum is practically continuous involves particles with 
very high energies. In this case, the distance between the 
energy levels is negligibly small in comparison with the 
energy. The discrete energy spectrum of a particle is obtained 
by solving the quantum-mechanical equations of motion. 
We shall describe the result of the solution for a diatomic 

hydrogen molecule. The allowed energy values for the 
translational motion are practically assumed to be 
continuous, since the region of motion for a mole of rarefied 

gas is sufficiently large. The energy of vibrational and 
rotational motions is quantized. In other words, only 
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a discrete set of the rotational and vibrational energy values 
are possible rather than any arbitrary values. The vibrational 
energy spectrum has an especially simple form: 

E, — ho (n + 1/2), (17.20) 

where fiw is determined by the atomic masses and the 
coefficient of elasticity. The energy Ey — ho/2 is minimum. In 
other words, the laws of motion are such that the particle is 
not in a state of rest. The allowed vibrational energy levels of 
the molecule, which lie above the zero level, are separated by 
equal intervals Jio. 

The rotational energy of a molecule is about 100 times 
smaller than its vibrational energy. In other words, the 
rotational motion is slower than the vibrational motion. The 
energy spectrum of the rotational motion of a hydrogen 
molecule has the form 

E, — qin (n t 1), (17.21) 

where q, — h?/(2J9), Jy being the moment of inertia of the 
molecule with respect to the rotational axes (in the present 
case, the moments are identical relative to the axes) 

There are two types of hydrogen molecules which differ in 
the orientation of the spin of their nuclei. Spin characterizes 
the internal angular momentum of an elementary particle. It 
appears as though the elementary particle is rotating. In 
actual practice, the spin of an elementary particle cannot be 
explained by rotation since for a quantitative agreement with 
the experiment it would be necessary to admit that the linear 
velocities on the "surface" of an elementary particle are high- 
er than the velocity of light, which is impossible. Hence spin 
must be considered as a fundamental quantity, which is by 
nature inherent in particles. The spin of a nucleus is equal to 
the sum of the spins of the elementary particles constituting 
it, viz. the protons and the neutrons. In the case of a hydro- 
gen molecule, we are speaking only of the proton spins. For 
parahydrogen molecules (in which the spins are antiparallel), 
n in (17.21) can assume values n = 0, 2, 4, ..., while for ortho- 

hydrogen (in which the spins are parallel), n = 1, 3, 5, ... The 
number of parahydrogen and orthohydrogen molecules in the 
total number of hydrogen molecules is 1/4 and 3/4 
respectively. 

The vibrational levels are much more closely-spaced than 
the rotational levels. The distance between the lowest level 
and the first excited level plays a very important role. Thus, 
in the case of paramolecules, it is the distance between the 
levels Ey =0 and E,, i.e. (AE); 2 5q,, while in the case of 
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orthomolecules it is the distance between E, and E}, i.e. 

(AE), = 10q,. 
The collisions between molecules lead to an exchange of 

energy between the translational, rotational, and vibrational 
degrees of freedom. At very low temperatures, when 
kT « 5q,, the vibrational or even the rotational degrees of 
freedom cannot be excited since the energy imparted to them 
during a collision is insufficient. Consequently, the molecule 
moves with minimum vibrational energy (zero-point 
vibrational energy) and with minimum rotational energy 
(equal to Ej — 0 for parahydrogen and E, —24, for ortho- 
hydrogen). Molecules behave like particles without any 
internal degrees of freedom, and thus have only three degrees 
of freedom. The heat capacity of such a gas is 3R/2. With 
increasing temperature, when the translational energy 
becomes sufficient for exciting the rotational levels, the 
molecule starts behaving like a complex particle with five 
degrees of freedom. Such a behaviour is observed for kT > 
2q,. The temperature at which the rotational degrees of 
freedom appear is taken to be equal to 

Trot = 41 /k = h?/ (2J ok). (17.22) 

Above the temperature T,,,, the heat capacity of 
a diatomic gas is equal to 5R/2 right up to 

T i» = hok. (17.23) 

At this stage, the vibrational degrees of freedom appear and 
the heat capacity becomes equal to 7R/2. 

For hydrogen T =85.5K and the heat capacity of 
molecular hydrogen under normal conditions is 5R/2. 
Vibrational degrees of freedom appear in hydrogen at Ti = 
= 6410 K. However, a considerable fraction of molecules 
dissociates into atoms at such a high temperature. The 
actually observed value of heat capacity is composed of the 
specific heat of molecular and atomic hydrogen and is equal 
to 7R/2. Thus, the behaviour of heat capacity of molecular 
hydrogen as a function of temperature is completely 
described by quantum mechanics. It also provides 
a satisfactory quantitative explanation for the behaviour of 
the heat capacity. In order to calculate the mean values of 
the rotational and vibrational energies of molecules, we must 
know the distribution of the molecules over these energies. 
This cannot be accomplished with the help of the Gibbs 
distribution. Calculations are made by using Bose-Einstein 
distribution. 

The values of T,,, and T, for other diatomic molecules 
are lower than for molecular hydrogen. For N;, Ta = 
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Sec. 18. PROCESSES 

Isobaric, isochoric, isothermal, 

and adiabatic processes are 
considered. The adiabatic and 

polytropic equations are de- 
rived. 

2. Thermodynamic Method 

=2.86K and  T,,—3340K, while for O;, the 
corresponding values are 2.09 K and 2260 K. The decrease in 
the values of T œa and T,» is due to an increase in the mass 
of the atoms constituting the molecules. 

Example 17.1. Find the specific heat of oxygen at constant 
pressure and high temperature with the help of classical 
theory. 

At high temperature, the rotational degrees of freedom are 
excited and hence the number of degrees of freedom of an 
oxygen molecule is i — 5. The molar heat capacity C, — 
=(i+2)R/2. The molar mass of oxygen is M= 
— 0.032 kg/mole. The specific heat is then equal to 

c, = (i - 2)R/2M) = [7 x 8.31/(2 x 0.032)]J/kg- K) 

= 0.909 kJ/(kg- K). 

IN IDEAL GASES 

ISOBARIC PROCESS. This is a process occurring at constant 
pressure: p — const (Fig. 28). The temperatures at the points 
(p, , V4) and (p; , V;)are determined by the equation of state 
and are equal to T, — p,V, /R and T, — p,V , /R respectively. 
In order to maintain a constant pressure, heat must be 
supplied to the system as the volume increases. The work 
done in this process is defined by the integral 

(2) 

A= f p, dV — p, (V4 — V4). (18.1) 
(1) 

In the p, V coordinates, the work is equal to the area 
bounded by the curve depicting the process, the V-axis, and 
the vertical lines passing through the initial and the final 
points. This area is shaded in Fig. 28. 

In the p, T coordinates also, the process is represented by 
a straight line (Fig. 29). The expression for work in terms of 
these variables has the form 

(2) (2) R 
A= fp, dV= | p,—dT=R(T,-—T,). (18.2) 

a) a) Pt 

Both these representations are equivalent. We can formally 
go over from one of these to the other by using the equation 
of state. Hence, as a rule, the processes are described by using 
one of these representations, preferably in the p, V 
coordinates. 
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Fig. 28. Isobaric process in the p, V 
coordinates 

Fig. 29. Isobaric process in the p, T 
Coordinates 

ISOCHORIC PROCESS. This is a process which occurs at 
a constant volume: V — const (Fig. 30). In this process, the 
work is equal to 

(18.3) 

ISOTHERMAL PROCESS. This is a process carried out at 
a constant temperature: T — const (Fig. 31). In this case, the 
work is given by 

@) Vi 
sowe 

(1) 

(18.4) by 
11— 761 
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v; y 
Fig. 30. Isochoric process in the p, 
V coordinates 

2. Thermodynamic Method 

The internal energy of an ideal gas does not change in this 
process since T = const, and hence dU — 0. Consequently, 
from the first law of thermodynamics it follows that 6Q = 6A. 
This means that the entire heat supplied from outside in an 
isothermal process is spent to accomplish work. 
ADIABATIC PROCESS. This is a process in which there is 

no heat exchange with the ambient. Hence, the first law of 
thermodynamics has the following form for this process: 

CydT + pdV =0. (18.5) 

Obviously, when dV > 0, dT <0. Therefore, the work done 

by the gas during expansion is performed at the expense of 
its internal energy. When dV <0, dT > 0, and hence the 
work done on the gas leads to an increase in its internal 
energy (and temperature). 

The adiabatic equation is a relation connecting the 
parameters in adiabatic process. Let us derive this equation. 

The equation for ideal gases gives the following expression 
for T: 

where the Mayer equation R — C, — Cy is used. By dividing 
Eq. (18.5) by Cy T, we find 

dT dV 
aj = 18.7 T 3oty m y 0, (18.7) 

where y — C,/Cy is the adiabatic exponent. 
Integrating and taking antilogarithm of this equation, we 

obtain the adiabatic equation in terms of T and V: 

In order to go over to variables p and V, we exclude 
temperature from this equation by using the equation of state 
T= pV/R. This gives 

pV* = const. (18.9a) 

Similarly, we obtain 

T'p! ^! — const. (18.9b) 

In accordance with Eq. (17.19), we get y = (i+ 2)/i. Hence, 
for monoatomic gases that are sufficiently close to ideal gas, 
i=3, and y=1.66. This is in good agreement with 



Fig. 31. Isothermal (black curve) 
and adiabatic (blue curve) processes 

Processes in a gas do not 
occur independently. They 
proceed due to external 
conditions imposed on the 
gas. The gas as if is made to 
pass through a certain 
sequence of equilibrium 
states. Left to itself, an ideal 
gas can do nothing but 
dissipate in infinite space. 
A real gas is different: it is 
sufficient to recall that once 
upon a time the Universe 
was apparently made up of 
matter in the gaseous state 
only. 

i 
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experiments. For example, for helium y = 1.66. For diatomic 
gases in which only rotational degrees of freedom are excited, 
i=5, and hence y=1.40. This is also in accord with 

experiments. For example, for oxygen, nitrogen, and air y = 
= 1.40, while for hydrogen y = 1.41. 

WORK IN AN ADIABATIC PROCESS. The general formula 
for work gives 

(2) V; 
dV 

(1) 1 

Vt RT, i Vay 

yc V; : 

(18.10) 

where p,V, =RT,. 
Considering that (V,/V,)""'=T,/T,, we can transform 

Eq. (18.10) as follows: 

A-R(, — Ly — 1). 

When a gas expands from the state p,, V, to a certain 
volume V, the work done during an adiabatic process is less 

(18.11) 
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than during an isothermal process (Fig. 31). This can be 
explained by the fact that the gas is cooled during the 
adiabatic process, while the temperature remains constant 
during the isothermal process due to the heat supplied by 
a thermostat. Hence, in an isothermal process the pressure of 
the gas decreases upon expansion only due to a decrease in 
the density of the gas. In an adiabatic process, the pressure 
decreases due to a decrease in the density and the mean 
kinetic energy, i.e. temperature. 

The adiabatic equation can be obtained from simple 
kinetic considerations. We direct the X-axis along the axis of 
a cylinder with adiabatic walls and piston. This means that 
the impacts of molecules against the walls and the piston are 
perfectly elastic. Suppose that the piston moves with a 
negligibly small velocity u thus changing the volume of 
the gas. The kinetic energy of a molecule is not conserved 
during an impact with the moving piston and can either 
increase or decrease. Clearly, only molecules moving towards 
the piston can strike it. If the volume increases, the molecules 
catch up with the piston, and if it decreases, they meet the 
piston. The collisions with the piston take place as if it had 
an infinite mass. From the laws of conservation of energy and 
momentum during collisions, we find that the absolute value 
of the xth component of a particle velocity changes by 2u as 
a result of the collision, increasing during compression and 
decreasing during expansion. 

Hence the kinetic energy of a molecule changes as a result 
of a collision by 

AW = (m/2) (|v, | + 2u)? — mv? /2 = + 2m|0,| u, (18.12) 

where the second-order term in u has been neglected. 
For the sake of definiteness, we shall assume that the 

piston moves along the positive direction of the X-axis, thus 
increasing the volume. Then, taking the signs into account, 
we can write 

AW = — 2m Pu, (18.13) 

where w*! indicates that we consider only the molecules 
moving in the positive direction of the X-axis and catching 
up with the piston. Only the x-component of the velocity 
changes during a collision between a molecule and the piston, 
other components remaining unchanged. Hence the kinetic 
energy of the molecule also changes only as a result of the 
change in the x-component of the velocity. 

In accordance with (8.31) the number of molecules 
impinging upon the piston with area S at a velocity lying 



18. Processes in Ideal Gases 165 

between v and v+dv during time dt is equal to 

dn = (n/V) f (v) dv vS dt, 

where f(v) is the Maxwell distribution. Taking into account 
formula (18.13), we can write the following expression for the 
change in the kinetic energy of molecules contained in the 
cylinder: 

dU = — 2m Pu dn = — 2m (n/V) Su dt f (o) (^) P dv. 

Note that Sudt — Sdx — dV is the change in the cylinder 
volume due to the motion of the piston. Hence, the total 
change in the internal energy of the gas in the cylinder during 
adiabatic increase of its volume is 

dU = — 2m (n/V) dV f f (v) (v *? ? dv, (18.14) 

where the integral (see (10.2)) comprises only the molecules 
with the positive x-component of their velocity. Taking (10.2) 
into account, this equation assumes the form 

dU = —(n/V)dV kT. (18.15) 

For a gas with i degrees of freedom, U = nikT/2. Using this 
expression in Eq. (18.15), we get 

(i/2) dT/T 2 — dV/V. (18.16) 

Considering that (i/2)dT/T —d(In T?) and dV/V= 
—dlIn V, we find 

d In (T'? y) — 0. 

Consequently, the adiabatic equation has the form 

T'? V — const. 

This equation can be given a more conventional form by 
raising it to the power 2/i: 

TV2i 2 TV'- ! — const, (18.17) 

since y=(i+2)/i=1+2/i. This example illustrates how 
thermodynamic relations can be obtained by using the 
methods of kinetic theory. 
POLYTROPIC PROCESS. All the processes considered 

above have a property in common, viz. they occur at 
constant heat capacity. This immediately follows from the 
analytic form of the conditions under which a process takes 
place. For isochoric and isobaric processes, heat capacities 
are equal to Cy and C, respectively, for isothermal processes 
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(dT =0) the heat capacity is equal to +œ, while for 
adiabatic processes (6Q = 0) the heat capacity is 0. Processes 
in which heat capacity is a constant quantity are called 
polytropic. Isobaric, isochoric, isothermal, and adiabatic 
processes are particular cases of the polytropic process. 

POLYTROPIC EQUATION. The first law of 

thermodynamics has the following form for processes in 
which C is constant: 

CdT =CydT 4 pdV. (18.18) 

Transforming this equation as we did with Eq. (18.5) in 
order to obtain Eq. (18.7), we find 

gm uo cod 
Sa ee el (18.19) 
T Cam F 
Integrating this equation, we get 

TV^-! — const, (18.20) 

where (C, — Cy)/(Cy — C) 2 n — 1. 
This is the polytropic equation in terms of T and V. Using 

the expression T = pV/R to eliminate T from this equation, 
we obtain 

pV” = const, (18.21) 

where n —(C— C,)/(C— Cy) is the polytropic exponent. 
Obviously, for C 2 0 and n— y, we obtain the adiabatic 

equation, for C = œ and n — 1, the equation of isotherm, for 
C — C, and n — 0 the equation of isobar, and for C = Cy and 
n= +00 the equation of isochor. 

Example 18.1. Helium, whose initial temperature T, = 
=400K and volume V,=101, expands adiabatically. 
During this expansion, its pressure drops from py =5 x 10° 
to p—2 x 10? Pa. Find the volume and temperature of he- 
lium in the final state. 

For an adiabatic expansion, we have 

PV“ = pgV$, 

where y =C,/Cy = 5/3 = 1.66 in the case of helium. Hence, 
the final volume is 

V — (py /p *V, — (25-5 101— 69 I. 

Now, we write the equations for an ideal gas in the initial 

and the final states: 

Poo = YRTo, pV =VRT. 



Fig. 32. A cylinder with a gas, 
separated into three regions by 
partitions B, and B, 

pV" — const 
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Dividing the left- and right-hand sides of these equations 
termwise, we obtain 

V 2-69 ra qol 400 K = 110.4 K. 
poVo 50-10 

Example 18.2. A cylinder with adiabatic walls is divided 
into three parts A,, A,, and A, (Fig. 32) by a heat-insulating 

piston B, and diathermic piston B,. The pistons can slide 
along the cylinder walls without friction. Each part of the 
cylinder contains 0.1 mole of an ideal diatomic gas. At first, 
the gas pressure in all three parts is py — 10? Pa and the 
temperature T — 300 K. Then the gas in part A, is heated 
slowly until the gas temperature in portion A, becomes T, = 
= 340 K. Find the pressure, temperature, volume, and the 

change in the internal energy of the gas in the final state for 
each part, and the total energy which was supplied to the gas 
in A, during heating. 

In equilibrium, the pressure of the gas in all parts will be 
the same (pı = pz = pa) Moreover, since the piston B, is 
diathermic, the temperatures in parts A, and A, must be 
equal (T; 2 T, = 340 K). As the masses of the gas in these 
parts are equal, the volumes V, and V, must also be the 
same. According to Eq. (18.9a), for an adiabatic reversible 
change in the state of the gas in sections A, and A, we have 
P3 — pa — po(T5/To)* ̂ . In the initial state, the volumes of 
the three sections are the same and equal to Vp = 0.1 RT9/po, 
while the final volumes of sections A; and A, are equal to 
V; 2 V4 2 0.1 RT2/p2, or 

Vo VS SQURIS D) (Is/T;)«-2. 

For a diatomic gas, y — (i - 2)/i 2 7/5, and hence 

T _ 8.31-0.1-300 / 300 
ES 105 340 

5/2 
) m? = 1.8231-1073 m?. 

The pressure p; 2 0.1 RT;,/V4, —8.1 x 0.1 x 340/(1.8231 x 
x 107?) Paz 1.55 x 105 Pa. 

The volume V, can be found from the condition that the 
total volume of the cylinder remains constant: 

V, -3Vg,—(VitVi) 

-3-01 RT, /n; —(2-01 RT, py) (Ty/T, y/9- 9, 
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whence 

V, —3.-831-0.1:300-107? m? — 2-1.8231-107? m? 

= 3.833.107? m’. 

For the temperature T,, we get 

T, — p,V, /(R-0.1) 2 p;V, /(R-0.1) 

z T, [3(T;/T9 ^? - 27;,/Ts] 
= [1.55 - 10° - 3.8328 - 107 ?/ (8.31 -0.1)] K = 715 K. 

The internal energy changes by AU = 0.1C, AT= (0.1 x 
x i/2) RAT, where i is the number of degrees of freedom of 
gas molecules. This gives AU, =8.31 x 
x 0.1 (715 — 300) (5/2) J = 862.2 J, AU, = AU, =8.31 x 
x 0.1 (340 — 300) (5/2) J = 83.1 J. From the law of 
conservation of energy it follows that the total energy 
supplied to the gas in A, is AU = AU, +AU, + 4U, = 
= (862.2 + 83.1 + 83.1) J = 1028.4 J. 

Example 18.3. Solve the problem formulated in Example 

18.2 assuming that the pistons B, and B, are adiabatic. 
In this case, the state of the gas in sections A, and A, 

changes in accordance with the adiabatic equations 
Tip) ! — Tipi^! and Tip)! — Tipi". Since we have p, — 
—p;,-—p; as before, T, — T,, i.e. the state of the gas in 
sections A, and A, is the same as in Example 182. 

Sec. 19. ENTROPY OF IDEAL GAS 

The entropy of an ideal gas is 
defined and its physical meaning 
is elucidated. The change in 
entropy is calculated for 
different processes. The specific 
nature of heat as a form of 
energy is discussed. 

DEFINITION. Let us divide by T both sides of the equation 
describing the first law of thermodynamics. We get 

8Q dT p 
IS By que 19.1 

T -""T'T a) 

Substituting p/T = R/V into this equation and considering 
that dT/T =dInT and dV/V =dInV, we obtain 

8Q/T =d(CylnT + Rin V). (19.2) 

The right-hand side of this equation is a total differential. 
Consequently, its left-hand side 5Q/T is also a total 
differential. The function of state whose differential is 6Q/T is 
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called the entropy and denoted by S. Hence, 

It should be noted that the validity of this expression for 
the total differential of entropy was proved above only for 
reversible processes in an ideal gas. Later, this expression will 
be extended for reversible processes in systems differing from 
an ideal gas. In the case of nonequilibrium, irreversible 
processes, this representation of dS in terms of 6Q and T is 
incorrect. It should also be emphasized that formula (19.3) 
defines the difference in entropies rather than its absolute 
value. This formula can be used to calculate the change in 
entropy caused by a transition from one equilibrium state to 
another, but it does not give the value of entropy in each 
state. In other words, this formula defines the entropy to 
within an arbitrary additive constant. 
PHYSICAL MEANING OF ENTROPY. Let us use formula 

(19.2) for calculating the change in entropy during an 
isothermal process (T = const) in which the energy state of 
a gas remains unchanged and possible changes in the 
parameters are only due to changes in the volume. In this 
case, we have 

dS=RdinV, (19.4) 

and hence 

(2) (2) 
f dS=R f dln V. (19.5) 
o) d) 

Evaluating the integrals, we get 

S — S, = R (ln V — ln Vi )= Rln (V/V). (19.6) 

In order to transform the expression on the right-hand side 
further, we must take into account the relation between the 
volume occupied by the gas in an equilibrium state and the 
number of spatial microscopic states of the gas particles, 
defined by formula (5.6). The number of particles in a mole of 
a gas is determined by the Avogadro constant N4. Hence for 
the volumes V, and V, appearing in (19.6), formula (5.6) 
becomes 

N,! N,! 
i=, Te. 
7 (N-NAQ!' ?" (N, — Na)! 

(19.7) 

where N,=V,/P, N,=V,/P, and 1=107'° m. Using the 
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In any reversible process, the 
entropy of the system 
changes under the effect of 
the external conditions 
affecting the system. The 
effect of the external 
conditions on entropy 
consists in the following. The 
external conditions determine 
the microscopic states 
attainable by the system as 
well as their number. Within 
the limits of the attainable 
microscopic states, the system 
attains the equilibrium state 
while the entropy attains the 
corresponding value. 
Consequently, the value of 
the entropy follows the 
change in the external 
conditions and attains its 
maximum value in 
conformity with the external 
conditions. 

2. Thermodynamic Method 

Stirling formula (5.11), we obtain 

To — N,1I(N,- NA)! . (N;/9  [(N, - NA)/e]i- 4 
UNE coc TUNES A N S 

To: N,!(N,—Na)! (N, /e) 'T(N, — Na)/e] RA 

(19.8) 

We assume that the gas is not very compressed, i.e. Ny >> Ny 
and N > N4. Hence, in the square brackets on the right- 
hand sides we can ignore N 4 in comparison with N, and N}. 
Then (19.8) becomes 

T ( N, j“ ( A lx (193) 

Toi + N, V, i : 

Taking logarithms of both sides, we find 

V [ E 
(= ie (19.10) 

V, Na To, 

Substituting this expression into formula (19.6), we obtain 

(19.11) 
RT 

x I. -kln Ts; — kIn Ts, 

where R/N, — k is Boltzmann's constant. 
The form of this expression implies that the entropy S is 

determined by the logarithm of the number of microscopic 
states through which a given macroscopic state is realized, 
i.e. 

S —kInT. 

This formula expresses the Boltzmann entropy hypothesis. 
The above arguments do not prove this formula in the 
general form, since it is valid for (1) an ideal gas and for 
spatial microscopic states and (2) reversible processes. For- 
mula (19.12) can in principle be supplemented by an arbitrary 
constant which was put equal to zero without any proof. 

However, there are all grounds to suppose that formula 
(19.12) is valid in the general case as well. First of all (see 
Sec. 7), it is clear that the number of microscopic states 
through which a macroscopic state is realized is the most 
important function of state. And since the concept of the 
number of microscopic states is applicable not only to an 
ideal gas and equilibrium states, but also to arbitrary 
statistical systems, it is natural to conclude that the 

(19.12) 



Entropy is defined as the 
logarithm of the number of 
microscopic states through 
which a macroscopic state is 
attained. 

Entropy attains its maximum 
value in the equilibrium 
state, since the thermo- 

dynamic probability in the 
equilibrium state is maxi- 
mum. Consequently, the 
entropy of an isolated system 
which is represented by itself 
will increase until it attains 
its maximum value 
compatible with the 
conditions. 
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Boltzmann entropy hypothesis is of general significance. This 
is indeed found to be true. 

Formula (19.12) provides a very clear visual interpretation 
of entropy. The more ordered a system, the lower the number 

of microscopic states through which a macroscopic state is 
realized. Let us assume, for example, that all the molecules 
are fixed at definite positions. In this case there is only one 
microscopic state and the corresponding entropy value is 
equal to zero. The larger the number of microscopic states, 

the more disordered a system. It can therefore be stated that 
the entropy of a system is a measure of its order. In the 
equilibrium state the entropy attains its maximum value, 
since the equilibrium state is the most probable state 
compatible with fixed conditions and is thus the macroscopic 
state accomplished through the largest number of 
microscopic states. Obviously, a system which is represented 
through itself moves towards the equilibrium state. In other 
words, the entropy of a system represented by itself must 
increase, This is one of the formulations of the second law of 
thermodynamics (see Sec. 22). 
CALCULATION OF THE ENTROPY VARIATION IN 

PROCESSES OCCURRING IN AN IDEAL GAS. This is 
carried out in accordance with formula (19.2) taking formula 
(19.3) into account: 

dS — d(Cyln T 4- RIn V). (19.13) 

The change in the entropy in an isothermal process is 
given by formula (19.6): the entropy increases with increasing 
volume and decreases with decreasing volume. This result can 
be easily understood without calculations: an increase in 
volume indicates an increase in the number of positions 
which can be occupied by a fixed number of particles. Hence 
the number of different possible distributions over these 
places increases. In other words, the number of spatial 
microscopic states increases, i.e. the entropy increases. 

For isochoric processes (dV = 0), we have 

S58, Gant. AE (19.14) 

i.e. the entropy increases with temperature. This result can be 
expressed as follows: the mean energy of particles increases 
with temperature, and hence the number of possible energy 
states also increases. 

For adiabatic processes, we obtain from (19.13) 

T V 
ed -Cyh- ERI (19.15) 
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and since 

Tı Vy! = TE ; S C,/Cv, 

we have In(T;/T;) = (y — 1) ln (V,/V2) = — (y — 1)In(V2/V}). 
Formula (19.15) then assumes the form 

C V 
Sume er capuc] R |in — = i 2791 | (E J: [>> 0, (19.16) 

1 

since —C,+Cy+R=0 (in accordance with the Mayer 
equation (17.17a)). Thus, in adiabatic reversible processes the 
entropy does not change. The reason behind this is not hard 
to understand. During an adiabatic expansion of a gas, the 
entropy increases due to an increase in the volume. However, 
since the temperature decreases in this case, the entropy 
drops and these two tendencies completely compensate each 
other. 
HEAT AS A FORM OF ENERGY. We can now answer the 

question raised above as to why an infinitely small amount of 
heat 5Q is not a total differential. This is so because the 
quantity of heat is characterized not only by the energy but 
also by another quantity associated with it. This is the 
entropy which can be quantitatively represented by formula 
(19.3). Thus two quantities of heat 6Q, and 6Q, which 
correspond to the same energy have entirely different 
entropies: the quantity of heat associated with the higher 
temperature has a lower entropy than the quantity 
corresponding to the lower temperature. Since the entropy is 
a function of state, the same quantity of heat may cause 
entirely different changes in the state of a system. 

Example 19.1. Express the work done by an ideal gas 
during isothermal expansion in terms of the change in 
entropy. 

The work done by v moles upon isothermal expansion 
from V, to V at To= const is equal to 

V V 

A= f pdV —vRT, f dV/V — vRT, In (V/V,). (19.17) 
Vo Via 

In accordance with (19.13), the change in entropy in this 
case will be 

(2) 

AS= § dS=S,-S,=vR[InV]f,=vRIn(V/V,), — (19.18) 
(1) 

since dT — 0. With the help of (19.18), formula (19.17) can be 
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reduced to the form 

A= T,(S, —S,)=T,AS. (19.19) 

Example 19.2. Two vessels of different volumes contain 
molecules of the same gas at different temperatures T, and 
T,. The vessels are then connected with each other, the gases 
are mixed, and the system attains the equilibrium state. Find 
the change in entropy during this process. 

The reversible process through which the system can be 
transformed from the initial to the final state involves the 
isobaric expansion of each gas to the total volume. In this 
case the temperature of each of the gases changes to the final 
temperature (T; + T,)/2. Consequently the change in 
entropy for each gas will be given by 

(T6 Ti)/2 "qup 
1 2 

AS, 7 vC, 1 des t 

T,+T, 
AS, = vC, ln ————,, POE 

where C, is the molar heat capacity at constant pressure. The 
total change in entropy will be equal to 

(T, * Ty Tic 
AS = AS, + AS, = vC, ln — 2vC, In : 

ee Ee OMIT, "S 2y 09g 

Sec. 20. CYCLIC PROCESSES 

The work done during a cyc- 
le and the efficiency are 
considered. Different formula- 
tions of the second law of 
thermodynamics are discussed 
and their equivalence is proved. 
The operation of refrigerators 
and heat engines is described. 

DEFINITION. A cyclic processis one in which the initial and 
final positions coincide. A cycle is represented in the state 
diagram by a closed curve (Fig. 33. A cycle can be 
completed in the clockwise or anticlockwise direction. Hence, 
wherever necessary, arrows are used to indicate the direction 
along which a cycle proceeds. Different parts of a closed 
curve representing a cycle can also be expressed by letters. 
For example, L, and L, denote different lines connecting 
states 1 and 2. 
WORK OF A CYCLE. Starting from the state 1, we shall 

complete a cycle by moving along the line representing it in 
the clockwise direction. The work done in this case is equal 
to 

(2) a) 

A= f pdV 4 f pdV. (20.1) 
M jd 
1 2 
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Fig. 33. A cycle. The work of the 
cycle is determined by the area 
bounded by the curve depicting the 
cycle 

2. Thermodynamic Method 

The first integral in this equation is equal to the work done 
during the process shown by the line L, which represents 
a transition from state 1 to state 2. It is equal to the area 
enclosed between this curve, the V-axis, and the segments 
(1, V,) and (2, V4). The second integral has a negative value 
(dV « 0) and is equal to the work which must be performed 
in order to return the system from state 2 to state 1 through 
the process represented by the curve L,. The absolute value 
of this integral is equal to the area bounded by the curve L,, 
the V-axis, and the segments (1, V, ) and (2, V;), but with the 

negative sign. Consequently, the work of the cycle, which is 
equal to the sum of the two integrals in (20.1), is given by the 
area bounded by the closed curve representing the cycle. The 
definitions of a cycle, the work of the cycle, and other 

concepts considered in this section are not associated with an 
ideal gas and are of a general nature. If both sides of the 
equation 

8Q —- dU 4 pdV, 

representing the first law of thermodynamics are integrated 
over the cycle under consideration, we obtain 

§3Q=§ dU+§ pdV. (20.2) 

In this equation, the integration is carried out over the 
cycle. The integral of a quantity which is not a total 
differential means that it is the sum of very small values of 
6Q, corresponding to very small segments of the cyclic curve. 
The integral of a total differential over a closed contour is 
equal to zero: 

$ dU-U, — U, - 0. (20.3) 

This property of a total differential was described in detail 
in Sec. 15. With the help of (20.3), Eq. (20.2) can be reduced 
to the form 

This means that the total work performed during a cycle is 
due to the quantity of heat supplied to the system. For one 
part of the cycle, heat is supplied to the system, while for the 
other part, heat is taken away from the system. If a cycle is 
traversed in the clockwise direction, the heat supplied to the 
system is more than the heat taken away from it. 
Consequently, the system performs positive work. 



There is an infinitely large 
number of processes in which 
the heat supplied to a system 
is completely converted into 
work. Such processes, 
however, are not cyclic and 
will not be discussed here. 

Since the total change in the 
entropy of a cycle is equal 
to zero, the entropy supplied 
to the system must be equal 
to the entropy given away 
by the system. This means 
that there can be no cycle in 
which heat is only supplied 
to the system and is 
delivered nowhere. Hence, the 

efficiency of the system is 
always less than unity. 
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If we go round the cycle in the counterclockwise direction, 
ie. move from point 1 to point 2 along the curve L, and 
return along L,, the work will have the same absolute value 
but will be negative: 

(2) (1) (2) a) 
A, 7 f pdV & f pdV— 2! J pdV + f pav |= — A, 

1 2 

ij n B [gn 
(20.5) 

where A is the work (see (20.1)) done while going round the 

cycle in the clockwise direction. Thus, in this case the system 
itself does not perform work. Rather, work is performed on 
the system. The system transforms work into heat: heat is 
supplied to one part of the cycle and the system gives away 
more heat at another part than it receives. On completion of 
the cycle, the system returns to its initial state. 

At each point of the cycle (Fig. 33), the temperature of the 

system is defined by the equation of state. Generally 
speaking, the temperature changes from point to point and is 
maintained at each point with the help of an appropriate 
thermostat. Hence, in order to complete a cycle we can 

assume that either the system is placed in a thermostat with 
varying temperature, or it moves from one thermostat to 
another at different temperatures. The second representation 
is often more visual, since in this case we can speak of 
a source and a sink which are assumed to exist permanently. 
In the first representation, we would have to speak of only 
one thermostat with a higher (lower) temperature. 

It is difficult to determine at which points the system gives 
away heat to the thermostat and at which points receives 
heat from it. Theoretically, the answer to this question is 

quite simple: the system gives heat to the thermostat at 
points where 6Q « 0 and receives heat at points where 60 — 
7 0. In other words, the system releases heat if dU + pdV < 
«0 and receives heat if dU+pdV>0. The points of 
transition from the segments where the system releases heat 
to the segments where it receives heat are determined by 
solving the equation dU+pdV=0. The solution of this 
equation depends on the type of the cycle and the equation 
of state and is, generally speaking, not simple. Later we shall 
show how these points can be determined graphically. 

EFFICIENCY. A system performing a cyclic process is 
essentially an engine which transforms the heat supplied to it 
by the thermostat into work (see (20.4)). The efficiency of the 
engine depends on the fraction of the supplied heat 
transformed by it into work, and is characterized by the 
quantity 1 defined as the ratio of the work A performed by 
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Nicolas Léonard 
Sadi Carnot 
(1796-1832) 

Fig. 34. Carnot cycle 
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the engine during one cycle to the quantity of heat Q+? 
supplied to it by the thermostats: 

n= A4/Q?. (20.6) 

The work A in this formula is graphically measured as the 
area of the closed curve representing the cycle, and is given 
by formula (20.4), and Q' *! is the amount of heat supplied by 
the thermostats to the system. This quantity is positive. For- 
mula (20.4) can be rewritten as 

$sa= f 89+ f 8Q0— Q'" QI? — A, (20.7) 
EFI t=) 

where f and f are integrals over the segments of the cycle 
(+) (-) 

where heat flows into and out of the engine respectively, and 
Q? is the amount of heat leaving the engine (negative 
quantity). With the help of (20.7), expression (20.6) for the 
efficiency can be rewritten as 

n=)  QOyg? - 1 goyge. (20.8) 

This quantity is always less than unity, since Q‘~) is 
negative. 
CARNOT CYCLE. The Carnot cycle (Fig. 34) is the 

simplest in design but most important in principle. It consists 
of two isotherms connecting states 1, 2 and 3, 4 at 
temperatures T, and T, respectively, and two adiabats 
(6Q — 0) connecting the states 2, 3 and 4, 1. The direction of 
the cycle is indicated by the arrows. Two thermostats are 
required for a Carnot cycle. The thermostat with the higher 
temperature T, is called the source, while the one with the 

lower temperature T, is called the sink. The system must be 
thermally insulated from the surroundings during the 
adiabatic parts of the cycle, i.e. the system must not exchange 
heat with the surroundings. Figure 35 shows the Carnot cycle 
in the S, T coordinates. 

The problem of mutual conversion of heat and work was first 
investigated in 1824 by the French engineer S. Carnot in his treatise 
“Reflexions sur la puissance motrice du feu et sur les machines 
propres à développer cette puissance". He obtained the results of 
fundamental importance which are at present associated with the 
cycle bearing his name. The concept of entropy did not exist at that 
time, and Carnot studied this problem from the point of view of 
thermogen. Nevertheless, the results obtained by Carnot are correct 
and retain their significance to this date. 
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Carnot cycle in the T, S coordinates 

12-761 

20. Cyclic Processes 177 

EFFICIENCY OF THE CARNOT CYCLE. In the case of an 

ideal gas, we can easily calculate Q+? and Q'~?. The amount 
of heat supplied to the system by the source on the 
isothermal segment 1, 2 is 

(2) (2) Q 
Q = f Q= | dU + f pdV - RT, In(V;/V,), (20.9) 

0) a) a) 

since the change in the internal energy of an ideal gas in an 
isothermal process is equal to zero, while the second integral 
in this equation is given by (18.4). On the segment 3, 4, the 
system gives away heat to the sink at temperature T,. 

Similarly, we get 

4 

QO zi 86Q — RT, In (V, /V, ). (20.10) 
(3) 

It follows from Eq. (18.8) that 

T,VbT,Yy', T.VqI =TLVy. (20.11) 

Dividing termwise the left- and right-hand sides of the first 
equation by the left- and right-hand sides of the second, we 
get 

V;/V, — V4/V,. (20.12) 

Consequently, we obtain 

In (V;/V,)2 —In(V4/V,). (20.13) 

Taking into account Eqs. (20.9), (20.10), and (20.13), we can 
rewrite Eq. (20.8) as follows: 

| n=1- T/T. | (20.14) 

It should be noted that this formula is applicable to 
a reversible Carnot cycle. 
CALCULATION OF EFFICIENCY WITH THE HELP OF 

ENTROPY. This calculation is made in the simplest way 
(Fig. 35) It follows from the definition of entropy that 

8Q — T d$, (20.15) 

whence 

(2) (2) 

Qo f 6Q — T, f dS = T, (S,—S,), 
(1) (1) 

(20.16) 
(4) (4) 

Q = f ëQ =T; | d$- T(5, = S3). 
(3) (3) 
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Fig. 36. Schematic illustration of 
the second law of thermodynamics 
in the Kelvin formulation. The 
process shown in the figure is 
impossible 

Fig. 37. Schematic illustration. of 
the second law of thermodynamics 
in the Clausius formulation 

The entire work performed 
in a cycle is due to the heat 
supplied to the system. 

There can be no cyclic 
process whose only result is 
the work and heat exchange 
with only one heat reservoir 
(Kelvin's formulation of the 

second law of thermo- 
dynamics). 

There can be no cyclic 
process whose only result is 
the heat transfer from 
a colder body to a hotter 
body (Clausius’ formulation 
of the second law of thermo- 
dynamics). 

2. Thermodynamic Method 

TT, 

lot? -|o 

Recalling that entropy does not change during an adiabatic 
reversible process (see (19.16)), we have S, = 5, and S, = S4, 
and hence formula (20.8) combined with (20.16) assumes the 
following form: 

n-71-c[T;($,—$,)]/[T; (527 5))] 2 1 - T;/T,. (0.17) 

As expected, this formula coincides with (20.14). 
KELVIN'S FORMULATION OF THE SECOND LAW OF 

THERMODYNAMICS. Formula (20.8) shows that the 
efficiency cannot exceed unity, but the possibility of the 
efficiency being equal to unity is not excluded by this for- 
mula. This may happen if Q' ̂ ) — 0, i.e. if the heat supplied 
to the engine by the thermostat is completely transformed 
into work. The Kelvin principle states that there can be no 
cyclic process whose only result is the work and the heat 
exchange with only one heat reservoir (Fig. 36). The 
conversion of a certain amount of heat into work must be 
accompanied by a heat transfer from the heater to the re- 
frigerator. This 1s one of the expressions of the second law of 
thermodynamics. It was put forward for the first time in 1851 
by W. Thomson (Kelvin). 

CLAUSIUS' FORMULATION. Another possible formulation 
of the second law of thermodynamics is that there is no cyclic 
process whose only result is the heat transfer from a colder to 
a hotter body. With such a formulation, the validity of the 
second law of thermodynamics is almost obvious: it is diffi- 
cult to imagine a situation when no changes have occurred 
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but a certain amount of heat was transferred spontaneously 
from a colder body which became still cooler to a hotter 
body which became still hotter (Fig. 37). 

This statement was proposed by Clausius in 1850 and 
refined by Kelvin in 1854. Kelvin, who independently for- 
mulated the second law of thermodynamics, subsequently 
remarked that his formulation differs only formally from that 
by Clausius. T 
EQUIVALENCE OF KELVIN’S AND CLAUSIUS' FOR- 

MULATIONS. If a process whose only result is the transfer of 
heat from a cooler body with temperature T, to a hotter 
body with temperature Ti were possible, 

we could take a heat engine with the source at the 
temperature T, and the sink at the temperature T, from 
which the heat is transferred to the source as a result of the 
above-mentioned process, i.e. this process as if cools the sink 
and heats the source: 

This engine could take from the source the amount of heat 
|Q,| supplied to it as a result of the former process and 
transform a part of it into work. The final result would be 
that the state of the body at temperature T, does not change, 

and the entire heat taken from the body at the temperature 
T, is transformed into work: 

ESE 

eH 
Thus, the first of the above processes (if it were possible) 

creates a situation in which the second engine can do work 
without ultimately using the heat contained in the heater. 
Hence, the first two processes considered above jointly lead 
to the third process (Fig. 38). The left-hand side of the figure 
illustrates the Clausius formulation of the second law of 
thermodynamics, while the right-hand side, Kelvin's for- 
mulation. Thus, their equivalence has been proved. 
REFRIGERATOR AND HEATER. If a cycle is traced in the 

reverse direction (see (20.5)), the engine does not produce any 
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Fig. 38. Schematic proof of the 
equivalence of the Kelvin and 
Clausius formulations of the second 
law of thermodynamics 

Fig. 39. Schematic diagram of 
a refrigerator 
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work. On the contrary, work is done on it. This work is 
converted into heat so that a certain amount of heat is taken 
from the colder body, the equivalent amount of heat due to 
work is added to it, and the total amount of heat is 
transferred to the source. Thus, the net result of the cycle is 
that the colder body from which heat is removed is cooled, 
while the hotter body which receives heat is heated. Such an 
engine operating on the basis of the reverse cycle is called 
a refrigerator or a heater depending on its purpose. The 
schematic diagram of a refrigerator is shown in Fig. 39. 
During the operation, the machine increases the temperature 
of a hotter body and decreases the temperature of a colder 
body. The efficiency of the device is characterized in two 
ways depending on its purpose. 

If the efficiency is estimated by the ability of the device to 
increase the temperature T, of a hotter body, i.e. the machine 
operates as a heater, its efficiency is characterized by the 
coefficient 

T 1 d E. d i (20.18) a = i 
! | A] T,-T, 1—(T,/T,) n 
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which is equal to the ratio of the amount of heat transferred 
for heating to the work spent for this. On the other hand, if 
the efficiency of a device is estimated by the ability to 
decrease the temperature T, of a colder body, it is 
characterized by the coefficient 

"oll 2x 0 
=. jal Tse. 4 

In expressions (20.18) and (20.19) the quantities |Q, |, |Q>|, 
and | A| are calculated with the help of the same formulas as 
used for calculating vj in (20.14). The absolute values of the 
amount of heat and work are used instead of algebraic values 
(as in (20.8)) in order to make the representations in Fig. 39 
and in Eqs. (20.18) and (20.19) more graphical. 
OTHER POSSIBLE CYCLES. In principle, there is a very 

large number of possible cycles, since any closed curve on, 
say, p vs. V diagram has a cycle corresponding to it. Various 
cycles are used in engineering to convert heat into work or 
vice versa. Several dozens of cycles are used in practice. Their 
detailed account is given in engineering thermodynamics and 
appropriate branches of engineering. 

Example 20.1. The temperature of 18°C must be 
maintained indoors, while outdoors the temperature is 35°C. 
It is known that heat in the room is generated by the 
equipment, bulbs, etc, people in the room and energy 
penetrating from outside. The thermal power generated in the 
room due to all these factors is equal to Pr — 418 W. Find 
the power of refrigerator which can ensure the required 
temperature, assuming that it operates at the maximum 
possible efficiency for refrigerators. 

According to (20.19), the efficiency of a refrigerator is 
characterized by the coefficient 

sadi (20.19) 

£2 T4/(T, — T,) 2291/7 517.1. 

Consequently, the power of the refrigerator can also be 
calculated by the same formula: 

` 

P= Pr/t, = 24.44 W. (20.20) 

Example 20.2. The temperature of 35°C must be 
maintained indoors, while the temperature outdoors is 18°C. 
In spite of the fact that heat is evolved by devices and other 
heat sources in the room, the heat losses through the room 
walls are high. It is found that in order to maintain the 
constant temperature, heat must be supplied to the room at 
a power P;=418 W. Find the power of a heat pump 
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Fig. 40. An example of a cycle for 
which the efficiency maximization 
problem is solved 

2. Thermodynamic Method 
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assuming that it operates at a maximum possible efficiency. 
In accordance with (20.18), the efficiency of a heat pump is 

characterized by the coefficient 

&, = 308/17 = 18.1. 

Consequently, the same formula gives 

P= Pr/§, = 23.09 W. (20.21) 

Example 20.3. Consider the performance of the cycle 
consisting of three adiabats (4,45, A4444,, and A,A,) and 
three isobars (4,44, 44,454, and A,A,) (Fig. 40). Given the 
temperatures T',, T;-—w«T,.. 1425 T,—pf,, T, —0T,, and 
Tg —£T,, where the parameters a, DB, 8, and e are determined 

by the operating conditions of the machine and its structural 
features. Find the relation between the parameters if the work 
done on the segment 4,4, is equal to the work done on 
AAs, and the work of the cycle as a function of the 
parameters and temperature T, (the number v of moles of 
a working gas and the molar heat capacity C, — const are 
given). Find the condition under which the work of the cycle 
is maximum for the given temperatures T, and T, and 
calculate the compression ratio p,/p,. Find the efficiency of 
the cycle. 

In accordance with (18.11), the condition that the works 
done on 4,A, and A,A, are equal can be written in the form 

vCv(T,—T3)/(y — 1) =vCv(T,— Ts)/(y— 1). Hence, tak- 
ing into account that T4 — T,, we get T,=T,, ie. d=€. 
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For adiabats A,A, and A,A,, we obtain 

PHS” F-E” (20.22) 

T, 8 \ Pa "OT. EXE l 

If =e, then p3/P4 = ps/Pe. Since p; — ps, pa— ps and 
Po = p,, We have p;/p, — p. /pi- 

For adiabat A,A,, we get 

T;/T, — (p, /p, * ̂ . (2023) 

But T,/T,—9, pilp,— Galpa) Ga /p1) — Ga pa) Ps /Pe ), 
and hence relation. (20.23) can be written in the form 

a — (ps /p. Y!" (p, [ps7 9^. (20.24) 

Then, taking into account (20.22), we obtain a= 

= (8/3) (B/e) = B?/5? or 

8 = Bia. (20.25) 

The work of the cycle is equal to the energy supplied to 
the working body in the form of heat: 

A-Q-—vC,(T, — T;) - vC,(T, —- T4) * vC, (T, — T,) 

vC,T, QB-1—a—6— £) 

VC,T , (2B + 1 — a — 28/y/o). (20.26) 

where 5=e=6///a. In this relation B= 7,/T, =const, and 

hence the maximum can be found from the condition 
dA/da = 0 or vC,T, (Ba */? — 1) = 0, i.e. it can be attained at 
a= 2/3. The compression ratio can be determined from 
(20.23): 

P2/py = al"), (20.27) 

The efficiency of the cycle is 

n= 4/0, 
where A is defined by formula (20.26), and 

QO =v, (T; — T,) + vC,(T; — T4) - vC, T, QB — a — 8). 

Consequently, 

| 2Bü - 1o) 1-a 

BR- 1a) -a 
(20.28a) 



Fig. 41. Arealcycle of a four-stroke 
combustion engine 

Fig. 42. An idealized cycle of a four- 
stroke combustion engine 
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The maximum efficiency is attained at a = B?’ and is equal 
to 

Nmax = (20°? — 30 + 1)/ [2 (0? — a]. (20.28b) 

Substituting x — T,/T, or x — (p, /p, ! !"* into this for- 
mula, we can represent the efficiency of the cycle as 
a function of the compression ratio or of the ratio of 
temperatures corresponding to the beginning and the end of 
the compression stage. It can be seen that we must increase 
x in order to increase the efficiency. 

Example 20.4. Find the efficiency of a four-stroke internal 
combustion engine. Assume that the mixtures of air with 
petrol vapour and air with combustion products behave as 
an ideal gas with the adiabatic exponent y to a sufficiently 
high degree of accuracy. Figures 41 and 42 show the 
schematic diagrams of a real and an ideal cycle respecti- 
vely. 

In state 1, the chamber of volume V, contains the gas 

obtained after combustion of the compressed air-petrol 
mixture and having a high pressure p,. The working stroke 
(expansion of the gas along the adiabat /, 2) is characterized 
by a positive work. In state 2 (lower dead point) the 
expansion reaches the maximum value, and the piston is in 
the extreme position. The volume V, is equal to the sum of 
the volumes of the combustion chamber and the cylinder. 
After the exhaust valve opens, the pressure in the cylinder 
drops to a value close to atmospheric pressure. In the ideal 
cycle these processes are considered to be instantaneous. In 
the real cycle, the exhaust valve opens before the piston 
reaches the lower dead point 2, and therefore the transition 
2—3 is not strictly isobaric. On the segment 3-4 the 
exhaust gases remaining in the cylinder are swept out. At the 
upper dead point 4 the exhaust valve closes and the intake 
valve opens. The segment 4-5 corresponds to the fuel 
charging. At the point 5 the intake valve closes and on the 
segment 5— 6 the working mixture is compressed. At the 
point 6 the mixture is fired, and the pressure in the 
compression chamber increases to p,. In the ideal cycle, it is 
assumed that the points 5 and 3 coincide, and hence the path 
3-4 coincides with 4-5, and no work is done on the 
segment 3-4-5, 

The work of the cycle is calculated by formula (18.10): 

i Z0 (2 [m m ES 
fel Ves) qe V; 
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_ (Pi ~ Po) Vi jes Tana 

y= Vs 

R(T,—T VW -RT T| i (Ya , (20.29) 
yel Vi 

where T, and T, are the temperatures of states 1? and 6. In 

this formula, as usual, the work is calculated per mole of the 
substance. Considering that y —1 — (C, — Cy)/Cy — R/Cy, 
formula (20.29) can be written in the form 

AUR, — T (S1 (20.30) 

The energy spent in increasing the temperature of a mole 
of the gas from T, to T, is equal to 

Q'?- Cy(T, - T,), (20.31) 

and hence the efficiency of the cycle is (see (20.6)) 

n21-(V,/V4)  !. (20.32) 

The ratio V,/V, is called the compression ratio. The larger 

the compression ratio, the higher the efficiency. It turns out 
that the efficiency calculated from formula (20.32) is about 
twice as high as the efficiency of real internal combustion 
engines. The reason behind this discrepancy is that the 
operating conditions adopted for the ideal cycle considerably 
differ from operating conditions of a real cycle. 

Sec. 21. ABSOLUTE THERMODYNAMIC 
TEMPERATURE SCALE 

The absolute thermodynamic 
temperature scale is introduced 
proceeding from the fact that the 
efficiency of reversible engines 
based on the Carnot cycle is 
independent of the working 
substance. It is proved that the 
temperature introduced in this 
way is equivalent to that defined 
in Sec. 11. The meaning of 
the negative absolute thermo- 
dynamic temperature is dis- 
cussed. 

EFFICIENCY OF REVERSIBLE ENGINES BASED ON THE 

CARNOT CYCLE AND WITH IDENTICAL SOURCES AND 

SINKS. Reversible Carnot cycles with the same source and 
sink can be realized by using different engines having, for 
example, different working substances. It is stated that all 
reversible engines based on the Carnot cycle have the same 
efficiency. Before proving this statement, which is sometimes 
called Carnot's first theorem, it should be remarked that not 
all reversible engines have the same efficiency, but only those 
which are based on the Carnot cycle and have identical 
sources and sinks. For an arbitrary reversible cycle it is not 
enough to fix two temperatures and two thermostats, and this 
statement may not hold in the general case. 
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Fig. 43. Two engines a and b with 
different efficiencies: n, > n, 

2. Thermodynamic Method 
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In other words, Carnot’s first theorem can be formulated 
as follows: The efficiency of the Carnot cycle does not 
depend on the working substance and structural features of 

the device. For an engine with one source and one sink at 
constant temperatures, the Carnot cycle is the only possible 
working cycle, since if there are no other sources or sinks, the 

transition from the source temperature to the sink 
temperature and the reverse transition to complete the cycle 
can be made only adiabatically. 

Let us prove this by contradiction. Suppose that (Fig. 43) 
the efficiency n, of an engine 

is higher than the efficiency n, of another engine 

We shall assume that | Q% | = | Q$? |. Since n, > na, (QM? < 
« |Qf? |, i.e. the two engines receive equal amounts of heat 
from the source but must give off different amounts of heat 
to the sink: the engine with the higher efficiency must give off 
less heat to the sink than the other engine with the lower 
efficiency. We shall prove that this is impossible. 

Let us start the engine a in the forward direction and use 
the work done by it to put into operation the engine b which 
works backwards, and hence operates as a refrigerator: 



Fig. 44. To the proof of the identity 
of efficiencies of reversible engines 
having the same sinks and sources 
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Then the engine b will take from the sink an amount of heat 
| Qj? | which is modulo larger than the amount of heat | Qt! | 
given off to the sink by the first engine. Thus, the sink loses 
a certain amount of heat equal to the difference between the 
amounts of heat indicated above. On the other hand, the 

source will receive from the second engine the same amount 
of heat | Qí* | as was taken from it by the first engine, since 
[QUO « | Qf? |. The net result is the extraction of heat from 
the sink and complete conversion of it into work (see 
Fig. 44), which is in contradiction to the second law of 

thermodynamics in Kelvin’s formulation. Thus, we have 
proved that two reversible heat engines based on the Carnot 
cycle with the same sources and sinks cannot have different 
efficiencies. 

On the basis of formula (20.14) we can now state that the 
efficiency of a reversible Carnot cycle does not depend on the 
working substance and structural features of the engine and 
is determined only by the ratio of temperatures of the source 
and the sink. The efficiency is always lower than unity and 
approaches it when either the temperature of the sink tends 
to zero or the temperature of the source tends to infinity. 
ABSOLUTE THERMODYNAMIC TEMPERATURE SCALE. It 

has been proved above that the efficiency 

n-(Q'? « 97/9? - 1 Qoo (21.1) 
has the same value for all reversible engines operating with 
a source at temperature T, and a sink at temperature T. 

Hence, the ratio Q°/Q is a function of only T, and T,: 

(QQ =f (T2,T,). (21.2) 

Suppose that we have a body with a temperature T, in the 
interval between T, and T,. This body may serve as 



188 

Fig. 45. To the definition of the 
tem- absolute thermodynamic 

perature scale 

2. Thermodynamic Method 

a source as compared to the temperature T'; and as a sink in 
comparison with T,. Let us use it as is shown in Fig. 45. 
The engines a, b, and c are reversible, and in accordance with 
what has been proved above, have identical efficiencies. 

The combination of two reversible engines a and b is 
a reversible engine whose efficiency must be equal to the 
efficiency of the engine c. This means that 

Q^ sgh, gp-gn, ori a, ARA 
(21.3) 

Relation (21.2) for these engines has the form 

Q =f (T2, Tih QQ =f (3,71), 

Qj /Q$^ =f (T; Ts). (21.4) 

Taking into account (21.3), we get 

fü, 7) 7 Q£7/Q? = Qi 7/01? = — (9$ "Joi ) (Q1 QS") 

= —f(T3, T3) (T5, Ti). (21.5) 

The left-hand side of this equation does not depend on T,. 
Hence the function must be such that the temperature T, in 
the product of two such functions in (21.5) is cancelled out. 



21. Absolute Thermodynamic Temperature Scale 189 

This means that 

f(T;, Ti) - — 9(74)/9(T,), (21.6) 

where q is a new function. Thus we have proved that the 
ratio of amounts of heat in the Carnot cycle can be expressed 
as 

QU/Q'* 2 —o(T41)/o(T,). (21.7) 

The function « can in principle be chosen in thousands of 
ways and thus we will obtain thousands of temperature 
scales. Kelvin proposed the simplest dependence 

(T/T) = T/T, Q/Q = —T2/T,, | (218) 

which defines the absolute thermodynamic temperature scale. 
In this scale, the efficiency (21.1) of a reversible engine based 
on the Carnot cycle is 

Hel FoF: (21.9) 

which coincides with (20.14) corresponding to the same cycle, 
but where T, and T, indicate the temperature measures with 
the help of an ideal gas thermometer (see Sec. 11). 
Consequently, the fact that Eqs. (21.9) and (20.14) coincide 
proves the identity of these temperatures. In other words, the 
temperature scale established in Sec. 11 is indeed the 
absolute thermodynamic scale. On the other hand, it was 
shown that the temperature T determined by an ideal gas 
thermometer is equivalent to that introduced in (8.15) as 
a formal parameter used in the analysis of the Gibbs 
distribution. Consequently, in the above presentation the 
letter T denoted temperature everywhere on the same 
temperature scale and was the absolute thermodynamic 
temperature. 
NEGATIVE ABSOLUTE THERMODYNAMIC TEM- 

PERATURE. Proceeding from the second law of 
thermodynamics, we can prove that negative thermodynamic 
temperatures are impossible. 

Suppose that a body having a negative temperature T, is 
chosen as a sink in the Carnot cycle. The right-hand side of 
Eq. (21.8) is positive as well as Q(*), viz. the amount of heat 
taken from the source. Consequently, Q^! is also a positive 
quantity. This means that such an engine must also receive 
heat from the sink, i.e. the heat is taken from the source and 
from the sink and is entirely converted into work. But this is 
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Negative thermodynamic 
temperatures are impossible, 
but the concept of negative 
temperature can be used for 
the analysis of certain 
physical situations. 

All reversible engines 
working on Carnot’s cycle 
have the same efficiency 
which is independent of the 
nature of the working 
substance (Carnot’s first 
theorem). 

2. Thermodynamic Method 

in contradiction to the second law of thermodynamics in 
Kelvin’s formulation, and hence such a situation cannot be 

realized. Thus, negative temperature is impossible. 
And still the concept of “negative thermodynamic tempe- 

rature” is used in certain physical situations. For example, in 

Perrin’s experiments on verification of the Boltzmann 
distribution (see Sec. 9) a thorough stirring of the liquid 
containing suspended particles can be used to make the 
density of particles the same at all altitudes. Since this state is 
essentially a nonequilibrium state, it cannot be described with 
the help of the Boltzmann distribution (9.26). However, we 
can formally assume that this state can also be described in 
terms of the Boltzmann distribution. Since in this case nọ (h) 
must be equal to ng (0) in formula (9.26), it can be said that 

the temperature of the system is T= +o. This does not 

lead to any misunderstanding if we know what we are talking 
about. On the other hand, this concept can be used to 
characterize a specific physical situation in a concise and 
convenient form. In this case, the Boltzmann formula (9.26) 
plays the role of an interpolation formula in which the 
parameter T assumes a negative value. Suppose that the 
concentration of particles in Perrin’s experiment grows with 
height. Obviously, this can be attained with the help of some 

external effect (if, for example, particles having different 
velocities are introduced into the liquid at different altitudes). 
The indication of a negative value of T can then signify an 
increase in the particle density with height. This situation 
could be described with the help of tables or a certain 
empirical formula for each specific case. The concept of 
negative temperature makes it possible to avoid all these 
procedures and describe some physical situations with 
a sufficiently high degree of accuracy. 

The impossibility of negative thermodynamic temperatures 
was strictly proved in the analysis of quasistationary 
reversible processes. This proof, however, does not imply that 
the parameter B =1/(kT) can never be ascribed a negative 
value. The impossibility of negative values of B for an equilib- 
rium state of ordinary systems follows from the fact that the 
energy of such systems is bounded from below and not from 
above. The partition function (7.16) which characterizes all 
the properties of a system in an equilibrium state must be 
finite, which is possible only for B > 0. If, however, a system 
is such that the partition function corresponding to it has 
a finite value for negative B’s as well, it can be said that the 

system is in an equilibrium state at a negative temperature 
and associate this statement not only with purely 
terminological considerations as in examples with Perrin’s 
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experiments. This immediately leads to the conclusion that 
the system must have only energies from a finite interval, i.e. 
must be bounded from above and from below with respect to 
energy. In this case, the partition function has a finite value, 
and the system has quite definite functions of state at B <0. 
The behaviour of the system upon variation of the parameter 
B can be investigated quantitatively, i.e. we can operate with 
it as with the system in an equilibrium state. In this case, the 
negative temperature assumes a physical meaning in a certain 
sense. 
However, unlike ordinary systems for which negative 

temperatures are impossible, these systems, firstly, cannot 
exist in an equilibrium state for an infinitely long time, and 
secondly, they cannot be transferred to a state with 
a negative temperature with the help of reversible quasi- 
stationary processes. Such a transition is realized as a result 
of a strong nonstationary effect on the system. 

Let us consider a system of particles with spin 1/2 and the 
corresponding magnetic moment p,,. In an external magnetic 
field B, the magnetic moment of such a particle can be 
oriented either along the field or against the field, and the 
energy of interaction may assume accordingly the values 
Eg =Emin = — p,B and £; = Emar = PmB, while the energy of 
the system of n particles lies between Emin = — p,nB and 
Emax = PmtB. Thus, the conditions under which the partition 
function must be finite are satisfied. However, in order to 

impart a real meaning to the analysis of the system, we must 
assume that the interaction between the spins and the 
medium (e.g. crystal lattice) is sufficiently weak. In this case, 
we can isolate the degrees of freedom associated with spin 
from other degrees of freedom and take them into account 
only in the partition function as if other degrees of freedom 
were absent. If the interaction with the medium is not 
neglected, we must take into account all the degrees of 

freedom, aud the partition function will contain all the values 
of energy allowed for the particles. These values are not 
bounded from above, and negative values of B will become 
impossible if the partition function is finite. If we disregard 
the interaction of the system with the medium, the system 
can be treated as an equilibrium system with negative 
temperature only during short intervals of time. 

If we assume that interaction between spins is weak, the 
partition function of the system, calculated by the same 
method as in (12.24b), is equal to Z — Z1, where 

Z, = ePmBB 4 e Pm BB _ 2cosh (p,,BB). (21.10) 
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Thus, the partition function, and hence all thermodynamic 
equilibrium characteristics of the system, are defined both for 
positive and negative values of B. When f is negative, we can 
say that the system is at a negative absolute temperature. The 
parameter p varies continuously from — oo to coo, the 
partition function varying continuously with it. However, the 
temperature T = 1/(kB) undergoes a discontinuity at B =0, 
namely, T(B— —0)- —o, while T (B— --0)— oo. There- 
fore, the temperatures T — oo and T — — oo correspond to 
the same physical state, and the transition from states with 
positive temperatures to those with negative temperatures is 
realized through T — oo rather than through T — 0 K. 

Let us trace the change in the distribution of magnetic 
orientations with temperature in a given field. We shall 
follow the variation of the partition function Z (whose value 
is completely determined by Z,) and the number of particles 
which is fixed. Considering that the energy of an atom having 
the magnetic moment p,, in the field B is — (p,,- B) we see 
that the first term of Z, in (21.10) describes the orientation of 
magnetic moments along the field, and the second term, 
against the field. At very low positive temperatures 7T— 
+ +0K the first term is rather large, while the second is 
very small. This means that at a positive temperature close to 
0 K, all the magnetic moments are oriented along the field, 
and all the particles are on the lower energy level, the upper 
level being unoccupied. As the positive temperature T 
increases, the parameter B remains positive and decreases. 
Hence the first term in Z, decreases and the second increases. 
This means that the number of particles whose magnetic 
moments are oriented along the field decreases, while the 
number of particles with the opposite orientation increases. 
From the point of view of energy this means that the 
population density of the lower level decreases and of the 
upper, increases. For T — + œ, B — +0, and the population 
densities of the levels become equal. In this case, there is no 
preferable orientation of magnetic moments. The number of 
particles with magnetic moments along the field is equal to 
the number with moments against the field. 

As B goes over through 0 to negative values, Z, continu- 
ously changes, which causes a continuous change in the 
distribution of particles among energy levels. At small 
negative values of B, the first term in Z, becomes somewhat 
less than the second term. This means that the system 
becomes ordered, but the orientation of magnetic moments 
against the field B predominates. In other words, the 
population density of the upper energy level becomes higher 
than that of the lower level. In this case, the temperature is 
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negative and high in the absolute value. With a further 
decrease of B towards negative values, the role of the second 
term in Z, becomes more significant. The negative 
temperature in this process increases and approaches the 
value zero from negative values. Thus, as the negative 
temperature increases, the magnetic moments get oriented 
against the field, the population density of the upper energy 
level increases and of the lower level decreases. As T— 
— —0OK all the magnetic moments are directed against the 
field and all the particles populate the upper level. The lower 
energy level is unoccupied. This state corresponds to the 
complete population inversion of energy levels. Thus, the 
negative thermodynamic temperatures are characterized by 
an inverse population density of energy levels. The inversion 
is the stronger the closer the negative temperatures to 0 K. 

The total energy of a system at a negative temperature is 
higher than at a positive temperature. Consequently, in order 
to make a transition from a state at a positive temperature to 
a state at a negative temperature, energy must be supplied to 
the system rather than taken away from it. 

In spin systems, negative temperatures can be created by 
a rapid change in the magnetic field in which the magnetic 
moments have been predominantly oriented along the field at 
a positive temperature. If at a rapid change in the direction 
of the magnetic field the magnetic moments do not have time 
to “catch up” with it, a negative temperature will exist for 
a certain time in the spin system. The levelling out of the 
inverse population corresponds to the tendency of T to — oo. 
At T = — oo, the population densities level out, and there is 
no population inversion at positive T's. Spin systems with 
negative temperatures were observed in crystals, and their 
behaviour was in accord with general regularities discussed 
above. The inverse population of energy levels forms the 
basis for the operation of optical amplifiers and oscillators 
(lasers). 

Sec. 22. THE SECOND LAW OF THERMODYNAMICS 

The definition of entropy given 
in Sec. 19 for an ideal gas is 
generalized for an arbitrary 
case. The second law of ther- 
modynamics is formulated in 
terms of entropy, and its sta- 
listical nature is analyzed. 

13—761 

CARNOT'S SECOND THEOREM. Let us prove that the 

efficiency of an irreversible engine based on the Carnot cycle 
is always lower than the efficiency of a reversible engine 
operating with the same cycle and having the same source 
and sink. The proof is obtained by contradiction in the same 
way as was used in Sec. 21 in the analysis of the efficiency of 
reversible engines having the same sources and sinks. 
Suppose that the efficiency of an irreversible engine is higher 
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than the efficiency of a reversible one. We shall start the 
irreversible engine in the forward direction (machine 
a in Fig. 44), and the reversible engine (machine 5b) in 
backward direction. Repeating the considerations of Sec. 21, 
we arrive at the conclusion that this is impossible. Thus we 
have proved that the efficiency of the irreversible engine 
based on the Carnot cycle cannot be higher than the 
efficiency of the reversible engine with the same source and 
sink. It should be emphasized that we are comparing the 
efficiencies of reversible and irreversible engines based on the 
same Carnot cycle and not the engines operating with 
different cycles. We can find an arbitrary number of 
reversible engines operating on the basis of some cycle and 
having higher efficiency than that of a reversible engine 
operating on some other cycle. 

Let us now prove that the efficiency of a reversible Carnot 
cycle is always higher than the efficiency of any other 
reversible cycle whose maximum and minimum temperatures 
are respectively equal to the temperatures of the source and 
the sink of the Carnot cycle. In the proof we shall use the 
cycle shown in Fig. 46 on the T, S plane. The reversible cycle 
different from the Carnot cycle and satisfying the conditions 
of the theorem is depicted by a closed curve inside the 
rectangle A,A,A,A, formed by tangents A,A, and A,4, to 
it. Integrating the relation 60 = T d$ — dU --dA over the 
cycle, we obtain 

$60—$ TdS—6 dU $ dA— A, 

since $ dU — 0. In the given case, for the Carnot cycle we 
have 

Fig. 46. Totheproofofthe theorem 
on the maximum efficiency of 
a reversible Carnot cycle 

A; A, 

Ac= $ Tes qua SETA dS 
i 3 

=T, (S, —S,)+ T, (8, —S,)=(T, — T,)(S, — S,). 

The amount of heat supplied to the cycle is 
A; A; 

QC? =| Tds = T, fds =T, (S,—S,), 
Ay A, 

and hence the efficiency of this cycle is 

Ag, Ty Sia. Ae Tem — 
Qc? T, T, 

which is identical to the expression obtained earlier. 
For the other engine whose cycle is depicted by the curve 
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inside the rectangle corresponding to the Carnot cycle we get 

A=4$TdS=o60 =(T, —T,)(S,—5S,)—0,-90,-—0,;-—6, 

= Ac—Aj234. A1234 704 05 034 t O4. 

The amount of heat supplied to this engine is 

(= (TdS =T, (S,—S,)-9, —0, = QF - A,,, 

A147 0, 04, 

whence 

fi ee 
Q" qe Ay 

Considering that 4c=ncQe), we can transform this 
expression as follows: 

B ncQe? — Aig— Ad; 

" Ge’ = Ay 

_ nel’ = Ara) * ncA,4 — Ai, — A55 

QU — A, 

-nc—A,4(1— nc)/(QC? — ^14)— A33 / (QU? — Ai) 

A547—65-t 05, 

whence it follows that r| € nc. 
The equality n = nc can be attained only when A,4 — 0 

and A5, —0, i.e. when the other cycle under consideration is 
also a Carnot cycle. This proves the theorem. If the curve 
depicting the other cycle is not in contact with the vertical 
segments of the Carnot cycle in Fig. 46 but either crosses 
them or lies inside the rectangle, the proof is similar and the 
result is the same. We leave it to the reader to independently 
derive 1t. $ 

Returning to Carnots second theorem, let us write it 

analytically. The efficiency of a machine is always given in 
the form (21.1), while for a reversible cycle with the same 
source and sink it is given in the form (21.9). For the case 
considered above, the theorem we have proved can be written 
analytically as follows: 

14496 Uoc « T-— T/T] (22.1) 

or, alternatively, 

Que - TUT,. Q22) 
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Fig. 47. To the proof of the 
Clausius inequality for an arbitrary 
cycle 

2. Thermodynamic Method 

The minus sign in this inequality indicates that Q*) and 
Q'^! have different signs. Relation (22.2) written in the form 

O/T, + PT, < 0, (22.3) 

is called the Clausius inequality for the Carnot cycle. 
Obviously, it becomes an equality for a reversible cycle. Let 
us generalize this inequality to an arbitrary cycle and show 
that it becomes an equality only for reversible cycles. 
CLAUSIUS INEQUALITY. We shall consider an engine for 

obtaining work, shown schematically in Fig. 47. The 
reservoir is at a constant temperature T,. The heat 6Q(*? 
taken from it is transferred to the reversible engine 
1 operating periodically on the basis of the Carnot cycle. 
During a cycle, the engine performs work A, and transfers 
the amount of heat 5Q at a temperature T to the cyclic 
engine 2 which can be an arbitrary machine performing any 
cycle, reversible or not. Generally speaking, the temperature 
T is not constant and depends on the processes occurring in 
engine 2 and in surrounding medium. Engine 2 performs the 
work A, during a cycle. Suppose that the duration of cycles 
of engine J is much (infinite number of times) shorter than 
the cycle duration of engine 2. Therefore, we can assume that 
the temperature T is constant during a cycle of engine 1. 

The work $4, performed by reversible engine 1 during 
a cycle is 

T p yp 
A, =8Q")( 1 -— )=89) —-(—+ -1 64, 09%(1- eser (1) 
" -3g) (7 )=s0(}- j (22.4) 



22. Second Law of Thermodynamics 197 

where we took into account formula (22.2) which in the case 
of the reversible engine / becomes an equality, and 5Q is the 
amount of heat which must be positive if it is supplied to 
engine 2. 
The work A, performed by engine 2 during a cycle is given 

in accordance with the general formula (20.4) by 

A,- $8Q. (22.5) 

The total work produced by the two engines during a cycle 
of engine 2 is 

A = §8A, + A, = $ (5A, + 80) = $22. (22.6) 

Let us consider these equalities in greater detail. The 
integral $ 4, is taken over many cycles of engine 1 whose 
total duration is equal to the duration of a cycle of engine 2. 
The integral $(5A, + 5Q) is taken over a cycle of engine 2 
(5A, is expressed in terms of Q via formula (22.4)). 

In accordance with the Kelvin principle, a system 
consisting of two engines cannot have work as the only result 
of its cycle. In the scheme under consideration, heat does not 
leave the system (the dashed line envelopes the two engines 
as well as all other things connected with their operation, i.e. 
no heat can leave the system by definition). Hence, this 
system can operate only if work is done on it, or at least if 
the work produced by it is equal to zero: 

A « 0. 

Taking into account (22.6), we can write this inequality as 

£39 «o, (22.7) 

since T, =const>0. It holds for any cycle performed by 
engine 2. This expression is called the Clausius inequalityand 
is valid for any cycle. 

Let us prove that expression (22.7) becomes a strict 
equality for a reversible engine. Suppose that engine 2 is 
reversible but expression (22.7) is a strict inequality, i.e. 

A«0. (22.8) 
However, if engine 2 is reversible, the entire system is 

reversible since engine | is reversible by definition. Hence we 
can start the system in the backward direction, and then A > 
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Rudolf Julius Emanuel 
Clausius 
(1822-1888) 

A reversible engine based on 
the Carnot cycle has the 
maximum efficiency not only 
because it is reversible but 
also because heat is supplied 
to it only at maximum 
temperature and is removed 
only at minimum tempera- 
ture. 

The entropy of an isolated 
system increases ultimately 
due to equal probability of 
all its microscopic states 
through which the system 
attains the most probable 
macroscopic state. 

2. Thermodynamic Method 

>0, which is in contradiction with the Kelvin principle. 

Consequently, condition (22.8) does not hold, and the only 
possible sign is equality. Thus, the equality sign in the 
Clausius inequality (22.7) corresponds to reversible processes, 
while the inequality corresponds to irreversible ones. 

Relation (22.7) for reversible processes (with the equality sign) was 
obtained in 1854 by Clausius and independently by Thomson. For 
irreversible processes, inequality (22.7) was substantiated by Clausius 
in 1862-1865. He introduced the concept of entropy as a measure of 
the ability of heat to be converted into other forms of energy. 

ENTROPY. For reversible processes, 
becomes an equality: 

inequality (22.7) 

80 
—- — 0. 2.9 a. (22.9) 
This means that the integrand in (229) is a total 

differential: 

6Q/T— dS, (22.10) 

where S is the entropy. Thus, formula (19.3) for the entropy 
of an ideal gas is generalized for an arbitrary system. The 
analysis of the physical meaning of entropy (see Sec. 19) 
remains valid. In particular, the Boltzmann formula (19.12) is 
valid for all cases and not only for an ideal gas. 

THE SECOND LAW OF THERMODYNAMICS. Suppose 

that a closed system, i.e. the system isolated from other 
systems, goes over from state I to state 2 as a result of some 
process (Fig. 48). Let us return the system to state 1 with the 
help of a reversible process. Of course, in this case the system 
is no longer isolated. By returning the system to state I, we 
complete the cycle to which the Clausius inequality (22.7) can 
be applied: 

(2) (1) 

6Q [60 uie ——— eu). 
re | T 9 

(1) (2) 
L L, 

8Q — 
po (22.11) 

During the transition 1-2 along L, the system was 
isolated, and hence Q in the integral over L, must be equal 
to zero, and the integral vanishes. On the other hand, 
according to (22.10) we can assume that the integrand in the 
last integral of (22.11) is (6Q/T) — dS, since the transition 2 
— 1 is reversible. Thus, expression (22.11) becomes 

(1) (1) 

féQ/T- [d$—5,— $, «O0, 
p (2) 

2 
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Fig. 48. To the proof of the 
nondecrease of the entropy in closed 
systems 

No irreversible engine can be 
more efficient than 
a reversible engine which is 
based on the Carnot cycle 
and has the same source and 
sink as the irreversible engine 
(the second Carnot theorem). 

In processes occurring in an 
isolated system the entropy 
increases. In nonisolated 
systems, the entropy may 
increase, decrease, or remain 

unchanged depending on the 
nature of the process occur- 
ring in it. 
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or 

S: 2 S4. (22.12) 

This means that as the closed system goes over from state 
1 with entropy S, to state 2 with entropy S,, its entropy 
either increases or remains unchanged. This is just the 
expression for the second law of thermodynamics. In 
a simpler form, the second law of thermodynamics can be 
formulated as follows: the entropy of an isolated system does 
not decrease during the processes. It is significant that this 
statement deals with isolated systems. Depending on the 
nature of processes, the entropy of nonisolated systems may 
increase, decrease, or remain unchanged as can be seen from 

the example of an ideal gas. It should be noted that the 
entropy of an isolated system remains unchanged only in 
reversible processes. In irreversible processes, it increases. 
Since, as a rule, the processes in an isolated (closed) system 
proceed, irreversibly, the entropy of an isolated system 
practically always increases. The increase in entropy indicates 
that the system approaches the state of thermodynamic 
equilibrium. 

Thus, the first law of thermodynamics describes the 
quantitative relations between the quantities characterizing 
a system while the state of the system changes but gives no 
idea about the direction of these changes. The second law 
indicates the direction of changes in the system if they must 
occur or the absence of the changes if they cannot take place. 
STATISTICAL NATURE OF THE SECOND LAW OF 

THERMODYNAMICS. Entropy is equal to the logarithm of 
the number of microscopic states, through which a given 
macroscopic state is realized, multiplied by the Boltzmann 
constant (see (19.12). An increase in the entropy of an 
isolated system means that the system changes in the 
direction of the most probable, i.e. equilibrium, state. During 
this change, however, fluctuations are possible in principle, 
and during a certain interval of time the system changes 
towards less probable macroscopic states. During this 
interval, the entropy of the isolated system decreases rather 
than increases or remains unchanged. Hence, the law of 
nondecreasing entropy in an isolated system does not 
absolutely prohibit a.decrease in entropy. The relative role of 
fluctuations increases for small systems (see Sec. 6) 
Consequently, the probability that the prohibition of 
decreasing entropy is violated is considerably higher for 
systems containing a relatively small number of particles. 
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However, the law of nondecreasing entropy in isolated 
systems containing not very small number of particles is 
practically absolute. Its violation is as unlikely as, for 
example, the event that the air contained in a room will 
suddenly squeeze into a glass which stands on the table. 
THE CHANGE IN ENTROPY IN IRREVERSIBLE 

PROCESSES. The calculation is based on the fact that the 
entropy is a function of state. If a system has accomplished 
a transition from one state to another as a result of an 
irreversible process, it is logical to mentally transfer the 
system from the first state to the second with the help of 
some reversible process and calculate the entropy change in 
this case. It will be equal to the entropy change during the 
irreversible process. 

Let us consider the change in entropy when the 
temperatures of two bodies brought into thermal contact 
equalize. We shall denote the masses, specific heats at 
constant volume, and temperatures of the first and the second 
body by m,, cy,, T; and m,, cy,, T, respectively. In order to 
simplify calculations, we shall assume that heat exchange 
occurs at a constant volume (V, - const) of each of the 
bodies, specific heats cy, and cy, do not depend on 

temperature, and T, > T,. We can find the temperature T; of 
the bodies after the attainment of thermodynamic equilibrium 
from the equation 

m,cy,(T, — T3)=m,cy2(T; — T), 

which yields 

q 2I ne (22.13) 
m,cy, t ms;cy,; 

The transition from state 1 to state 2 is shown 
schematically in Fig. 49. The irreversible process of heat 
exchange when two bodies are brought in contact is depicted 
in Fig. 49a. In the initial state, the bodies m, and m, are 
isolated from one another and have different temperatures. 
Then they are brought into thermal contact. As a result of 
heat exchange, the bodies go over to state 2. However, 
a transition from state / to 2 can also be accomplished with 
the help of reversible processes (Fig. 49b). [In this case, the 
bodies m, and m, are considered to be isolated, and each of 
them is brought to state 2 at the same temperature 7;. After 
this they are brought in contact, but this does not introduce 
any change into their state. Hence the initial and final states 
are the same in both cases, and the change in entropy can be 



Fig. 49. The method of calculation 
of the change in entropy during the 
thermal contact of bodies 
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calculated by using formula (22.10) for a reversible process: 

2 8g hgT BdT 
AS= {= = 2, 22.14 À, T ud T tmu T ( ) 

where 6Q — mcyd T. After evaluating the integrals, we obtain 

AS 2 m,cy, ln (T5/T;) 4 m,cy ln (T3/T,). (22.15) 

This is just the entropy change in irreversible process. By 
a direct substitution of (22.13) into (22.15), we find that AS > 
0. It is, however, clear without calculations that this 

should be so according to the second law of thermodynamics 
in the form (22.12). We can make sure of it in a different way 
too. Let us realize the heat exchange between two bodies 
with the help of a certain engine which reversibly transfers 
heat from the hotter body to the colder one. Let, for the sake 
of definiteness, T, be higher than T,. Then the amount of 
heat E taken from the hotter body will change its entropy 
by AS,— — |8Q|/T,, while the same amount of heat 

transferred to the colder body will increase its entropy by 
AS, = [8Q | /T,. Consequently, the total change in entropy of 

the two bodies in thermal contact upon a transfer of E 
from the hotter body to the colder body is equal to AS — 



202 2. Thermodvnamic Method 

by WV, 

by V, 

by Vj *V, 

fy V, 
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Fig. 50. The method of calculation 
of the change in entropy during the 
pressure equalization in a gas 

= AS, + AS, = |8Q| [(1/T,) — (1/T,)] > 0, since T, > T,, i.e. 
the entropy actually increases during heat exchange. 

By way of another example, let us consider the pressure 
equalization in a gas whose two parts were under different 
pressures before the contact, but had the same temperature T. 
The system is assumed to be thermally insulated, and the 

density of the gas is so low that it can be considered ideal. 
This means that the internal energy depends only on 
temperature and does not change upon mixing. In this case, 
an equilibrium process which replaces the nonequilibrium 
process consists in isothermal expansion of both parts of the 
gas having volume V, and V, to the total volume V, 4- V, 

(Fig. 50). Then 
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2 Vi+V, V, «V. 

AS =f ds = j a j GEM 
a re $4 

because T d$ — dU 4 p dV- p dV (dU 2 0). 
Considering that p/T=mR/(MV), where M is the molar 

mass of the gas, we obtain after integration 

kee Kirk, m, 
AS=— Rin 

M V, V, 
m, 
— RI + M n 

The pressure of the gas mixture is found from the Dalton 
law: 

P3 7 (p,V, t p;V2)/(V, t V5). 

THE ROLE OF ENTROPY IN PERFORMING WORK. The 

Kelvin principle rules out a cyclic process whose only result 
would be the complete conversion of a certain amount of 
heat into work as a result of contact with only one heat 
source. The formula for the efficiency of the Carnot cycle 
shows that the amount of heat taken from the source can be 
converted into work only partially, the portion of heat 
converted into work being larger for lower sink temperature. 
The physical reasons behind this are the requirements of the 
second law of thermodynamics. Since in any processes the 
entropy in closed systems increases, a certain amount of heat 
cannot be completely converted into work because this would 
mean the disappearance of the corresponding entropy, which 
is in contradiction to the second law of thermodynamics. 
Hence, when the work is done, at least the same entropy 
which was taken from the source must be transferred to the 

sink. The entropy taken from the source in the Carnot cycle 
is equal to Q! *)/T,, while the entropy transferred to the sink 
is — QC/T,. It follows from what has been said above that 
we must always have 

—e—p meg um. 

or, in other words, 

(+) (=) Q "n^ 
T, T, 

<0, 

which coincides with (22.3). It is this circumstance that limits 
the efficiency of an engine. 

The maximum efficiency is attained in a_ reversible 
machine, since in this case the minimum possible entropy is 

transferred to the sink. In order to increase the value of the 
maximum possible efficiency, we must either increase the 
temperature of the source or decrease the temperature of the 
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sink. The temperature of the sink cannot be lowered 
unlimitedly because of natural conditions existing in the sur- 
rounding atmosphere. Of course, we can artificially cool air, 
but work must be done for this purpose, and ultimately we 
would have no increase in efficiency. Hence we must assume 
that a certain minimum temperature T, is fixed for 
accomplishing work. 

Suppose we have a cyclic engine to which some energy in 
the form of heat 6Q has been supplied at a temperature T. 
The engine will transform into work a part of this energy, 
which under most favourable conditions is equal to 

Wna = (1 — T)/T)8Q. (22.16) 

The energy of the system available for consumption is the 
part of its energy which, when supplied to the engine in the 
form of heat at temperature T, is converted into work. If 
portions of heat 6Q are supplied to an engine at different 
temperatures, the maximum energy converted into work is, 
according to (22.16), given by 

Wa, 7 [0 — T,/T)8Q. (22.17) 

The remaining energy, equal to the difference between the 
energy supplied to the engine in the form of heat and the 
energy converted into work, is unaccessible for conversion 

into work. 
Suppose that the state of a system which converts its 

energy into work changes, and the system goes over from 
a state 1 to state 2. In this case, the maximum energy which 
can be converted into work also changes. Obviously, this 

change in the maximum accessible energy is given by 

(2) 

AW, = [(1— Tj/T)6Q. (22.18) 
a) 

Moreover, we must assume that states / and 2 are related 

through a reversible process (this assumption must be made 
in integral (22.18) in order to retain the condition that the 
change in the accessible energy is maximum). Under these 
conditions, 6Q/T— dS, and the integral can be easily 
evaluated: 

AWa,—70— Ty (S; — 81). 

This means that the additional energy constitutes only 
a part of energy Q which is supplied to the system in the 
form of heat, the difference between them being the larger the 
greater the change in entropy. This circumstance must be 
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taken into account while analyzing the devices which convert 
heat into work. 

Example 22.1. Calculate the change in entropy when 
a monatomic ideal gas of mass m,, which has initial 
temperature T, and pressure p,, is mixed with a diatomic gas 
of mass m, at the initial temperature 7, and pressure p;. 
Molar masses of the gases being mixed are M, and M,. 

The initial volumes V, and V, of the gases can be found 
from the equation of state: 

p,V, — V4RT,, p;V, — vjRT,, (22.19) 

where v, — m, /M, and v; — m,/M, are the numbers of moles 
of the monatomic and diatomic gases. We can assume that 
the gases are mixed in two consecutive stages: isothermal 
expansion of each of the gases to the volume V= V, + V, and 
temperature equalization at constant volume. The final 
temperature attained as a result of temperature equalization 
is determined from the law of conservation of energy: 

viCyi(Ti — T) 2 v2Cy2(T- T), (22.20) 

whence 

viCy T, * v; Cy; T; 

vi Cy, t v;Cv, 
T- (2221) 

where Cy, and Cy, are molar heat capacities at constant 

volume. 
In the general formula T dS — dU 4- p dV we must put 

dU - 0 for isothermal expansion and dV=0 for temperature 
equalization at constant volume, where dU = vCydT. Hence, 

the total change in entropy when the gases are mixed: 

Yav TaT Yav TaT 
AS = "RT + waly + uR T + Cni- 

V T V T 
=v,R EA +y Cr In. t v4R In 7 + vC e 

(22.22) 

Considering that 

(V/V) = p1T(pTi), (V/V3) 2 p2TÁpT;), Cy, — 3R/2, 
Cy, = 5R/2, 

we find from (22.22) 
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A i B 

T 5/2 T 7/2 

AS — v,RIn [5 (=) | 4: v,R In | (=) (22.23) 
P\Y, P\T, 

Example 22.2. Analyze the irreversible expansion of a gas 
at a constant external pressure. Two cylinders A and B are 
connected by a thin tube having a stopcock C (Fig. 51). 
Cylinder A with a volume V is closed and contains v moles of 
a monatomic ideal gas under a pressure p > py. The open end 
of cylinder B is in contact with atmosphere at pressure pg. 
Cylinder B has a piston which can slide without friction 
along its walls. At first the piston is in the extreme left 
position. Then the stopcock C in the tube between the 
cylinders is slightly opened, and the gas from cylinder 
A slowly flows to cylinder B. As a result, the piston of 
cylinder B moves infinitely slowly to the right. Gases in the 
cylinders exchange heat with the surrounding medium which 
is at a constant temperature Tj. Find the number of moles of 
the gas flowing from cylinder A to cylinder B before the 
system attains equilibrium. Determine the ratio of volume Vg 

of the gas in cylinder B in front of the piston to the volume 
V, the work A performed by the gas, and the amount of heat 
Q exchanged by the gas with the ambient. Calculate the total 
change AS in the entropy of the gas and surrounding 
medium. 

Since the gas expands isothermally, we can write 

pV=po(V+ Vp), ie. p=po(1 + Va/V), (22.24) 
whence 

Vg/V— p/pg — 1. (22:25) 

In order to find the number x of moles transferred as 
a result of expansion to the volume of cylinder B, we write 
the equations of state for the initial and final states: 

pV-— «RT, pyV— (v — X) RTs, 

from which it follows that 

x — v(1— pg/p). (22.26) 
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The work of the gas upon expansion is A = poz, or (see 
(22.26) and (22.25)) 

A — (p — Po) V= pVx/v = xRT, (22.27) 

i.e. during expansion the gas performs work on the sur- 
rounding medium. Since this process is isothermal, the 
internal energy of the (ideal) gas has not changed, and hence 
the entire energy spent for performing work was obtained by 
the gas from the surrounding medium in the form of heat. 
According to the law of conservation of energy, this amount 
of heat is equal to 

Q=A=xRTh, (22.28) 

i.e. the heat was supplied to the gas from the surrounding 
medium. 

The total change in entropy is the sum of the change AS, 
in the entropy of the gas and the change AS,, in the entropy 
of the medium: 

AS = AS, + AS n- (22.29) 

To calculate the change in entropy, we replace the 
irreversible process under consideration by a reversible one 
with the same final state. This will be isothermal expansion of 
the gas: 

(2) 

AS, = { 80/T=vR In(p/po). (22.30) 
(1) 

The surrounding medium transfers to the gas the amount 
of heat Q—xRT,, hence its heat decreases by —Q= 
= —xRT,, and its entropy changes by 

AS,, = —Q/To= —xR, (22.31) 

ie. its value decreases. The total change in entropy as 
a result of the process considered above is 

AS — vRIn (p/py) — xR = vR {In [v/(v — x)] — x/v}, (22.32) 

where p/pg — v/(v — x). 

Example 223. Find the work performed by a gas 
expanding reversibly and isothermally from volume V and 
pressure p to pressure pg and volume V+ Vg (see Example 
222) Compare this work with the work (2227) of the 
irreversible process and express the difference between them 
in terms of the change in entropy. 

The work done during isothermal expansion of the gas is 
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equal to 

(2) (2) 

A, = J pdV= vRT, | dV/V= vRTh In [(V-- Vg)/V] 
a) (1) 

= vRT, ln (p/Po) 2 vRT,ln [v/(v — x)]. 

Taking (22.27) into account, we find 

A — A, ^ xRT, — vRT, ln [v/v - x)] - — T, AS, (22.33) 

i.e. the work done in the irreversible process is smaller than 
in the reversible process. 

Example 22.4. Investigate the irreversible expansion of 
a gas into free space. Given two cylinders A and B of the 
same volume, connected by a tube with a stopcock 
C (Fig.52) The walls of the cylinders (and the tube) are 
assumed to be adiabatic. At first, the stopcock C is closed, 

cylinder B is empty, and cylinder A contains v moles of the 
gas at temperature T. The stopcock C is then slightly opened, 
and the gas flows through the tube from A to B. This process 
is supposed to be sufficiently slow to assume that the gas in 
cylinder A, as well as in B, is in quasistatic equilibrium. 
However, it must not be so slow that the cylinders can ex- 
change heat directly. In other words, we neglect the heat 
exchange between the cylinders. When the pressure in the 
two cylinders becomes equal to p', the stopcock is closed. 
Find the number of moles transferred from cylinder A to 
cylinder B, the temperatures T4 and Tg in cylinders A and B, 

pressure p', and the change AS of the entropy in this process. 
In this initial state, cylinder A contains v moles of the gas 

under pressure p and temperature T— pV/(vR) in volume V, 
and in the final state, v — x moles of the gas at pressure p' 
and temperature T4. The amount of substance has changed in 
this process, hence in order to be able to use formulas valid 

for a constant amount of substance, we must recalculate the 

final state for v moles of the gas at the same temperature and 
pressure. Obviously, if v — x moles of the gas fill the volume 
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V, v moles of the gas will occupy the volume vV/(v — x). 
Hence the final state of the gas in cylinder A is characterized 
by the parameters p', vV/(v — x), and T4'. The transition from 

the initial to the final state is adiabatic, and hence we can 
write the relation (see (18.8)) 

y-1 

ra(v 5) = TV" }, (22.34) 
y=% 

whence 

TA- T(1 — x/v)!-!. (22.35) 
On the other hand, the equation for the ideal gas in the 

final state has the form 

pV-(v—x)PTA4 (22.36) 

for cylinder A, and 

pV-xRTE (22.37) 

for cylinder B. Comparing (22.36) and (22.37, we get 

(v-x)T4=xTġ. (22.38) 
Since the process is adiabatic and no work is done, the 

internal energy of the gas remains unchanged. In other 
words, the change in the internal energy of the gas in the 
process is equal to zero: 

AU =(v—-x)CHT4-—T)+xCT-— T)=0. (22.39) 

Taking into account relation (22.38), we obtain 

T4 = vT/[2(v — x)]. (22.40) 

Tg = vT(2x). (22.41) 

Thus, the gas in cylinders 4 and B is not in thermal 
equilibrium. The value of x can be found from the equation 
which is obtained by equating the right-hand sides of Eqs. 
(22.40) and (22.35): 

vT/[2(v — x)| 2 TU — x/vy' * !. (2242) 

Solving this equation for x, we obtain 

x-v(1—2 Vf (22.43) 

The pressure p' of the final state is obtained from Eq. 
(22.37) into which we substitute expression (22.41) for Tg: 

p’ =xRTg/V=vRT(2V = p/2. (22.44) 
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It should be recalled that the change in the entropy of 
v moles of an ideal gas upon a change in pressure by dp and 
in temperature by dT is equal to 

R16) dT dp 
=e (22.45) 

Consequently, the change in the entropy of v — x moles of 
the gas in cylinder A and v moles of the gas in cylinder B are 
respectively given by 

AS 4 — (v — x) C, In (T 4/T) — (v — x) RIn (p'/p), (22.46) 

ASg — xC,ln(T'g/T) — xR In(p'/p). (2247) 

Then the total change in the gas entropy is 

AS = AS4 -- A$g — C, [(v — x) In (T'4/T) 4- xIn(T'g/T)] 

+ VR In (p/p’). (22.48) 

Sec. 23. THERMODYNAMIC FUNCTIONS AND THE 

CONDITIONS OF THERMODYNAMIC 
STABILITY 

The basic relations for ther- 
modynamic functions are de- 
rived and used to analyze the 
thermodynamic stability crite- 
ria under different conditions. 
The set of experimental data 
required for a complete ther- 
modynamic description of a 
substance is considered. The 
Le Chatelier-Braun principle 
is formulated. 

SOME MATHEMATICAL FORMULAS. Suppose that we have 

three variables connected through a certain relation 

z — z(x, y). (23.1a) 

This means that only two of these variables are 
independent, while the third is a function of the first two. 
This dependence is expressed in (23.1a) in such a form that 
x and y are independent variables, while z is a function of 
these variables. However, Eq. (23.1a) can be solved for x or 
for y, and the relation between x, y, and z can be written in 

the form 

xexy zsy-eyfz x (23.1b) 

Here y, z or z, x are respectively taken as independent 
variables. Thus, the independent quantities can be chosen 

arbitrarily. 
The total differentials of z, x, and y defined by formulas 

(23.1a) and (23.1b) for different pairs of quantities taken as 
independent variables can be written as follows: 

Oz Oz oy oy 
= — dx + —dy, dy = —dx + —dz, 

= Ox E no y "H f 

a 8) dx = dy + az. (23.2) 
oy Oz 



23. Thermodynamic Functions 211 

In thermodynamics, we often deal with total differentials of 
various functions of state, taking different pairs of variables 
as independent. Suppose, for example, that we have a certain 
function F which can be treated as a function of x, y or as 
a function of x, z. Its total differentials for these two cases 

have the following form: 

OF OF 
= ua 23.3a dF s dx + By dy, ( ) 

F OF 
ino i (23.3b) 

ôx oz 

Expression (23.3a) as well as (23.3b) contain the same 
factor QF/Ox. However, the meaning and the values of this 
quantity are quite different: in the first case, it is the partial 
derivative for constant y, while in the second, for constant z. 
In order to avoid misunderstanding, in thermodynamics it Is 
explicitly indicated which independent variables were used 
while calculating a derivative. For example, formulas (23.3) 
should be written as follows: 

E F 
dF- (=) dx + (5) dy, (234a) 

ox J, oy Jk 

OF F 
dF =(|——} dx+ 2 dz. (23.4b) 

ox J, Oz jJ. 

No misunderstanding is possible in this case, and it is clear 
that 

Ga) t) 
This condition can be used to obtain from (23.2) the 

following relation between partial derivatives: 

Óx Qy az\ 

(5 (2)(5).- 7 ru 
If we know that d® is a total differential and can be 

written in the form 

d® = Pdx + Qdy, (23.6) 
where P and Q are some known functions of x and y, it 
follows from the definition and the properties of the total 
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differential that 

Pep geo) qan ex J, Oy. Oy Ox J, 

DEFINITION OF A THERMODYNAMIC FUNCTION. A 

function of state is called a thermodynamic function or 
thermodynamic potential. There is an infinitely large number 
of thermodynamic functions, since if one of them is known, 
any function of this function will also be a thermodynamic 
function of state (we do not discuss here some limitations 

which must be imposed on the choice of the functions). In 
addition to p, V, and T, which characterize a state, we know 
from the above discussion such functions of state as the 
internal energy U, enthalpy H, and entropy S. The internal 
energy was considered in Sec. 14, the enthalpy was defined by 
(17.7), and the entropy in the general case is determined by 
the Boltzmann formula (19.2). As regards entropy, we must 
add a few words about it. 

Let a system in equilibrium consist of two subsystems. The 
entropies of the system and the subsystems are given by 

S-kInT, $, - kInT,, $, — kInT,. (23.8) 
The quantities I, T, and T, are related to the probabilities 

for the system and subsystems through the formulas of the 
form (5.1). According to the probability multiplication rule 
for independent events, we have 

DSL. (23.9) 

Taking logarithms of (23.9) and allowing for (23.8), we find 

i.e. entropy is an additive function of state: the entropy of 
the system is equal to the sum of entropies of its components. 
THERMODYNAMIC IDENTITY. For reversible processes in 

which òQ = TdS, the second law of thermodynamics assumes 
the form 

TdS = dU + pd¥. (23.10) 

This equality is a thermodynamic identity, since it is 
identically valid for all reversible processes. 

FREE ENERGY, OR HELMHOLTZ’ FUNCTION. Besides the 

thermodynamic functions listed above, only a few functions 
among an infinitely large number of functions of state play 
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an important role in thermodynamics. The most important 
among these is the free energy F introduced by Helmholtz in 
1882. 

Let us rewrite (23.10) in the form 

6A =pdV= —dU+TdS. 

The work performed by a system in an isothermal process 
(T=const) can be represented as 

6A = —d(U— TS)2 —dF. (23.11) 

Thus, the infinitely small work performed by a system in 
an isothermal process is a total differential and is equal to 
the change in the free energy taken with the opposite sign: 

Clearly, free energy is a function of state since, according to 
(23.12), it is a function of the functions of state. Consequently, 
in isothermal processes it plays the role of the potential 
energy: its variation taken with the opposite sign is equal to 
the work performed. But this is true only for an isothermal 
process. In an arbitrary process the work is generally not 
equal to the change in the free energy. 

GIBBS’ THERMODYNAMIC FUNCTION. This function is 

defined by 

G=F + pV =H TS. (23.13) 

Sometimes it is called the Gibbs thermodynamic potential. 
MAXWELL THERMODYNAMIC RELATIONS. Each of the 

thermodynamic functions U, H, F, and G can be represented 
as a function of any two independent variables from p, V, T, 
and S, S being introduced by the thermodynamic identity 
(23.10) as an independent variable. In other words, p, V, T; 
and S are connected through two relations, viz. the equation 
of state and the thermodynamic identity, therefore only two 
of them can be independent. 

Let us calculate the total differentials of the 
thermodynamic functions. The total differential dU is 
determined from formula (23.10): 

dU = TdS — pdV. (23.14) 

Other differentials can be easily calculated: 
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dH =dU + pdV + Vdp=TdS + Vdp, (23.15) 

dF = —SdT—pdV (23.16) 

dG = — SdT + Vdp, (23.17) 

E 

! I i 

| 

| 

where we used the expression (23.14) for dU. Combining 
(23.7), and (23.14) to (23.17), we obtain: 

‘op 
S 

.(9U -(= (5 
-(55), E ae pias 

r-(5 i -G (m (m. (23.18) 
és J, Op Js Op Js 05 /, 

"n. _ (OF aS\ (Bp 
5-5), 7-9). (87). 7 (05. 
s.(96V , (20 — (29) (9v 

-S- (37), "je ~ Gr), “Gr, 
The four equalities between the derivatives in (23.18) are 

called Maxwell’s thermodynamic relations. 

- 

ANOTHER FORM OF DIFFERENTIALS OF INTERNAL 

ENERGY, ENTHALPY, AND ENTROPY. In various 

applications it is sometimes necessary to represent the 
differentials dU, dH and d$ in a form different from (23.14), 
(23.15), and (23.10). It is assumed that the internal energy of 
a substance is a function of only temperature and volume, i.e. 
U — U(T, V), and hence 

_ (au ðU aU au = (34) ars (0) s dV = cara (4E K dV, (23.19a) 

where, by definition, Cy — (QU/OT)y. It follows from (23.10) 
and (23.19a) that 

dU, dT QU , p - = dV=Cy— I dy. (234 d$-— Zd T AF s a (23.19b) 
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On the other hand, treating entropy as a function of T and 
V, viz. $2 S(T, V), we obtain 

os os 
dV. 23.20 ag (2), ime). (23.20) 

Comparing (23.19b) and (23.20), we get 

Cy (9$ as\  iffev HE ^ em 
Using the Maxwell relation (0S/6V)r— (Op/OT)y., we can 

transform the second of these equalities as follows: 

(QU/OV)r— T(Op/OT)y— p. Q3.22) 

With the help of this formula, expression (23.19a) can be 
written in the form 

dU — Cyd T [T(0p/OT)y— p]dV. (2323) 

Similar calculations lead to the following expressions for 
the differentials of entropy and enthalpy: 

dT Op 
= Cy— dV. ; dS = Cy mH), E (23.24) 

oV 
dH — c,aT+| v- (5) e. (23.25) 

In the last expression, C, — (0H /0T), by definition. 
If we take T and p as independent variables, we obtain the 

following expression for the differential of entropy: 

dT /àV diego Died SEM 
PT (5), p 

| 
FORMULAS FOR HEAT CAPACITIES. Equating the right- 

hand sides of expressions (23.24) and (23.26) for dS, we obtain 

T 
Ge et Gr) - C S - (37), dp, (23.27) 

(23.26) 

oT T ôT 

whence 

ôp\ dV (aVv\ dp C 6T) e (7), x (23.28) 
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where C,— Cy behaves in a similar way both when the 
volume is changed at p= const and when the pressure is 
changed at V=const. This can be immediately seen from 

oV 

(23.28), since 

2 op e ene (s ar), 
xa SE qr 

(C, m Cy) = (2) a), 

Relation (23.5) for the variables V, p, and T has the form 

Op (90V (p 
b) g Sos Vnd 

Hence formula (23.28) allowing for (23.29) and (23.30) is 
finally written as 

(v/a) 
—Cy= - T——.. 23. C- O= — TV apyr x 

(23.29) 

EXPERIMENTAL DATA REQUIRED FOR COMPLETE 

THERMODYNAMIC DESCRIPTION OF A SUBSTANCE. For- 

mula (23.31) in combination with previously obtained for- 
mulas for dU, dH, and dS allows us in principle to determine 
U, H, and S only if p, V, T, and one of the heat capacities Cy 
or C, are given. On the other hand, the free energy F and the 
Gibbs function G are expressed in terms of U, H, and S and 
hence they can also be determined. Thus, the properties of 
a substance, which must be measured in order to describe all 

its thermodynamic properties are fixed. It is appropriate to 
note that we are speaking only of pure substances. 
When we consider a pure substance in a certain phase (for 

example, in the form of vapour or liquid), we can assume that 
there exists an equation of state p — p(T, V) for it, which in 
principle can be established experimentally, after a sufficiently 
large number of measurements, or theoretically, at least 
approximately. Then the information about heat capacities 
must be experimentally obtained. Together with Eq. (23.31) 
these data give a complete quantitative description of all 
thermodynamic characteristics of the substances. In this way, 
thermodynamic tables for real substances are obtained. 
THE MAIN’ CRITERION OF THERMODYNAMIC 

STABILITY. In an adiabatically isolated system, the equilib- 
rium state is attained at the maximum entropy. This means 



The state of an adiabatically 
isolated system is stable 
when the entropy of the 
system is maximum. 
The state of a system with 
constant volume and entropy 
is stable when the internal 
energy is minimum. 
The state of a system with 
constant pressure and 
entropy is stable when the 
enthalpy of the system is 
minimum. 
The state of a system with 
constant volume and 
temperature is stable when 
the free energy is minimum. 
The state of a system with 
constant temperature and 
pressure is stable when the 
thermodynamic potential is 
minimum. 
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that all the states that are infinitely close to this state and to 
which the system can go over without a supply or removal of 
heat have lower entropy. The second law of thermodynamics 
prohibits transitions to such states, and hence the state of an 
adiabatically isolated system is stable at the maximum 
entropy of the system. 

The general theory of thermodynamic stability was worked 
out in 1875-1878 by the American physicist J. Gibbs who 
formulated the following necessary and sufficient conditions 
for stability of an isolated system: 

(1) in all possible changes in the state of a system, which 
do not affect its energy, the entropy variation either vanishes 
or is negative; 

(2) in all possible changes of the state of a system, which 
do not affect its entropy, the variation of its energy is either 
vanishing or positive. 

On the basis of these general conditions, Gibbs also 
considered particular cases and proposed a theory of 
thermodynamic potential. 

STABILITY CRITERION FOR A SYSTEM WITH 

CONSTANT VOLUME AND ENTROPY. The Clausius 

inequality (22.7), combined with (22.11), for an infinitely small 
irreversible process occurring in a system has the form 

Q < TdS. (23.32) 

Taking the first law of thermodynamics into account, this 
condition can be written as 

dU + pdV— TdS < 0. (23.33) 

In the case of constant entropy (dS = 0) and volume (dV = 
= 0), this gives 

i.e. only the processes accompanied by a decrease in the 
internal energy can occur in the system. Consequently, the 

state with the minimum internal energy is stable. 
STABILITY CRITERION FOR A SYSTEM WITH 

(23.34) 

CONSTANT PRESSURE AND ENTROPY. In this case, 

condition (23.33) has the form 

d(U 4 pV) « 0, (23.35) 
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i.e. only processes accompanied by a decrease in the enthalpy 
H = U + pV can occur in the system. Consequently, the state 
with the minimum enthalpy is stable. 

STABILITY CRITERION FOR A SYSTEM WITH 

CONSTANT VOLUME AND TEMPERATURE. When dV=0 

and T- const, inequality (23.33) becomes 

ie. only processes accompanied by a decrease in the free 
energy F — U — TS can occur in the system. Consequently, 
the state with the minimum free energy is stable. 

STABILITY CRITERION FOR <A SYSTEM WITH 

CONSTANT TEMPERATURE AND PRESSURE. Using 

expression (23.13) for thermodynamic potential, inequality 
(23.33) is transformed to 

dG —SdT+ Vdp <0. (23.37) 

At constant temperature and pressure, dT=0 and dp=0, 
and (23.37) is reduced to the inequality 

ie. only processes accompanied by a decrease in the 
thermodynamic potential can occur in the system. Hence the 
state with the minimum thermodynamic potential is sta- 
ble. 

LE CHATELIER-BRAUN PRINCIPLE.* The stability of 

a state is ensured by the factors which appear in the system 
when the equilibrium is disturbed, and which tend to return 
it to the equilibrium state. The appearance of these factors is 
necessitated by the existence of stable states. In 
electrodynamics, this statement is formulated as Lenz’s law. 

In thermodynamics, it is expressed as the Le Chatelier-Braun 
principle: when a system in stable thermodynamic equilibri- 
um is acted upon by external factors that tend to disturb this 
state, processes emerge in the system, tending to eliminate the 
changes introduced by the external effects. 

* This principle was formulated in 1884 by the French scientist Le 
Chatelier (1850-1936) and later in 1887, in a more general form, by 

the German scientist Braun (1850-1918). 
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THERMODYNAMIC FUNCTIONS IN TERMS OF 

PARTITION FUNCTION. If expression (7.15) for the mean 
energy does not contain the kinetic energy of the general 
ordered translatory motion of molecules, i.e. if the centre of 
mass is at rest, this expression can be used as statistical 

definition of the internal energy. Considering that Z is 
a function of temperature and volume, and B= 1/(kT), the 
derivative with respect to f in this expression can be assumed 
to be taken at constant volume: 

U- A = élnZ kT 2339 

sad op yet 3T )y i ai 

Let us write formula (23.16), taking into account the 
expression for § from (23.12) in the form 

dF- —(U — F)dT/T— pdV (23.402) 

and compare it with the differential of the expression 
(— kT1n Z) considering that it depends only on T and V: 

ôln Z 

ôT 

o(kTInZ) 4, 
&(-krinz-( -r T — kIn z)ar— 

(23.40b) 

Expressions (23.40a) and (23.40b) are identical if the 
internal energy is determined by expression (23.39) and the 
free energy is given by 

F= =k ind. (23.41) 

The remaining thermodynamic functions are expressed in 
terms of the free energy through formulas (23.18): 
pressure 

xau E. P-c-ó3y], 

entropy 

OF ÓlnZ S=-(=—) =kinZ+4T 23.42 
(s), d ( ôT J on 

internal energy 

OF\ _,.,f/émZ\ . 
v-r- rà), =T ( ar ne (23.42b) 
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enthalpy 

H=U+pV; (23.42c) 

temperature and volume 

oH oH ={—_), v=(—_] ; 23.42d 
? ( os ) Y ( ôp i 

Gibbs’ thermodynamic function 

G=F+pV=H-TS. (23.42e) 

Thus, the knowledge of the partition function makes it 
possible to carry out the complete analysis of the 
thermodynamic state of a system. 

Example 23.1. Using the partition function, find the 
thermodynamic functions of a monatomic ideal gas. 

In Example 12.1, the partition function of a monatomic 
ideal gas was calculated in the form of (12.25). Taking into 
account expression (23.41) for the free energy and formula 
(12.26), we arrive at the expression 

3/2 

r= = nk} n | + i} (23.43) 

According to (23.42a), the entropy is equal to 

VQ nmkTp!? 5 | 
S= - (0FJOT)y — nk ul MD = (23.44) 

In accordance with (23.42b), the internal energy is given by 

OlnZ _ 472 U =kT ( aT ) = 3/2nkT. (23.45) 
V 

The pressure can be calculated by using (23.42a): 

E OF E nkT E VN 4kT _ VRT (23.46) 

B mh eae 

where v — n/N , is the number of moles. The enthalpy and the 
Gibbs thermodynamic function are found with the help of 
(23.42c) and (23.42e). 
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Example 23.2. Find the change in the entropy after mixing 
of two monoatomic gases of mass m, and m,, which initially 
occupied volumes V; and V, at temperatures T, and T, 
respectively. 
We shall split the mixing into two consecutive processes: 

the isothermal expansion of each of the two volumes V, and 
V, to the final volume V— V, -- V, and the temperature 
equalization at constant volume. For the initial state we have 

PV =v RT, PaVa = VRT, (23.47) 

where v, =m,/M and v,=m,/M are the numbers of moles 
in each of the portions being mixed, and M is the molar mass 
of the gas. After the temperature and pressure level out and 
equilibrium sets in, we get 

pV=vRT, V=V,4+V,, v=v,4+ v3. (23.48) 

Using the law of conservation of energy for temperature 
equalization, we obtain the following expression for the final 
temperature: 

T- (v, T, 4 v,T)/(v, 4 v3). (23.49) 

Considering the relations V=vRT/p and n=vN,, we 
transform expression (23.44) for entropy to 

3/2 

S=vR i In |= | y il (23.50) 

The change in the entropy of the first mass of the gas is the 
sum of two components: the change in the entropy during 
the gas expansion to the final volume and pressure, and 
during the subsequent change in temperature to the final 
value T: 

kT QumkTP^ ] 5 
AS, 2 vw R4ln| ——————— ae 
ee faf o Gu I z| 

onii kT, (QnumkT,y? R 5 

! p, (2h? 2 
T 5/2 

=v,Rin| {>} |, (23.51) 
p\T, 
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PROBLEMS 

22. 

2.3. 

2.4. 

2.5. 

2.6. 

2:7. 

2.8. 

2.9. 

2.10. 

2.11. 

2. Thermodynamic Method 

The change in entropy AS, is calculated in a similar way. 
The total change in the entropy upon mixing the gases is 

5/2 

AS = AS; +45; = vi n| PL (77) | 
Dp \ T; i 

p T 5/2 

+v,RIn I2) | (23.52) 
2 

Using the law of equipartition of energy, find the internal energy of 
2 1 of hydrogen and 3 1 of carbon dioxide under pressure of 10° Pa. 
A gas expands polytropically, the polytropic exponent being n — 2. 
The initial parameters are T, = 350 K, py = 19.6 x 10° Pa, and V, — 
—5] The final pressure p=1.96x 10° Pa, Find the final 
temperature and volume of the gas. 

One kilomole of an ideal gas under normal conditions (py — 
= 101.3 kPa, T, = 273.15 K) is compressed in a polytropic process 
with the polytropic exponent n — 1.25 to half of the initial volume. 
Find the final pressure and temperature. 
Calculate the free energy F, entropy S, and enthalpy H for | m? of 
helium at temperature 1227^C and pressure 100 Pa. 
Calculate the change in the free energy and entropy of 50 cm? of 
helium upon adiabatic expansion to 100 cm?, if the initial 

temperature and pressure of helium were 1227°C and 100 Pa 
respectively. 
Find the change in the free energy and entropy of 50 cm? of helium 
upon an isothermal expansion to 100 cm?, if the initial temperature 
and pressure were 1500 K and 100 Pa. 
28 g of nitrogen at the temperature 127°C and pressure 0.98 x 
x 105 Pa and 64 g of oxygen at 27°C and the same pressure are 
mixed at constant pressure. The temperature of gases becomes equal. 
(The vibrational degrees of freedom are ineffective in this 
temperature interval.) Find the change in the entropy and 
temperature of the mixture in the equilibrium state. 
1 mole of nitrogen molecules at the initial pressure 0.98 x 10° Pa are 
mixed with 2 moles of oxygen molecules at the initial pressure 
1.96 x 10° Pa. The temperature of gases is the same and equal to 
300 K. Find the change in entropy upon mixing. 
An ideal gas is compressed so that its internal energy does not 
change. Find its molar heat capacity. 
Analyze the behaviour of the thermodynamic functions of a spin 
system, calculated in Example 23.3, at a negative thermodynamic 
temperature. 
Hint. Use the tables for hyperbolic functions. 
One mole of molecules of an ideal gas of mass m is contained in 
a cylindrical vessel of height h in the gravitational field. Find the 
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2.12. 

2.13. 
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heat capacity of the gas in the vessel (provided that mgh«kT). 
Molecules of a diatomic gas start dissociating as a result of a certain 
process. Find the increase in the gas pressure if 107; of molecules 
dissociate at a constant temperature. 
Find the concentration of ideal gas molecules at T = 290 K and p= 
= 105 Pa. 

2.1. Uy, — 490 J; Uco, =882 J. 22. V —(py/p! "V, 21581; T— 
—[pV/(p,V,)] Ty — 110.6 K. 2.3. p—233-105 Pa; T —3248 K. 
2.4. F = — 2460 J; S =1.7 J/K; H —250 I. 2.5. AF = 0.0455 J, AS = 
=0. 2.6. AF = — 0.00345 J; AS — 23-1075 J/K. 2.7. AS =8.3 J/K; 
t—603*C. 23. A$-173 I/K&. 29. C- — Cy. 241. C - Cy 
4 (R/A2) [mghAKkT)]?. 2.12. 10%. 2.13. 2.5- 1025 m? 





Chapter 3 

Electron and Photon Gases 

Basic idea: Identical microparticles are indistinguishable by 
definition. Indistinguishable particles can be of two 
different types: (1) the particles whose number is arbitrary 
in a given quantum-mechanical state and (2) those whose 
number cannot exceed unity in a given state (i.e. either 
0 or 1). 

Analogy: Not more than one impenetrable solid can be 
present at the same time in the same region of space. If, 
however, such objects are, for example, clouds of vapour 
or smoke, several of them can simultaneously exist in the 
same region of space. 

Sec. 24. VARIOUS MODELS OF THE BEHAVIOUR 
OF PARTICLES 

The dependence of the model 
of particle behaviour on their 
properties is considered. The 
concept of indistinguishability 
of particles is analyzed. The 
nature of the statistic depen- 
dence on the particle behav- 
iour model is discussed, and 
a general description of 
various models is given. 

15-761 

MAXWELL-BOLTZMANN MODEL. When considering 
a many-particle system, it was assumed (see Chap. 1) that 
they have some properties which make it possible to 
distinguish between them, although the particles were 
considered to be identical. Accordingly, two microscopic 
states differing only in that two particles exchanged places 
were assumed to be different while calculating the number of 
microscopic states. Such a model of distinguishable particles 
is called the Maxwell-Boltzmann model, and the statistical 

theory based on this model is called the Maxwell-Boltzmann 
statistics. 
INDISTINGUISHABILITY OF PARTICLES. The properties 

which could be used to distinguish between two particles are 
unknown since the particles are quite identical by definition. 
Suppose that there are two identical particles in certain 
states. Obviously, the physical situation will not change if 
these particles interchange places. If we take two electrons, 
their indistinguishability is even more obvious because 
considerations about a possible difference in their internal 
states are irrelevant. If we assume that particles are 
indistinguishable, the rules for counting the microscopic 
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In the Fermi-Dirac statistics, 
there is a "competition" in 
populating a state: if the 
state is occupied by 
a particle, another particle 
cannot occupy it. There is 
no such competition in the 
Bose-Einstein statistics: 
a particle can occupy 
a certain state regardless of 
whether it is occupied by 
other particles or it is free. 
Naturally, if the 
“competition” in the 
Fermi-Dirac statistics is not 
significant, its results must be 

close to those of the 
Bose-Einstein statistics, This 
is the case when the number 
of particles competing for 
a state is small, i.e. if the 
average number of particles 
per state is not large. In this 
case, the Fermi-Dirac and 

Bose-Einstein distributions 
coincide and are reduced to 
the Maxwell-Boltzmann dis- 
tribution. 

3. Electron and Photon Gases 

states will be different from those used in the Maxwell- 
Boltzmann model. 
BOSE-EINSTEIN AND FERMI-DIRAC MODELS. Models in 

which particles are treated as indistinguishable are called the 
Bose-Einstein and Fermi-Dirac models. 

These models differ in the particle behaviour with respect 
to microscopic states. If no two identical particles can be in 
a given state, we have the Fermi-Dirac model, while 
Bose-Einstein model permits an arbitrary number of particles 
in the same state. It should be emphasized that the state is 
characterized not only by energy but by other parameters as 
well. For example, the states having the same energy but 
different .directions of the momentum of particles are 
different. Hence, the above statement can be formulated more 
exactly: each quantum-mechanical state in the Bose-Einstein 
model can contain an arbitrary number of particles, while in 
the Fermi-Dirac model, not more than one particle can be 
present in any state. 

The statistical theory based on the Bose-Einstein model is 
called the Bose-Einstein statistics. 

The statistical theory based on the Fermi-Dirac model is 
called the Fermi-Dirac statistics. 
FORMULAS OF THE MAXWELL-BOLTZMANN STATIS- 

TICS AS A LIMITING CASE OF THE BOSE-EINSTEIN AND 

FERMI-DIRAC STATISTICS. Real particles are indistinguishab- 
le and hence do not fit the Maxwell-Boltzmann model. 
They obey either the Bose-Einstein or the Fermi-Dirac 
statistics. Pauli showed that the particles with integral 
spins obey the Bose-Einstein statistics, while those with 
half-integral spins obey the Fermi-Dirac statistics. Although 
there are no particles obeying the Maxwell-Boltzmann 
statistics, it correctly describes the behaviour of particles 
in the most important cases which are encountered in 
practice. This is so because the formulas of the Bose- 
Einstein and Fermi-Dirac statistics are reduced to the 
formulas of the Maxwell-Boltzmann statistics when the 
number of states available for particles is much larger 
than the number of particles which can occupy these 
states, i.e. when the average number of particles per state 
is small. 

This is the situation that is encountered most frequently in 
practice. 

It should be remarked that in the limiting case the for- 
mulas become identical but it would be wrong to state that 
the behaviour of particles changes. 



25. Fermi-Dirac Distribution 227 

Sec. 25. THE FERMI-DIRAC DISTRIBUTION 

The Fermi-Dirac distribution 
is derived by using combina- 
torial methods by direct cal- 
culation of the number of sta- 
tes for a fixed number of par- 
ticles and total energy. The 
limiting transition to the Gibbs 
distribution is analyzed. 

is* 

CALCULATION OF THE NUMBER OF STATES. Quantum- 

mechanical states of a particle are characterized by a discrete 
set of possible values of energy, viz. the energy levels. Each 
energy level includes a number of states with the same energy 
but differing in respect of some other properties. The problem 
consists in determining different ways in which the particles 
can occupy available states in accordance with “regulations” 
imposed by the model. 

For the clarity of representation, we shall visualize various 
energy levels as large boxes, while different states having the 
same energy as small cages inside these boxes (Fig. 53). The 
number of large boxes is equal to the number of energy 
levels, and the number of small cages in the ith large box is 
denoted by g;. Generally speaking, the number of small cages 
in different large boxes is different. The particles in such 
a model are represented as balls that must be placed in small 
cages. In the Bose-Einstein model, each small cage can 
contain any number of balls, while in the Fermi-Dirac model, 
there can be no two balls in one cage. The balls are 
indistinguishable. Let us denote the number of balls by n and 
calculate the number of possible arrangements of the balls for 
the Fermi-Dirac model. 

Each large box may contain n; particles, where n; < g; The 
total number of particles in all the boxes is n — Yn, First of 
all, let us find the number of ways in which n; indistin- 
guishable objects can be distributed among g, places. This 
problem has already been solved. Its solution is given by for- 
mula (5.4) which has the following form for the case under 
consideration: 

T; = g;!/ [n;!(g; — n)!]. (25.1) 

The microscopic states in each of the large boxes are 
independent, and it is not important which of n particles are 
there in a particular box. Hence the total number of states in 
the set of all the large boxes is equal to the product of 
the number of microscopic states in individual large 
boxes: 

gi! 
F-IIL-ll. — (25.2) 

j nil(g; — nj)! , 

where the symbol [| denotes the product: 

0; — 4405 ... d. (25.3) 
EX i 
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Fig. 53. The model of distribution 
of particles over energies 

nj-2 

gr 

n=l 

£75 

n,-23 
| u-3 

n,-2 

gi74 

3. Electron and Photon Gases 

We consider that i in the product (25.2) takes into account 
all the large boxes. 

Formula (25.2) is the solution of the problem of calculating 
the number of microscopic states for the Fermi-Dirac model. 
THE FERMI-DIRAC DISTRIBUTION. An equilibrium state 

is determined by the requirement that the number of states 
I is maximum. This number depends on nj, i.e. on the energy 

distribution of particles. In calculations, it is more convenient 
to use In T instead of T. If the numbers n; were independent, 
the condition of extremum for In F would have the form 

bin =) Bue (254) 

and would be reduced to the equation (OIn L'/Onj)) 2 0 owing 
to the independence of n. However, n; are actually not 
independent quantities. They are related through the 
condition that the total number of particles is constant: 

on =n, (25.5) 

which means that 

a ön = Yn -0-Yón, (25.6) 
i 

and the condition that the energy is constant: 

Yen, =U, (25.7) 

which leads to 

8U = ja bn; = » = 0. (25.8) 
On; 

Conditions (25.4), (25.6), and (25.8) must be satisfied 
simultaneously, and the quantities n; in each of them cannot 
be considered to be independent. Let us multiply (25.6) and 
(25.8) by indeterminate constants — «x and -— f respectively 
and sum the results: 

(iar — psu - aim - S | 2 - Bei — o i eo. (25.9) 
i 

The constants B and « in this equation account for the 
interdependence of quantities n, Consequently, all nps in 



In the Fermi-Dirac statistics, 
the "competition" among 
particles in populating the 
states is extremely intense, 
since a state occupied by 
a particle is not accessible to 
other particles. In a certain 
sense, it can be said that 
a particle occupying some 
state "repels" other particles 
from this state, as if 

"keeping" them at a certain 
distance from its state. The 
"competition" among 
particles weakens when the 
number of states allowed for 
the particles is much greater 
than the number of particles. 
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(25.9) can be considered to be independent. This means that 
the multipliers of 6n,s must be equal to zero, and hence the 
condition for extremum is written in the form 

(25.10) 

The above method of finding the extremum is called the 
method of Lagrange multipliers. Since the values of n,’s are 
very large, Stirling’s formula (5.13) is used for calculating InT, 
which gives 

Inr ; pu -u(4- t); (25.11) 
ôn; ni 

Consequently, Eq. (25.10) assumes the form 

(25.12) 

(25.13) 

where n;/g; is the number of particles per quantum-me- 
chanical state with energy ¢,. This formula is called the 
Fermi-Dirac distribution. 
LIMIT TRANSITION TO THE MAXWELL-BOLTZMANN 

DISTRIBUTION. If the values of n,/g; are very small, the 
exponent in the denominator on the right-hand side of (25.13) 
is considerably greater than unity. Hence, we can neglect 
unity in the denominator and write the distribution in the 
following form: 

n— Ag,e P", (25.14) 

where A—e *. If in this equation we go over to the 
continuous energy spectrum, taking into account formulas 
(7.7) and (8.1), we obtain exponential distribution (8.2) of the 
Maxwell-Boltzmann classical statistics. Thus, we have proved 
that the formulas of the Fermi-Dirac statistics become the 
formulas of the Maxwell-Boltzmann statistics when the 
average number of particles per quantum state is small. 
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DETERMINATION OF PARAMETER f. The meaning of the 
parameter B can be clarified by using the limiting transition. 
Since we know that B= 1/(kT) in (25.14), this parameter will 
have the same value in (25.13) as well. The meaning of the 
parameter B can also be elucidated directly from formula 
(25.13) without resorting to the limiting transition. For this 
purpose, we find the expression for entropy and compare it 
with the expression d$ — dU/T for the entropy at constant 
volume. This also gives B — 1/(kT). We shall not give this 
derivation here. 
DETERMINATION OF PARAMETER a. The parameter « is 

determined by the normalization to the total number of 
particles, which expresses the condition of conservation of the 
number of particles: 

= = 
GF 

ir [a + Be] - 1^ (25.15) 

Sec. 26. THE BOSE-EINSTEIN DISTRIBUTION 

The Bose-Finstein distribution 
is derived by combinatorial me- 
thods, by direct calculation of 
the number of states at a fixed 
number of particles and total 
energy. The possibility of limit 
transition to the Maxwell-Boltz- 
mann distribution is indicated. 

CALCULATION OF THE NUMBER OF STATES. Each quan- 

tum-mechanical state in the Bose-Einstein model may contain 
an arbitrary number of indistinguishable particles. We shall 
use the same model of large boxes, small cages, and balls as 
in Sec. 25. At first, we assume that all g; small cages and nj 
balls are distinguishable. We shall distribute the balls over 
small cages as follows: we assign a number to a cage and 
enumerate all the balls contained in it; then we number the 
next cage and enumerate the balls contained in this cage, and 

so on. If a cage contains no balls, its number is followed by 
the number of the next cage. We denote the small cages in 
a large box by the symbols i, i5, ..., i, and the balls by the 
symbols ji, j;, ..., j,. Thus, a particular filling of a large box 
has, for example, the following form: 

lj)irjr: he be Jmigher «+ (26.1) 

The sequence represented by this formula has the following 
meaning. The i,th small cage contains the balls with numbers 
jo ji, jr, s the iyth cage is empty, the ipth cage contains 
only one ball numbered j,, the i,th cage contains the balls 
jy", etc. Let us take a specific cage as the first in (26.1). Then 

the number of possible different ways of filling is equal to the 
number of permutations of all the elements following this 
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first cage. The number of these elements is equal to g; — 1 + 
+ n;, while the number of permutations is (g; — 1 + n,)!. Since 
such a number of permutations is possible in each case when 
a specific cage occupies the first place, the number of different 
combinations for all g; cages is equal to g;(g; — 1 +n,)!. We 

carried out this calculation under the assumption that the 
balls are distinguishable and the order in which the cages are 
arranged is significant. But since only the number of balls in 
a specific cage is important and the order in which the cages 
are arranged is immaterial, we must divide the number of 
combinations obtained above by g;!n;! Consequently, we 
obtain the following expression for the total number of 
different microscopic states of n; particles in g; quantum-me- 
chanical states belonging to the energy &;: 

T; = [g;(g; — 1 — n)!]/(g;n;). (26.2) 

The total number of microscopic states is equal to 

1—nj) r=| aux d (263) 

THE BOSE-EINSTEIN DISTRIBUTION. All subsequent 
considerations and calculations are exactly the same as in the 
case of the Fermi-Dirac distribution, starting from formula 

(25.2). The formula equivalent to (25.10) has the same form 
but with In F obtained from (26.3). Instead of (25.12) and 
(25.13), we find 

(26.4) 

(26.5) 

respectively. 
This formula is called the Bose-Einstein distribution. As in 

the case of the Fermi-Dirac distribution, this formula is 
transformed to the Maxwell-Boltzmann distribution (25.14) 
when the average number of particles per quantum-me- 
chanical state is sufficiently small. 
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Sec. 27. THE ELECTRON GAS 

The basic properties of the 
electron gas are described. The 
properties of the electron gas 
in different conditions are ana- 
lyzed on the basis of the Fer- 
mi-Dirac distribution. The Fer- 
mi energy and the characte- 
ristic temperature are calcula- 
ted. The internal energy of the 
electron gas and heat capacity 
corresponding to it are con- 
sidered. 

FREE ELECTRONS IN METALS. Electrical conductivity of 
metals is due to the presence of "free" electrons in them, i.e. 
the electrons that do not belong to a particular atom. These 
electrons are sort of collectivized and belong to all the atoms 
of the metal Consequently, we cannot state that these 
electrons are free in the same sense as the particles in an 
ideal gas or the molecules in not very dense gases. The 
electrons interact, though very weakly, with the totality of all 
the atoms. The electron energy levels are arranged very close 
to each other in view of the large number of atoms with 
which they interact and the large region of space where they 
move (the entire volume of the metal). Their momenta may 
also have different directions at each point of space. All this 
resembles the motion of molecules in a gas, and the totality 
of such electrons is called the electron gas. On the average, 
their charge is compensated by the opposite charge of the 
metal atoms whose electrons form the electron gas. The metal 
is electrically neutral on the whole. 
DETERMINATION OF PARAMETER & FOR THE ELECT- 

RON GAS. In order to obtain the formula (25.15) for 
the electron gas, we proceed in the same way as in Sec. 8 
[see (8.1)]. The volume of an elementary cell of the phase 
volume, where only one particle can exist, is equal to (2rA)*. 
Therefore, the number of quantum-mechanical states in the 
element. Ap,Ap,Ap,;Ax;Ay;Az; of the phase volume is equal 
to 

g = —“— Ap, Ap, Ap, ,Ax,Ay,Az;, 
gi (21h? P xi Dyi Poi Xi Yi Zi 

(27.1) 

where g takes into account the internal degrees of freedom of 
the particle. An electron has a spin which can take on one of 
two values. Hence g = 2 for electrons. However, for the sake 

of generality of the formulas being derived, we shall retain 
g without specifying its numerical value. 

Substituting (27.1) into (25.15), we get 

i= g O APAPAP AXIAY;AZ; 

— (nh exp(z--Be)--1 —— 
1 

(27.2) 

On account of smallness of an elementary cell of the phase 
volume and considering that the energy of a free electron is 
expressed in terms of its momentum through the formula 
t; — p?/(2m), we go over in (27.2) from summation to 
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integration: 

dp.dp,dp, 
"ONE | ava) ae [ftr expla + Bp?/2mJ] * 1^ ded 

where Vis the volume occupied by the gas. Integration over 
spatial coordinates gives the volume V, while in integrating 
over momenta we can go over to spherical coordinates in the 
momentum space. Taking into account the spherical 
symmetry, we can put dp,dp,dp,=4np?dp. This gives 

_ 4ngV p’dp dns 

— QnhP J exp[a - p? / QmkT)] - 1" guy 
0 

where p — 1/(kT). Making in this equation the substitution of 
variables & — p?/(2m,kT), we obtain 

— 4ngV QmkTy? f yea EdE 
O (nA 2 Je ra 

0 

By using the notation 

Faa) = [. es (27.6) (+) EI UE + 1 3 

Vs 
we write (27.5) in the form 

n=gV[m,kT/(2nh*)]?? F, 4, (a). (27.7) 

The integral F,,,(«) is called the Fermi integral. This 
integral cannot be evaluated analytically but can be 
represented in the form of a series. Without going into details 
of mathematical calculations, we just give the result. For 
negative values of a, i.e. for — a > 0, and taking into account 
the principal term of the expansion, we obtain the following 
formula in the first approximation: 

F4) 9 4(— 9 ?/])/n). (27.8) 
Hence, formula (27.7) assumes the form 

4gV m,kTa V? 
= s| =- ; 279 
A 2nh? ) en 
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The Fermi energy of metals 
can be clearly interpreted as 
the maximum energy of 
electrons at 0 K. For 
insulators and semiconductors 
the Fermi energy lies in the 
forbidden energy band for 
electrons and hence, in 
principle, no electron can 
have such an energy. The 
Fermi energy can be defined 
as the energy for which the 
Fermi-Dirac distribution is 
equal to 1/2. This definition 
is also valid for metals. 

3. Electron and Photon Gases 

Thus we have expressed x in terms of other quantities 
appearing in (27.9): 

2nh? (av T 
(27.10) 

m,kTA 4gV 

where m, is the electron mass. 
The number of free electrons per atom in a metal can be 

different, but usually it is close to one electron per atom. 
Hence we can assume that the number of free electrons is 
equal to the number of atoms. If the density of a metal is 
p and the mass of an atom is m,, then n — pV/m,, and 
equation (27.10) assumes the form 

(27.11) 
2nh? (22 y 

E m,kT X 4gm, 

Let us estimate the numerical value of o. For example, 
for copper p = $8 x 10? kg/m?, m, = (M/N a) = 0.063/(6.02 x 
x 10?) kg, where M is the molar mass. Substituting 
these values and T= 300 K into (2711, we find a= 
= — 271. This means that the value of exp [a + £/(kT)] in 
the denominator of the Fermi-Dirac distribution is small up 
to very high electron energies. In the case under 
consideration, we have exp [a-e/(kT)]«e 9 up to the 
energy £-c265 kT, ie. the exponential term in the 
denominator of the distribution can be ignored. Since kT= 
= 1.38 x 1077? x 300 J = 2.59 x 10°? eV for T= 300 K, this 
term can be neglected up to the electron energy of about 
6.86 eV. This energy is quite large, and only a few electrons 
in a metal may have such an energy or higher. Therefore, for 
an overwhelming majority of electrons the exponential term 
in the denominator of the Fermi-Dirac distribution can be 
put equal to zero. 
ANALYSIS OF THE FERMI-DIRAC DISTRIBUTION. Let us 

introduce a new quantity p which is connected with 
x through the relation 

6 

p= —akT. (27.12) 

Then the distribution (25.13) can be written in the form 

l (27.13) 
exp [e — M/T] +1 
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For gj «pg, T50 K, we have exp[(s; — )/(kT)] ^0, and 
hence (n, /g;) 5 1, i.e. each quantum-mechanical state with an 
energy lower than p contains one particle. For £; > u, T> 0 K, 
we have exp[(s; — j)/(kT)] —^ œ and hence (n;/g)—> 0, i.e. 

the quantum-mechanical states with an energy gp are 
empty (there is not a single particle in such states). The form 
of the Fermi-Dirac distribution for T— 0K is shown in 
Fig. 54. Such a form of the distribution is necessitated by 
two requirements. Firstly, the total energy must be minimum 
and secondly, the Pauli exclusion principle must by satisfied. 
For this reason, electrons start to populate quantum-me- 
chanical states from the lowest energy level and occupy the 
quantum states successively, each being occupied by one 
electron. After all the electrons are exhausted, the filling 
process is completed. The last electron occupies the level 
corresponding to the maximum energy. This level is called 
the Fermi level and the energy corresponding to this level is 
called the Fermi energy. Such a graphical definition is 
applicable only to free electrons in a metal. In the general 
case, this definition is not exact. For example, in a dielectric 
the Fermi energy corresponds approximately to the middle of 
the forbidden band, and it is known beforehand that there 
are no electrons that have such an energy. Thus, à more 
genera] definition will be: the Fermi energy is the energy for 
which the Fermi-Dirac distribution (25.13) assumes the value 
1/2. It follows from (27.13) that p is the Fermi energy. 
When T O0 K, the Fermi-Dirac distribution is blurred in 

the vicinity of the Fermi level (Fig. 55). This blurring is 
caused by the interaction between the electrons and thermal 
motion of atoms. Since the mean energy of thermal motion is 
of the order of KT, the region of blurring of the electron 
energy in the vicinity of the Fermi level has also the same 
order. 

THE FERMI ENERGY. In accordance with (27.12), the 
determination of the Fermi energy is reduced to the 
determination of the parameter «. To a first approximation, it 
is equal to [tg = — «kT; where o is given by (27.10) for g = 2: 

(27.14) 

i.e. it is independent of temperature. However, it follows from 
the general definition of « that the Fermi energy depends on 
temperature. 
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f 
. Under which circumstances 

can we represent free 
electrons in a metal as an 
electron gas? 
How does the Fermi energy 
depend on the uniform 
pressure? 
What is the order of magni- 
tude of the characteristic 
temperature for most metals? 
What consequences follow from 
this? 
Under which conditions is the 
electron heat capacity of 
metals significant? 

3. Electron and Photon Gases 

This dependence is included in the terms of the expansion 
for «, which follow the term that was taken into account 
(27.10). Calculations lead to the formula 

Pw HZH ae CE DE . 

: 12 \ pto 

CHARACTERISTIC TEMPERATURE. The temperature 

dependence of the Fermi energy becomes significant when the 
second term in the brackets on the right-hand side of (27.15) 
approaches unity, Le. at a temperature 

Tr — yo/k, 

(27.15) 

Q7.16) 

which is called the characteristic, or Fermi temperature. 

Taking into account (27.14), we can represent formula (27.16) 
as follows: 

(27.17) 

Let us estimate the order of magnitude of this temperature, 
for example, for copper. As the value of « for copper has 
already been calculated at T=300K by using formula 
(27.17), we obtain Tp — 8.13 x 10* K from (27.10). This value 
is much higher than the melting point for copper. For other 
metals, the characteristic temperatures are also of the order 
of 10^, while melting points are of the order of 10?. Hence, 
the condition T« Tp is observed for most of metals in the 
solid state; the Fermi energy for these metals can be taken 
equal to ui, and the distribution of the electron gas in them 
differs only slightly from the Fermi-Dirac distribution at 0 K. 
Such a gas is called a strongly degenerate Fermi gas. The 
Fermi temperature is characteristic of a degenerate gas and is 
therefore called the characteristic temperature. 

MOMENTUM DISTRIBUTION OF ELECTRONS. According 

to (27.13) and (27.4), the number dn of electrons whose 
momenta lie between p and p + dp is equal to 

"A 81V pdp 

?  QmxhP exp[(e — j)/(kT)] - 1 
(27.18) 

In the case of degeneracy, the exponential term in the 
denominator can be put equal to zero. 

VELOCITY DISTRIBUTION OF ELECTRONS. Putting p= 

= mv in (27.18), we obtain 



dn,/dv 

0 

Fig. 56. The velocity distribution 
for electrons for T>0 and T=0 

dne/de 

Fig. 57. The energy distribution for 
electrons for T, >0 

27. Electron Gas 237 

mV v*dv mv 
dn, na pe £ P (27.19) 

The velocity distribution of electrons is shown in Fig. 56. 
When T- 0 K, no electrons may have velocities higher than 
those corresponding to the Fermi energy. 
ENERGY DISTRIBUTION OF ELECTRONS. Changing from 

the variable p in (27.18) to the variable «= p*/(2m,), we 
obtain the formula for the energy distribution of electrons: 

Vf 2m, 3? g!? dg 

2n? ( k? ) exp [Bíe — 19] £1" 

The form of this distribution is shown in Fig. 57. 
MEAN ELECTRON ENERGY. For T=OK, the mean 

energy is 

1 
dn, = =—., 27.20 Ng B kT ( ) 

Ho 

f edn, 3 

ien = (27.21) 
dn J e 

where we have taken into account the fact that only the 
electrons with energies £ « [1j take part in the distribution at 
T=0K. Consequently, we integrate between O and po. 
Besides, the denominator in (27.20) is equal to unity in this 
case, and the energy distribution assumes the form 

(27.22) 

If the temperature differs from zero, we must use formula 
(27.20) for calculating <e> with the value of p given by 
(27.15). As a result of calculations, we get 

E- & fhe 
e-$w[i Fuld (s) s] (27.23) 

INTERNAL ENERGY AND HEAT CAPACITY. According to 

(27.23), the internal energy U of the electron gas is equal to 

1 n?k?n 3 
U-n(G)- Ln 7 : T2, (27.24) 

0 
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where n is the total number of electrons in a metal. If it is 
equal to the Avogadro constant N4, then U is the internal 

energy of a mole of electrons. The molar heat capacity Cy at 
constant volume can be expressed through (27.24) as follows: 

aU n? kT n? kT 
Cy=| — ————— kN 4-2 ——— R. 27:23 y ($F), Ru 4 ( ) 

In accordance with the Dulong and Petit law, Cy —3R, 
which is immeasurably greater than (27.25) since kT«py 

under normal conditions. This means that electronic heat 
capacity of metals is negligibly small. Physically, this is due 
to the fact that only a small part of the total number of 
electrons, viz. the electrons located near the Fermi level, take 
part in the thermal motion at normal temperature. 
Consequently, the degenerate electron gas does not behave as 
an ordinary gas. In particular, its contribution to heat 
capacity cannot be calculated simply by applying the 
principle of equipartition of energy to it. 

The statement that the value of the electron heat capacity 
is insignificant is valid only for high temperatures. At 
sufficiently low temperatures, the electron heat capacity 
exceeds the heat capacity determined by thermal vibrations of 
lattice atoms of a solid, since the latter decreases in 
proportion to T? and becomes negligibly small at very low 
temperatures (see Sec. 46). 

Example 27.1. Find the number of free electrons in 10 cm? 
of copper and the number of electrons whose energies lie 
between 7.01 and 7.001 eV at T— 300 K. 

The concentration of free electrons in copper with density 
p is equal to (p/m,) = [8.9 x 10° x 6.02 x 1073/0.0636] m? 
— 84 x 107? m ?, There are 84 x 1029 x 1075 — 84 x 10? 
electrons in 10cm? of copper. The Fermi energy is 
equal to pg = akT = 271 x 1.38 x 10773 x 300 J = 7.01 eV. 
Hence we must find the number of electrons in the 
region where the Fermi distribution changes abruptly 
and take due care while making the calculations. 
Let us pay attention to the fact that KT— 1.38 x 107 73 x 
x 300 J = 4.14 x 107 ?! J 2 2.59 x 107 ? eV. This means that 
the exponential term varies from 1 to exp (1/2.59) 2 0.68 over 
the interval 0.01 eV from the Fermi energy, which makes it 
impossible to replace the differential by a finite value of de = 
— 0.01 eV for such or larger intervals. In this case, it is 
necessary to evaluate the integral more precisely. However, 
the exponential varies insignificantly over the interval of 
0.001 eV, and we can replace the differential by a finite 
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quantity de — 0.001 eV. Then formula (27.20) gives 

1075 
dn, 2 —— ——7— "e = 20.14 

: (2x9.1 x 10731)32(7.01 x 1.6x 1071?)!20,001 x 1.6 x 107 !? 
(1.05 x 10734)? [exp0+ 1] 

= 9 x 102°, 

When £«p, the exponential term in the denominator can 
be put equal to zero, and for g > pọ we can neglect unity in 
comparison with the exponential term. 

Example 27.2. Find the maximum velocity of free electrons 
in copper at T=0 K. 

For T=0 K, the gas is completely degenerate, and hence 
all the states with energies from zero to the Fermi level are 
filled. The maximum velocity v,,, in this case is connected 
with p, through the relation m,v2,,=2to, i-€. Umax = 
— (2uo/m,)!?. From (27.19) we get 

=Ymax we y Pmax m3 Vo. 

n= dn, = rE J Z dv = ETE > (27.26) 

v=0 0 

where n is the total number of free electrons in the volume V 
Then 

2/3 1/3 3 2341/3 1/3 

T (+) U (7) (27.27) 
m V m V 

€ e 

For copper we have 

n p pNA [89x10 x602x10? 

V m M 0.0636 

=84 x 1073 m 5, 

whence 

| 105 x 10 3*8 x 3.14 x 3.14? 
= oid x10 > 

= 157 x 10* m/s = 1570 km/s. (27.28) 

v (8.4 x 1028313. m/s 

In interpreting this result we must bear in mind that, 
strictly speaking, the mass of free electrons in a metal is not 
equal to the mass of free electrons in vacuum. In a more 
precise theory, the mass of free electrons in a metal is 
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identified with their effective mass that can considerably differ 
from the rest mass of electrons. This difference was not taken 
into account in (27.28). 

Sec. 28. THE PHOTON GAS 

The Bose-Einstein distribution 
is applied to photons, whose 
number need not be constant. 
Plancks formula and the 
Stefan-Boltzmann and Wien 
displacement laws following 
from it are derived. Basic 
properties of the black-body 
radiation are considered. 

BLACK-BODY RADIATION. Black-body radiation is the 
equilibrium radiation that sets in in a closed cavity whose 
walls are kept at a certain temperature. The radiation inside 
the cavity is created by photons with energy g; and 

momentum p; expressed through the following formulas 

£ — ho, p; — ha,/c. (28.1) 

The aggregate of photons in the cavity is called the photon 
gas, since in this case the photons can be treated as particles 
moving without collisions. The photon spin is equal to unity, 
hence they obey the Bose-Einstein statistics. 
DISTRIBUTION OF PHOTONS. Photons in a cavity are 

continuously generated and annihilated. Consequently, when 
deriving the energy distribution of photons we do not have 
any limitation concerning the constant number of photons. 
The total number of microscopic states of photons is, 
naturally, given by formula (26.3). However, the condition 
$ ön; =0 for the constant number of particles is missing, and 
hence the term containing « in Eq. (26.4) is also absent. As 
a result, « — O in expression (26.5) for the energy distribution 
of photons, which in this case assumes the form 

<n) =— 
‘ gi exp (Pe;)— 1 

FREQUENCY DISTRIBUTION OF PHOTONS. The cal- 

culation of the number of photons in the phase space and all 
other considerations and calculations are similar to those 
considered in detail for the Fermi-Dirac distribution applied 
to the electron gas, the only difference being that we must 
take distribution (28.2) instead of (27.10). As a result, instead 
of formula (27.2) for the number dn, of photons whose 
momenta lie in the interval (p, p+ dp), we get 

1 2 irns — 
"o= oxp (Be) 1 rh P P> 

(28.2) 

(28.3) 

where & — cp, and the factor 2 in the numerator takes into 
account two possible transverse polarizations of a photon. It 
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should be recalled that in the case of electrons this factor 
took into account two possible orientations of the electron 
spin. 

Going over from momenta p to frequencies o — pc/h in 
(28.3), we obtain 

oV 1 
dig = 5 a do 28.4 
u zc? exp(fho)—1 (eee) 

PLANCK’S FORMULA. The energy of each photon is equal 
to ho, hence the spectral density of radiant energy has the 
form 

z (28.5) 
“a He exp [ho/(kT)] — 1 ` 

This expression is called Planck's formula. The discovery of 
this formula by M. Planck and the attempts at its 
interpretation laid the basis for the development of quantum- 
mechanical concepts and creation of quantum mechanics. 
STEFAN-BOLTZMANN LAW. The total density of radiant 

energy is given by 

, d h ? do 
w= Ww QO = —— | -——_—_—— 

| B nic? | exp [ho/(kT)] — 1 
o 0 

h (kT\4( Ede 
= t c 28.6 
lee ET 

o 

3d 4 

Considering that $ d$ Mene Me we can represent the 
expE— 1 -1 15,” 

radiant energy € in the form 

where 

a = k*i?/(158R) 2 7.56 x 10715 J-m  K ^ ^. (28.7b) 

It is convenient to use the concept of radiant emittance 
(emissivity) instead of the equilibrium radiation density. This 
quantity characterizes the density of radiant flux leaving the 
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surface in all directions (within the solid angle of 2m). It is 
equal to the flux per unit area. Radiant emittance is 
connected with the radiant energy density through the 
relation 

where 

o =ca/4 = 5.617032 x 10? W.m ^ ?.K ^ * (28.8b) 

Formula (28.8a) is called the Stefan-Boltzmann law and 
o the Stefan-Boltzmann constant. 

WIEN DISPLACEMENT LAW. Formula (28.5) can be used 
to find the maximum of the spectral density of radiation. The 
position of the maximum depends on the scale on which it is 
determined. We can calculate it on the wavelength scale by 
going over to wavelength X — 2zc/« and taking into account 
that 

w,da — — w, 2xc dA/M. (28.9) 

Consequently, the distribution of the radiant energy density 
among wavelength has the form 

1 1 
gm aE 28.1 U^ M5 exp [2nch/(K DJ] — 1" (pest) 

where we have omitted the constant factors which are 
unimportant for further calculations. The maximum radiation 
density can be found from the condition for the extremum: 

aw, /ar = 0, (28.11) 

which gives the following expression for determining the 
wavelength A,,,, corresponding to the maximum radiation 
density: 

5 = xe*/(e* — 1), x = 2ach/(kTA,,,x)- (28.12) 

The solution of this equation is x = 4.965. Therefore, Anax 
is determined from the expression 

imax T = 2mhe/(kx) = 0.0029 m-K, (28.13) 

which is called the Wien displacement law. As the 
temperature of the black body increases, the maximum 
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radiation density in its spectrum is displaced towards smaller 
wavelengths, i.e. towards higher frequencies. A black-body 
radiation spectrum i$ shown in Fig. 58. 

Example 28.1. Find the number of photons emitted from 
the surface of area S in the frequency interval from c, to c; 
at a temperature T. : 

In accordance with (28.8) and (28.5), the required number 
of photons can be expressed as follows: 

0; wz 

1 i 2d 
dn = es do = e : 

4 | ho 4r?°c? ] exp[ħo/(kT)] -1 
9, Qi 

This formula can sometimes be simplified if we deal with 
the visible part of the spectrum. For the middle of the visible 

spectral region, fo ~2eV. For T=6000K we have 
kT = 1.38 x 10773 x 10° x 6 J = 8.28 x 10°79 J = 0.518 eV; 
ha/(kT) = 3.45; exp [hw/(kT)]~ 31.5, and hence we can 
neglect unity in the denominator. For T= 6000 K the for- 
mula is simplified if the frequency interval lies in the visible 
region of the spectrum, and we have 

az 

= ae | exp[ —ha/{kT)] 9? do. 

ir 

This integral can be easily taken by parts. In general, when 
we have a complicated integral, it is always useful to estimate 

the numerical values of various terms in the integrand before 
trying to evaluate it in the general form. As a result of this 
estimation the calculations are considerably simplified and 
the integral that cannot be expressed analytically can be 
reduced to a comparatively simple analytic expression. 

Example 28.2. Boltzmann's constant k and Planck's constant 
h can be determined by measuring the spectrum of the 
black-body radiation. The experimentally obtained power of 
the black-body radiation from a surface of area S — 1 m? to 
a half-space is M = 904.48 kW at T = 2000 K. The maximum 
spectral radiation density in this case corresponds to Amax = 

= 1.451 x 107° m. Find the values of the constants k and À. 
Taking into account (28.7), and combining two equations, 

(28.13) and (28.8a), for two unknowns k and h, we obtain 

2 anch 

^ 4965A. T" 
max 

(28.14) 
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k= — (28.15) 

These equations can be easily solved: 

k E rt = ; (28.16) 

h= MOL ASM (28.17) 
4n°¢? 

Substituting the results obtained in experiment, we find 

_ (4.965? x 15(1.451 x 10 7 5? x 904.48 x 10? 
J 

s 2 (3.1416) (3 x 109) x 10? e 

—138 x 107 7? J/K, 

y — (4:965)* x 15 (1.451 -1079)* x 904.48 x 10° |. 
4(3.1416)9(3 x 10°)? 

= 1.055 x 10734 J-s. 

Find the Fermi energy for silver assuming that p = 10.5 x 10? kg/m? 
and M, = 107.9. 
Find the total number of electrons in 1 g of silver at T= 100 K and 
the number of electrons whose energies lie between 2.0 and 2.1 eV. 
Use the parameters for silver given in Exercise 3.1. 
Calculate the number of photons in a radiation cavity with volume 
V —1 m? and temperature T = 3500 K, emitting frequencies from 
© = 3.24 x 1015 s71} to œ+ do = 3.27 x 1015 s 1, 
Find the number of photons having frequencies between œw = 2.16 x 
x1015s7! and odo —2.18 x 1015 s^! in a cavity of volume 
1 m? at. T — 4000 K. Find the total energy of photons. 
Find the number of free electrons in a substance with [i — 9.34 eV, 
whose energies lie between 9.20 and 9.27 eV, contained in the 
volume 10^ * m? at T = 400 K. 
Find the wavelength corresponding to the maximum of the energy 
density of a black-body radiation at T — 4000 K. 
Find the temperature interval for which the maximum of the spectral 
density of black-body radiation, calculated on the wavelength scale 
corresponds to the visible spectral interval between 3.9 x 10^ $ and 
7.8 x 107 m. 
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The maximum of the spectral density of solar radiation measured on 
the wavelength scale corresponds to Ama — 4.7 x 107 $ m. Find the 
temperature of the surface of the Sun assuming that it emits as 
a black body. 
Find the number of photons in a 1 mm? cavity containing 
black-body radiaton at T — 500 K. 
Find the maximum velocity of free electrons in silver at T 20 K. 
Use the parameters for silver given in Exercise 3.1. 
Find the degeneracy temperature for the electron gas in silver. Use 
the parameters for silver given in Exercise 3.1. 

3.1. po = 88-1071? J 2 5.5 eV. 3.2. n — 56-10?! ; dn — 09.1079, 3,3. 
dn — 5.3-101*, 3.4. dn — 6.1015; dW — 1.36 107? J. 3.5. dn = 2.1075. 
3.6. 3.053.107 $ m. 3.7. 3720 K « T « 7430 K. 3.8. T — 6170 K. 3.9. 
n — 2.55105. 3.10. v,,, = 139-10* m/s = 1390 km/s. 3.11. 6.5-10* K. 





Chapter 4 

Gases with Intermolecular Interaction 
and Liquids 

Basic physical factor: the forces of interaction between 
molecules are attractive at large distances and repulsive at 
short distances. 

Basic criterion for determining the result of interaction: the 
relation between the mean energy of interaction and the 
mean kinetic energy of molecules. 

Sec. 29. FORCES OF INTERACTION 

The main types of bonds 
between molecules are con- 
sidered. It is noted that the 

structure of liquids is inter- 

mediate between the struc- 

ture of gases and solids. Van 

der Waals forces and intermo- 

lecular potential are defined. 

The criterion for the forma- 

tion of liquid state from ga- 

seous state is analyzed. 

BONDING FORCES IN MOLECULES. The electrons in an 

atom are kept near the nucleus by the Coulomb forces of 
attraction between unlike charges. Atom as a whole is 
electrically neutral. Molecules consist of atoms. The forces 
binding atoms in a molecule are electrical by nature, but they 
appear in a more complicated way. There are two main types 
of atomic bonds in a molecule. 

IONIC BOND. The forces binding different electrons in an 
atom to the atom as a whole are different and depend on the 
atomic structure. The structure of atoms and the laws of 
motion of electrons in them are studied in quantum 
mechanics. Here, all we need to know is that one or more 
electrons are bound very weakly to the atom as a whole. 
These electrons can be easily detached from the atom, as 
a result of which a positively charged ion appears. 

On the contrary, all the electrons are tightly bound to the 
atom in some other cases. Moreover, under favourable 
conditions an atom readily captures an electron or even two 
electrons and becomes a negatively charged ion. In the 
process of formation of a molecule, such atoms are converted 
into ions with a negative charge. The Coulomb forces of 
attraction acting between unlike ions facilitate the formation 
of the molecule. A molecule of sodium chloride is an example 



4. Gases with Intermolecular Interaction and Liquids 

of such type of molecules. The structure of this molecule can 
be represented in the ionic form as Na* Cl, i.e. Na* is 
a positive ion and Cl ^ a negative ion. Many other molecules 
also owe their existence to the ionic bond. 

The potential energy of attraction between the Na* and 
Cl ̂ ions is given by 

U(r) = — e?/(4ne oro), (29.1) 

where ry is the (equilibrium) distance between the ions. 
Besides this energy, there is a positive energy associated with 
the repulsive forces which come into play as the ions 
approach each other at a short distance, since they cannot 
penetrate into one another. These forces are strong only at 
small distances between the ions and rapidly decrease with 
increasing distance. Their contribution to the total energy of 
interaction between the ions is small and does not exceed 
~10% of its total magnitude. Hence, with the accuracy suffi- 
cient for an order-of-magnitude estimate, we can obtain from 

(29.1) the following expression for the energy of dissociation 
of the NaCl molecule: 

AE = e?/(4n& oro). (29.2) 

For the gaseous state, the measurements give ry — 2.5 x 
X 107 !? m. Considering that l/(4ng9) — 9 x 10? m/F, and 
e-1.6x 10^ !? C, formula (292) yields AE ~9 x 10^ !? J, 
which coincides with the experimental value to within 5%. 
Similarly, we can obtain sufficiently good results for other 
molecules with the ionic bond by using very simple methods. 

From a physical point of view, the ionic bond is 
characterized by a complete exchange of the charge (electron) 
between ions. A partial exchange leads to the appearance of 
a covalent bond. 
COVALENT BOND. Obviously, the ionic bond cannot 

explain the existence of molecules consisting of two identical 
atoms, such as H,, O,, N,, etc., since the two atoms forming 

a molecule are equivalent, and there is no ground for one of 

them to become a positive ion and for the other, a negative 
ion. The bond between atoms in such molecules is called the 
covalent bond. 

A complete understanding of the covalent bond can be 
gained only in the framework of quantum mechanics, but the 
physical significance of the problem can be graphically 
explained even by using the classical concepts. 
Two positive charges repel each other with the Coulomb 

forces 

E (m - 



Fig. 59. The mechanism of the 
covalent bond formation 

There is no universal law for 
describing the intermolecular 
interaction. It depends on the 
properties of molecules, the 
conditions of interaction, its 
mechanism, and other factors. 
For this reason, the 

intermolecular interaction is 
always described by 
approximate formulas with 
strictly defined limits of their 
applicability. 
The ionic bond is formed as 
a result of a complete ex- 
change of charges, while the 
covalent bond is 
characterized by a partial 
exchange. Van der Waals 
forces are not associated with 
a charge exchange. The 
metallic bond is covalent in 
its physical nature, but in 
this case many electrons are 
collectivized. 
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We place a negative charge at the middle point between these 
charges, its magnitude being equal to that of positive charges: 

-—e9 —- 6 -—6— 
The forces of attraction acting on the positive charges from 
the negative charge are four times stronger than the repulsive 
forces acting between the positive charges. As a result, the 
positive charges are acted upon by the force tending to bring 
them closer, i.e. the force of attraction: 

e- 9 —€ 

The forces exerted on the negative charge by the positive 
charges are mutually balanced. This is the essence of the process 
of the formation of the covalent bond. However, a static 
equilibrium of this type is impossible. Quantum mechanics 
explains how the motion of electrons appears, in which some 
electrons on the average move most of time between the 
positively charged nuclei, i.e. these electrons effectively form 
a negative charge between the nuclei (Fig. 59). Usually, we 
deal with two electrons whose motion is collectivized so that 
we cannot say to which of the atoms forming the molecule 
they belong. For this reason, the bond appearing in this case 
is called covalent. 
INTERMOLECULAR FORCES IN SOLIDS. Solid state is 

formed when the binding energy of molecules is considerably 
greater than the kinetic energy of their thermal motion. As 
a result, an ordered crystalline structure appears, which 
corresponds to the minimum of the free energy. 

Ionic and covalent bonds are responsible not only for 
keeping atoms in a molecule, but also for retaining molecules 
and atoms in a solid. As a result, the crystalline structure of 
the solid is formed. If this structure is determined by the 
covalent bond, the crystals are called covalent, while if it is 
determined by the ionic bond, we have ionic crystals. The 
mechanism of formation of the covalent bond indicates that 
the electrons in covalent crystals are not strictly localized 
near the ions constituting the crystal lattice. The electrons 
responsible for the covalent bond are distributed among ions, 

being concentrated along certain directions called the 
directions of the bonds. This concept will be useful in Sec. 49 
for describing macromolecules. The electron cloud in ionic 
crystals is localized in the vicinity of ions, while in the 
interstitial space the electrons are practically absent. An ionic 
crystal can be modelled by a set of impenetrable charged 



Fig. 60. Dense packing of ions of 
the same radius 

Fig. 61. Arrangement of ions with 
the ratio of radii equal to 241 
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spheres subjected to the action of the Coulomb forces, the 
decisive role being played by the forces of attraction between 
oppositely charged spheres. The impenetrability of the 
spheres rules out their collapse. 

The impenetrability of the spheres can be explained 
theoretically by the Pauli exclusion principle and the 
existence of stable electron configurations in atoms and 
molecules. The repulsive forces which balance the Coulomb 
forces of attraction emerge when the spheres come into 
contact. Moreover, the separations between the centres of the 
spheres must be minimal to ensure the minimization of the 
free energy for obtaining a stable equilibrium. This 
requirement determines the mode of “packing” the spheres 
which model the ions during the crystal structure formation. 
Figure 60 illustrates a possible mode of packing spheres of 
identical radius. If there are two types of ions with different 
radii, they can be packed in various ways. The most typical 
examples are shown in Figs. 61-63. We shall just say a few 
words about the packing shown in Fig. 62. Small balls are as 
if “suspended” without touching the neighbours. This means 
that the Coulomb forces acting on them seem to balance 
each other. 

One should not think that this situation is in contradiction to the 
well-known Earnshaw theorem from the theory of electromagnetism. 
According to this theorem, a static equilibrium of electric charges is 
impossible. The given system involves, in addition to Coulomb’s 
forces, “elastic” forces appearing as a result of contact of the spheres. 
Although these forces are also of electromagnetic origin, they cannot 
be completely reduced to it. Moreover the structure as a whole is 

dynamic and hence does not contradict the Earnshaw theorem. 

The next type of crystals are molecular crystals which have 
molecules at the lattice sites. In this case very weak forces, 
called the Van der Waals forces, act between the molecules. 
The origin and peculiarities of these forces will be considered 
somewhat later in this section. For the present, it is sufficient 

to note that these forces are weak in order to emphasize that 
molecular crystals have relatively low strength. 

In metals, or metallic crystals, the covalent bond is so 
strong that the density of electrons between ionic skeletons 
attains considerable values, and the electrons participating in 
the bonds between ions are practically not bound to the ions 
from which they originate. It can be assumed that these 
electrons are common to the entire crystal and form the 
electron gas. The bond appearing in this case is called the 
metallic bond. ` 

These types of bonds do not exhaust the variety of bonds 



Fig. 62. Arrangement of ions with 
a large difference in radii 

Fig. 63. Arrangement of ions with 

different radii in the case when the 
distance between the nearest 
neighbours is equal to the sum of 
their ion radii 
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existing in crystals. It is often impossible to assign a certain 
type of bonds to materials with a quite complicated crystal 
structure. Besides, even if one of the bonds dominates, other 
types may also play a certain role. For example, metals 
exhibit some features of covalent and molecular bonds. 
Moreover, in some cases it is insufficient to take into account 
only interactions between pairs. Unpaired interactions 
attenuate with distance much quicker than paired forces 
between the molecules, but they do play an important role in 
some cases. 

Hydrogen bond plays a significant role in the bond 
formation in solids. Although it does not constitute a new 
type of bonds, it is expedient to put it in a separate category. 
This is due to the peculiarities of the atomic structure of 
hydrogen. Firstly, the hydrogen ion is a proton whose size is 
10° times smaller than any other ion. Hence, this ion can 
practically be treated as a point mass. Secondly, the electron 
in a hydrogen atom is tightly bound to the ionic skeleton 
(proton). The ionization potential of atomic hydrogen is 
about 13.5eV, which is several times higher than the 
ionization potential of other atoms. This means that in the 
formation of ionic crystals the hydrogen atom behaves not in 
the same way as other elements; in particular, the proton as 
if “settles” directly on the surface of a negative ion, giving rise 
to structures which are impossible with any other ions. 

Under appropriate conditions, a proton may, for example, 
ensure the forces of attraction appearing between two 
negatively charged ions according to the schematic diagram 
shown in Fig. 59. Naturally, the electron must not “prevent” 
the appearance of this attraction. The essence of the hydro- 
gen bond is that the electron and the proton move in such 
a way as to create bonds in a crystal, which are called hydro- 
gen bonds. An important circumstance in the formation of 
hydrogen bonds is that the shell containing two electrons is 
the first filled shell in the Coulomb field. Hence, the hydrogen 
atom may form only one covalent bond, which is significant 
for characterizing the structure of corresponding crystals. 
STRUCTURE OF LIQUIDS. In liquids, as well as in gases, 

the molecules are not linked by stationary stable bonds, and 
may change their relative positions. In gases, the distance 
between molecules is on the average large, and they rapidly 
change their mutual positions. In liquids, the distance 
between the molecules is small, they are densely packed in the 
volume occupied by the liquid, and change their mutual 
arrangement comparatively slowly. For relatively large 
intervals of time, groups of molecules may form aggregates 
which in their properties resemble a solid. Thus, in their 
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Fig. 64. Emergence of the Van der 
Waals forces 

If the mean kinetic energy of 
molecules is lower than the 
absolute value of the mean 
energy of their mutual 
attraction, i.e. if the mean 
total energy of molecules 
(interaction energy + kinetic 
energy) in a system is 
negative, they form a bound 
state viz. either a liquid or 
a solid. 
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structure and intermolecular forces, liquids have the 
properties of a gas as well as of solids. 

For this reason, the theory of liquids is the most difficult 

and the least developed. 
VAN DER WAALS FORCES. The forces of attraction acting 

between molecules at comparatively large distances are called 
Van der Waals forces. These forces appear because a slight 
displacement of negative and positive charges in a neutral 
molecule violates its electric neutrality and the molecule 
becomes a dipole, viz. the system of equal and opposite 
charges separated by a very short distance (Fig. 64). A dipole 
is characterized by an electric moment equal to the product 
of the charges and the distance between them. In the sur- 
rounding space, the dipole creates an electric field determined 
by the fields of the two dipole charges. Clearly, the intensity 
of this field differs from zero, since the distance from points 
in space to the charges of the dipole are different, and hence 
the fields of the unlike charges of the dipole do not 
compensate one another. On the other hand, if a dipole is in 
an external field, this field acts on the dipole only if it is 
nonuniform. 

There are molecules which possess a permanent dipole 
moment. Such molecules are called polar. When they are 
approaching each other, they tend to turn in such a way that 
the ends facing each other are oppositely charged. It can be 
easily seen that if the ends facing each other have like 
charges, such a mutual orientation is unstable. On the other 
hand, it can be easily verified that the total force of attraction 
between the dipole charges will be greater than the total force 
of repulsion when polar molecules have unlike charges on the 
opposite faces. Consequently, polar molecules attract each 
other, and such forces are called dipole orientation forces. 

If molecules do not have a permanent dipole moment, they 
acquire it in an external electric field. In this field, the 
positive charges of a molecule are slightly displaced in the 
direction of the field, while the negative charges are shifted in 

the opposite direction. As a result, if the external field is 
nonuniform, a neutral molecule experiences the action of the 
electric field. The appearance of a dipole moment in 
a molecule under the effect of the field is called polarization. 
When nonpolar molecules approach each other, the electric 
fields of their charges rapidly vary with time and they 
compensate each other at various points of space only on the 
average. Hence, the approaching molecules polarize one 
another and the ends of polarized molecules facing one 
another have opposite charges. Mutually polarized molecules 
attract each other. Such forces are called dispersive (this term 



Fig. 65. Intermolecular potential 
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owes its origin to the dispersion of light, i.e. the change in 
the velocity of light and the refractive index of the medium 
depending on the frequency, which is also caused by the 
polarization of molecules). 
INTERMOLECULAR POTENTIAL. Repulsive forces act at 

small distances between molecules. This is just a reflection of 
the fact that a molecule occupies a certain volume in space 
and prevents other molecules from penetrating into this 
region. The repulsive forces become noticeable in a very 
small region of the order of dimensions of a molecule. Figure 
65 shows the variation of the potential energy of interaction 
depending on the distance r between molecules. For r> ro, 
the forces of attraction act between the molecules, while for 
r<r, the repulsive forces come into play. A more precise 

form of the U(r) dependence can be obtained only for specific 
molecules. There are no universal formulas for U(r) suitable 
for all molecules. Usually, the function U(r) is approximated 
by the following formula: 

U(r) = a,/r" — a,/r", (29.3) 

where the constants a,, a,, n, and m are chosen in 
accordance with the requirements of better approximation of 
the real potential. An analysis of potentials revealed that in 
most cases, n — 12 and m — 6 is the best approximation, a, 
and a, being specified for particular atoms. In this case the 
potential is written in the form 

U (r) 7 4£o [(o/r)!? — (o/r)$] (29.4) 

and is called the Lennard-Jones potential. It is widely used in 
the theory of liquids and gases. The meaning of the quantities 
c and e£, is illustrated in Fig. 65. In the form (29.4), we have 
a two-particle potential. It is used when we assume that the 
force of interaction between two molecules does not change 
in the presence, for example, of a third molecule. Strictly 
speaking, however, it is clear that it cannot be true, since the 
third molecule causes a rearrangement of positive and 
negative charges in molecules (polarization), and hence 
changes the interaction between the molecules. But if we take 
into account many-particle forces, this will considerably 
complicate the theoretical investigation of the problem. 
Therefore, although it is well known beforehand that 
many-particle forces often play a very important role in 
liquids, the study of intermolecular interaction is limited to 
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the consideration of effective two-particle forces which take 
into account the effect of many-particle forces to a certain 
extent. 

The dependence of the Van der Waals forces on the 
distance can be estimated in the following way. Figure 64 
shows that the forces of interaction are directed along the 
line connecting the molecules. The field intensity E at 
a distance r from the centre of the molecule is 
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where q is the magnitude of charges separated in the 
molecule by the distance 2l Taking into account that 
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+ 

we can limit ourselves to the first-order terms in l/r, since 
1 « r. Then formula (29.5) assumes the form 

E(r) ^ gl/(nggr?) . (29.7) 

Let us now calculate the force with which this field acts on 
a polarized molecule (Fig. 64). Obviously, 
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Considering that « r, we can put (1t l'/r) ? x 1x 3l'/r. 
Formula (29.8) then assumes the form 

F(r) — — 6glqt'/ (ngg r^). (29.9) 

The polarization of a molecule depends on the field. 
Assuming that it is proportional to the field intensity, we 
conclude that we must put / — E — I/r? in (29.9). Hence, the 
force F(r) is given by 

F(r)~ i/r", (29.10) 

i.e. the Van der Waals forces rapidly decrease with increasing 
distance. According to (29.10), the potential of the Van der 
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. Which physical factors cause 
a decrease in the Van der 
Waals forces in inverse 
proportion to the seventh 
power of the distance? 
Distribute these seven inverse 
powers among different factors. 

. What are many-particle forces 
and when is their role sig- 
nificant? Under which 
conditions is this role 
unimportant? 

. Why do molecular crystals 
include those with a very low 
binding energy? 

. Which properties make the 
liquids intermediate between 
solids and gases? 
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Waals forces is inversely proportional to the sixth power of 
the distance between the molecules: 

U(r) ~ 1/r6. (29.11) 

Van der Waals forces appear when there is no charge 
exchange. Hence, when compared with the forces of ionic 
bond, they form another limiting case. The covalent bond 
appears as a result of a partial charge exchange and is 
intermediate between the ionic bond and the Van der Waals 
forces. 

LIQUID AND GASEOUS STATES. MOLECULAR SYSTEMS. 

The potential energy of attraction between molecules is 
negative. If the sum of kinetic and potential energies of 
a molecular system under consideration is positive, the 
molecules left on their own tend to fly apart to an infinite 
distance. This corresponds to a tendency of a gas to expand. 
When a gas is compressed, its density increases, and the 

average distance between the molecules decreases. It can be 
seen from (29.4) that the potential energy in this case will 
decrease. If the mean kinetic energy of the molecules is not 
very high, the sum of the kinetic and potential energies 
becomes negative at a certain moment of time. Such 
a molecular system cannot spontaneously dissipate in a large 
volume, since its energy would be only kinetic after 
dissipation, i.e. it would be positive, which is impossible in 
view of the fact that the total energy of the system is 
negative. In other words, we have a bound state in this case. 
Molecules cannot fly apart to large distances; on the 
contrary, they are confined near each other in a finite 
volume. The molecular system in such a state is either 
a liquid or a solid. In most cases (though not always), the 
liquid state is formed upon the compression of a gas. 

This process of liquefaction of a gas upon compression 
may take place only if the kinetic energy of molecules is not 
very high, i.e. if the temperature is moderate. As a matter of 
fact, the minimum negative energy of interaction has a finite 
value (Fig.65). Consequently, at a sufficiently high 
temperature, the sum of the kinetic and potential energies of 
molecules can never be negative. This means that a gas 
cannot be liquefied just by an increase in the density when 
the temperature is sufficiently high. The temperature above 
which a gas cannot be liquefied by increase of pressure is 
called the critical temperature. 

As pressure decreases, the process occurs in the reverse 
direction, i.e. the molecular system goes over from the liquid 
to the gaseous state. 
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Sec. 30. LIQUEFACTION OF GASES 

Experimental isotherms and 
two-phase region are conside- 
red. The properties of satura- 
ted vapour are described, as 
well as the dynamic nature of 
equilibrium between a vapour 
and its liquid. The properties 
of a substance in the critical 
state are analysed. The latent 
heat of transition is defined 
and the general characteristic 
of the first-order phase tran- 
sitions is given. 

EXPERIMENTAL ISOTHERMS. The theoretical conclusions 
drawn in Sec. 29 on the basis of an analysis of intermolecular 
interaction are confirmed by experimental studies. Figure 66 
shows typical isotherms for a real gas, observed in 
experiments on gas compression. 

Let us use this diagram to analyse the compression of the 
gas, say, at T,. As the gas is compressed to the volume MK, its 
pressure increases to p,. Upon a further decrease of the gas 
volume, a part of the gas liquefies, but the pressure remains 
equal to p,. Consequently, on the segment BC of the 
isotherm, the vessel contains liquid as well as the gas, 
separated by the interface which is the surface of the liquid. 
Physically homogeneous parts into which the system is 
separated are called phases. Hence, in the region CB the 
system consists of liquid and gaseous phases. At the point B, 
the entire volume is occupied by the gaseous phase, but as we 
move from B to C, the part of the volume occupied by the 
gaseous phase decreases, and the part filled by the liquid 
phase increases. At the point C the entire volume Vj is filled 
by the liquid phase, i.e. the liquefaction of the gas is 
completed. A still further decrease in the volume is 
accomplished by compression of the liquid. Liquids offer 
a very strong resistance to compression, and hence a small 
decrease in the volume causes a considerable increase in 
pressure. 

CRITICAL STATE. As the temperature increases, the 
segment of the two-phase isotherm becomes shorter. Finally, 
at a critical temperature T,,, this segment contracts to 
a point. At this point, the difference between the liquid and 
the gas disappears, or, in other words, the liquid and the gas 
have the same physical properties. Such a state is called 
critical, and the quantities Tl» Pa» and V, are called the 
critical temperature, pressure and volume respectively. Above 
the critical point, the gas cannot be liquefied under any 
pressure. Above the critical pressure p,,, the isotherm T, 
separates the gaseous and liquid states so that at the points 
of this isotherm the properties of the phases are identical. 
Hence, every time we cross the isotherm, a continuous 

transition from the gaseous to the liquid phase will occur. 
TWO-PHASE REGION. In Fig. 66, the two-phase region is 

shown by the dashed curve passing through the points C, K, 
B, and A. This means that a transition from the gaseous to 

the liquid state can be performed either through the 
two-phase region or without it. For example, a transition 
from the gaseous state N to the liquid state M can be 



Fig. 66. Isotherms fora real gas and 
a liquid 
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performed either along NBCM, or along NN'RM'M. In the 
latter case, a transition to the liquid phase will take place at 
the point R, leaving behind the two-phase system. At this 
point, the properties of the liquid and the gaseous states are 
identical. However, these properties are different at the 
neighbouring points on both sides of the isotherm: on one 
side of the isotherm the substance is in the gaseous state and 
tends to expand, while on the other side it is a liquid and 
tends to retain its volume. 
SATURATED VAPOUR. In a two-phase system, the liquid 

and its vapour are in dynamic equilibrium, and have quite 
definite densities and pressures at a particular temperature. 
The pressure p, is called the saturated vapour pressure (SVP) 
at the temperature 7,. Figure 67 shows that the saturated 
vapour pressure increases with temperature. The vapour is 
called saturated, since it can hold no more substance at this 
temperature. If we try to make it “denser”, a part of the 
saturated vapour liquefies. This is just the process that occurs 
in a two-phase system during a change in its volume. 
SATURATED VAPOUR DENSITY. At the temperature T, 

(Fig. 66) the entire volume V, is filled by the saturated 
vapour, since even the slightest decrease in this volume 
converts a part of the vapour into liquid. Consequently, the 
saturated vapour density at this temperature is p,,= M/V,. 
At the temperature T}, the saturated vapour density is Pz, = 

= M/V, > Pig 



Fig. 67. Temperature dependence 
of the density of a liquid and of 
a saturated vapour: 
I-liquid; II-saturated vapour 

In the critical state, the 
difference between the liquid 
and the gaseous states 
vanishes. This means that the 
substance does not offer 
resistance to a change in the 
volume and does not tend to 
increase it. It becomes as if 
indifferent to its density. This 
results in conditions favour- 
ing large density fluctuations. 

The equilibrium between 
a liquid and its saturated 
vapour is dynamic and is 
maintained by a continuous 
exchange of substance 
between the phases. 
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Thus, the saturated vapour density increases with temperature. If we 
consider a mole of gas molecules, the volumes V, and V, are the 

molar volumes, and M is the molar mass. If some other amount of 
gas molecules is taken, the volumes V, and V, are the volumes of the 
gas, and M is its mass. Similar remarks can be made about the 

volumes of liquids. 

At the point C, the entire volume is occupied by the liquid. 
Consequently, the density of the liquid at T; is p, 2 M/Vj. It 
can be easily seen that the density of the liquid at the 
temperature T, is higher than the saturated vapour density at 
the same temperature. At the temperature 75, the density of 
the liquid is p; — M/V;«p,,. This means that with 
increasing temperature, the density of the liquid de- 
creases. 

As we approach the critical temperature, the difference in 
densities of the liquid and the gaseous phases decreases, and 
at the critical point the density of the liquid phase is equal to 
the density of the gaseous phase: p,-— M/V,. The 
temperature dependence of the density of a liquid and its 
saturated vapour is shown in Fig. 67. 
LEVER RULE. Let us consider the state of a two-phase 

system characterized by the point D (see Fig. 66). We denote 
the volume occupied by the system by V. Which part of this 
volume is filled by the liquid, and which part is filled by the 
gaseous state? Let us denote by V, V, the volumes and by p, 
and p, the densities of the liquid and the gaseous phase 

respectively. The law of conservation of mass of a substance 
is written in the form 

Vip, + Vip, = M. (30.1) 

Considering that V + V, = V, we get 

Hence, 
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where p, = M/V, and p, = M/V,. Multiplying the right- and 

left-hand sides of the last equation by p, and taking into 
account the fact that p, V, — m, and p, V; = M, where m is the 
mass of the liquid phase, we obtain 

m = M(V, - (Vi — V). (30.3) 
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. What is the meaning of the 
statement that there are liquid 
and gas on both sides of the 
critical isotherm above the 
critical pressure? 

. Why can density fluctuations 
attain very high values in the 
critical state? 

. What is the nature of the 
dynamic equilibrium in a two- 
phase system? 

. Which factors determine the 
latent heat of transition on the 
molecular level? 
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Similarly, 

m,— M(V— Viy(Vq — V). (30.4) 

This yields the ratio of the masses of the liquid and the 
gaseous phases: 

m/m, - (V, - VY(V — V). (30.5) 
This ratio is inversely proportional to the distances from 

the point D to C and B: The removal of D from 
B corresponds to an increase in the mass of the liquid. For- 
mula (30.5) is called the lever rule. 

The real gas isotherms are similar to those shown in 
Fig. 66, but it is not always possible to plot them in such 
a form unless we use a special scale. For example, the 
densities of water and its saturated vapour at 50°C are 
respectively equal to 988.0 and 8.3 x 107? kg/m?, and the 
saturated vapour pressure is 122 x 10? Pa. This means that 
the ratio of abscissas V,/V; must be equal to 10*. Taking 
into account that the critical pressure of water p,, — 220.53 x 
x 10° Pa, we see that the ratio p,/p, of ordinates in the 
figure must be about 2000. Clearly, such a curve cannot be 

plotted in a diagram on linear scale. Hence, two-phase 
diagrams just reflect the nature of dependencies and behav- 
iour of quantities rather than the real relation between the 
characteristics shown in the diagram. 
PROPERTIES OF A SUBSTANCE IN THE CRITICAL 

STATE. At the point K (critical state), the isotherm has 
a horizontal plateau (see Fig. 66). Consequently, (Op/0V)r — 
=0, i.e. the pressure (density) does not depend on the 
volume. This means that if the number density of particles 
has increased in a certain region, the forces of pressure that 
would tend to decrease this density do not appear, and 
conversely, a decrease in the density (pressure) does not lead 
to the emergence of factors which would tend to restore the 
initial equilibrium state. As a result, the density fluctuations 

in the critical state become very large. This gives rise to 
critical opalescence. 

CRITICAL OPALESCENCE. If a gas is compressed in 
a transparent vessel and a light beam is passed through it, 
the transmitted light will form an image of the vessel on 
a screen. Since the coefficients of absorption for the liquid 
and the saturated vapour are somewhat different, the liquid 
and the gaseous phases and the interface between them will 
be clearly seen on the screen. Under certain conditions which 
will be specified below, the interface between the two phases 
of the system remains unchanged upon heating, i.e. the 
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Fig. 68. The behaviour of a two- 
phase system upon increasing 
temperature at constant pressure 
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fractions of the volume occupied by the liquid and the 
gaseous phase remain the same. As the system approaches 
the critical temperature, the interface becomes less and less 
sharp. Since at the critical temperature the difference between 
the liquid and the gaseous phase vanishes, it can be expected 
that the interface will disappear. However, instead of this, at 
the moment when the interface should disappear the entire 
volume of the vessel becomes opaque, and the screen shows 
a dark spot. This phenomenon is called critical opalescence. 
If we increase the temperature of the system further, in 
a certain short period of time the transparence is recovered, 
but the vessel contains the substance in gaseous phase only, 
and there is no interface. 

Critical opalescence is explained by strong density fluc- 
tuations in the critical state. Because of this, the refractive 
index and the absorption coefficient of the medium change 
very sharply from point to point. As a result, light is strongly 
scattered and absorbed in the medium, which is the essence 
of the critical opalescence. 
THE BEHAVIOUR OF A TWO-PHASE SYSTEM UNDER 

CHANGE IN TEMPERATURE AT A CONSTANT VOLUME. 

The mass of the substance in a volume V containing 
a two-phase system may in general be different. The mode of 
the process induced by the variation of temperature depends 
on the relation between the mass of a substance contained in 
the vessel and its volume (Fig. 68). If a substance having the 
critical density can fill the entire volume, i.e. if m = Per Vors the 
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state T, on the two-phase diagram of the system will 
correspond to the point D. As the temperature rises, this 
point moves along the vertical to the point T,. In this 
process, the vessel contains two phases, the interface between 

them being practically fixed. When the system attains the 
point T,, the substance goes over to the critical state, and 
critical opalescence is observed. 

If the mass of a substance is less than what is necessary to 
fill the volume at a critical density (m < p, V), the initial 
state of the substance is characterized by the point E. 
According to the lever rule, the part of the volume occupied 
by the liquid phase 1s proportional to the segment EB, while 
the part of the volume filled by the gaseous phase is 
proportional to the segment EC. As the temperature rises, 
and the system goes over through the point E’, the part of 
the volume occupied by the liquid decreases, while the other 
part filled by the gas increases. The interface between the 
liquid and the gaseous phase in the vessel goes down. When 
the system attains the temperature corresponding to the point 
G, the entire volume is filled by the gas, and a further 

increase in the temperature at the constant volume just heats 
the gas. 

If the mass of a substance is greater than what is necessary 
for filling the vessel at a critical density (m > Per Var), the initial 
state of the gas is characterized by the point F. As the 
temperature rises, the part of the volume occupied by the gas 
decreases as a direct consequence of the lever rule. The 
interface between the liquid and the gas will go up in this 
case. When the point H is reached, the entire volume 
becomes filled by the liquid. A further increase in 
temperature at constant volume results in heating the liquid. 

HEAT OF PHASE TRANSITION. In a two-phase system, the 

phases are in equilibrium at the same temperature. If the 
volume increases, a certain part of the liquid evaporates, but 
in order to keep the temperature constant, the system must 
receive an appropriate amount of heat from outside. Thus, in 
order to go over from the liquid phase to the gaseous phase, 
a system must receive heat without changing the temperature. 
This heat is spent to change the phase state of the substance 
and is called the heat of phase transition, or the latent 
heat. 

The latent heat of transition is spent for overcoming the 
attractive forces or, in other words, for compensating the 
negative potential energy of attraction between molecules. 
Obviously, as the temperature increases, the latent heat of 

a fixed mass of a substance decreases and vanishes at the 
critical temperature. 
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FIRST-ORDER PHASE TRANSITIONS. Phase transitions 

accompanied by absorption or liberation of latent heat are 
called the first-order phase transitions. Besides, there exist 

other types of phase transitions which are not connected with 
the latent heat. 

Sec. 31. CLAUSIUS-CLAPEYRON EQUATION 

The derivation of the Clausius- 
Clapeyron equation is given 
and the limits of its appli- 
cability are discussed. An ap- 
proximate integral of this equa- 
tion is calculated and simplest 
applications are considered, 

DERIVATION OF THE EQUATION. The saturated vapour 
pressure increases with temperature (see Sec. 30). However, 
a quantitative relation between these two quantities 
established by the Clausius-Clapeyron equation has not been 
derived by us so far. 

Let us consider an infinitely small reversible Carnot cycle 
whose isotherms are the states of a two-phase system at 
temperatures T and T— dT (Fig. 69). The work done in this 
cycle is 

A « (V; — Vj)dp. (31.1) 

Consequently, the efficiency of this cycle will be 

n- A/Q? - (V, — Vj)dp/L, (31.2) 
where Lis the latent heat of transition for a given mass of the 
substance. On the other hand, the efficiency of the Carnot 
cycle is given by 

"n-21-—T,/T,21-—(T—dT)/T-dTJ/T. (31.3) 

Equating (31.2) and (31.3), we obtain the equation 

dp/dT 2 L/[T(V, — V3)], (31.4) 

which is called the  Clausius-Clapeyron equation. This 
equation relates the pressure at which a two-phase system is 
in equilibrium, with temperature. If the latent heat of 
transition L and the volumes V, and V, of liquid and 
gaseous phases respectively are known as functions of 
temperature, the solution of the differential equation (31.4) 

can be used to find the pressure as a function of temperature. 

Equation (31.4) was first obtained in 1834 by the French engineer 
Clapeyron (1799-1864) who considered a cycle in which the working 
body is a “liquid + saturated vapour” system. This equation was 
later derived by Clausius (1822-1888) from the second law of 
thermodynamics. 



Fig. 69. To the derivation of the 
Clausius-Clapeyron equation 
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PHASE DIAGRAM. For a given mass, the volume V, of the 
vapour is larger than the volume of the liquid. Hence, 
dp/dT> 0 in (31.4). This means that the phase equilibrium 
pressure increases with temperature. Figure 70 shows the 
curve p(T) whose points define a certain relation between the 
pressure and temperature, corresponding to the equilibrium 
state of a two-phase system. This curve is called the phase 
diagram. 

The curve originates at the point A. This is the triple point, 
at which three phases (liquid, gas, and solid) are in equilib- 
rium. It should be noted that in addition to the curve under 
consideration, two more curves (not shown in the diagram) 
converge at this point. The curve p= p(T) terminates at the 
point K which corresponds to the critical state (see Sec. 30). 
There are two ways in which the system may go over from 
the gaseous state (point N) to the liquid state (point M). If 
the transition occurs along NRM, the system must pass 
through a two-phase state. However, the two-phase states can 
be by-passed in a transition from the point N to the point M, 
if we follow the path NN'R'M'M. The point R' corresponds 
to a transition from the gaseous to the liquid state. However, 
this transition occurs at the critical temperature, when there 
is no difference between the liquid and the gaseous states, 
and there is only one phase in the transition process. These 
two types of transition from N to M were already considered 
in the p-V diagram (see Fig. 66). 

FIELD OF APPLICATION. The  Clausius-Clapeyron 
equation (31.4) can, according to its derivation, be applied 
not only to the liquid-vapour phase transition, but to all 
first-order phase transitions. Another example of a first-order 
phase transition is crystallization, i.e. the transition of 

a substance from the liquid state to the solid state. This 
process involves the latent heat of crystallization (fusion). 
Hence Eq. (31.4) is also applicable to this system. We adopt 
this procedure while considering liquid-solid transitions (see 
Chap. 5). 



Fig. 70. Phase diagram of the 
liquid-vapour transition 
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APPROXIMATE SOLUTION OF THE  CLAUSIUS- 

CLAPEYRON EQUATION. In order to solve Eq. (31.4), we 
must first of all find the temperature dependence of the heat 
of evaporation. There are two ways of transition from the 
liquid state at temperature T, and pressure p, to the vapour 
state at temperature T and pressure p: by evaporating the 
liquid at temperature T, and by heating the vapour under 
constant pressure to the temperature T. The energy expended 
per mole is equal to 

AQ, = Lo + C,(T— To), 

where Lọ is the heat of evaporation which at Tọ is 
approximately equal to the evaporation heat of the saturated 
vapour at pressure pọ. In the first case, the liquid is first 

heated to T and then evaporated. The heat of evaporation at 
T is denoted by UT). In the second case, the amount of 
energy expended is equal to 

AQ, = Ci (T- To) + L(T). 

It follows from the law of conservation of energy that 
AQ, = AQ), i.e. 

Lo + C,(T— To) = C,(T- To) + L(T), (31.5) 

whence 

L(T) = Lo + (C, — Ci1)(T— Tp). (31.6) 

Equation (31.4) then assumes the form 

dp ly +(C,-C)(T- Fy) 
dT TVni — Vaz) 

(31.7) 

The molar volume of the liquid can be neglected in 
comparison to the molar volume of the gas (V, « Vmi), while 
for the vapour we can use the ideal gas equation which is 
applicable to the unsaturated vapours: V,, — RT/p. Taking 
this into account, we can rewrite (31.7) as follows: 

dp p 
dr^ gri Us» * €, - OCT- T), 

whence 
P T 
d 1 C,— C)(T- T, 
lah c E (31.8) 

Po o 
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Integrating, we get 

za m 1 EU 
jg ose ee 9) 

T, R T, Po R di 0 

The accuracy of these formulas can be judged from the 
following data. The pressure of the saturated water vapour at 
100°C is 1.013 x 105 Pa, while the heat of vaporization is 
equal to 2.25 MJ/kg. With the help of formula (31.6) we find 
that the heat of vaporization L(T) at 150°C is equal to 
2.12 MJ/kg, the experimentally obtained value being 
2.11 MJ/kg. Formula (31.9) gives the value 4.55 x 10° Pa for 
the pressure, compared to the experimental value of 4.76 x 
x 10° Pa. These discrepancies are mainly due to the ideal 

gas approximation. The error increases as we approach the 
critical state. 

Example 31.1. The boiling point of water at a pressure 
1.013 x 10° Pa is equal to 100°C, while at 1.05 x 10° Pa, it is 
equal to 101°C. Upon vaporization at a pressure 1.013 x 
x 10° Pa, the specific volume increases from 1.04 x 107? to 
1.673 m?/kg. Find the heat of vaporization at this pressure. 
We use the Clausius-Clapeyron equation (31.4) in the 

following form: 

| AP 
E 

At Ap=37 GPa, AT=1K, T=373K, and v,—v,= 
— 1.672 m?/kg, we get | — 229 MJ/kg. The discrepancy with 
the experimental value 2.25 MJ/kg is due to the use of finite 
differences. 

T(v, — v4). 

Sec. 32. VAN DER WAALS EQUATION 

The nature of deviation of the 
properties of a gas from the 
ideal behaviour is described. 
The physical factors taken into 
account by the Van der Waals 
equation are discussed. 
The main peculiarities of the 
liquid state are analyzed with 
the help of the Van der Waals 
equation. 
The theoretical results are com- 
pared with the experimental 
data. 

DEVIATION OF THE PROPERTIES OF A GAS FROM THE 

IDEAL BEHAVIOUR. Experimental investigations of gases 
over a wide range of pressures have shown that pV is not 
constant at T=const, as it should be according to the ideal 
gas equation. The product pV changes with pressure as if the 
gas is compressed more readily than the ideal gas under low 
pressures, while it offers greater resistance to compression at 
high pressures in comparison to the ideal gas. In other words, 
auxiliary forces of attraction appear in a gas at low densities, 
while at high densities, repulsive forces come into play. These 
results of experimental investigations confirm the general 
nature of the potential energy curve describing the 
intermolecular interaction (see Fig. 65). 
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COMPRESSIBILITY. The compressibility x is defined as the 
proportionality factor between the relative variation of 
volume AV/V and the change in pressure Ap: 

AV/V= — Ap, (32.1) 

whence 

1 oV 
x= ——|{—]. (32.2) 

T| op ); 

For an ideal gas, (OV/Op) y 2 — V/p, and hence x 2 1/p. It 
has been shown experimentally that the compressibility of 
a real gas under low pressure is higher than that for an ideal 
gas. Under high pressures, on the other hand, a real gas has 
lower compressibility than an ideal gas. 

The compressibility of liquids is very small, since the 
molecules in liquids are densely packed. Consequently, very 
high pressures are required even for small variations of the 
volume of a liquid. For example, the compressibility of water 
is 0.47 x 1007? Pa^!, the corresponding values for gasoline, 
glycerine, and acetone being 0.82 x 107°, 0.22 x 107°, and 
1.27 x 107? Pa ̂ ! respectively. Thus, the compressibility of 
liquids i$ about 1000 times smaller than that of gases. 

VIRIAL EQUATION OF STATE. The equation of state 
depends on the law of interaction between molecules. Hence, 
strictly speaking, each type of molecules has its own equation 
of state. There is no universal equation of state for gases with 
intermolecular interaction and for liquids. In principle, the 
exact equation of state can be represented in the form of 
a virial equation of state 

pV = RT+ Ai (TYVq + A2(TYV2 +... (32.3) 
where A;(T) are the virial coefficients. This equation is an 

infinite series in inverse powers of the molar volume and 
requires the knowledge of an infinite number of virial 
coefficients. In this sense, this equation is important only 
from the theoretical point of view. For practical calculations, 
we must confine ourselves to the first few terms. Very many 
different approximate equations of state were used for 
investigating specific substances. Among the approximate 
equations of state, the Van der Waals equation received the 
widest recognition. It takes into account the main physical 
characteristics of the gas with interacting molecules in the 
simplest and the most compact form, and represents them in 
the most visual form. 
VAN DER WAALS EQUATION. The ideal gas equation 

pV=(m/M)RT does not take into account the long-range 



The gas constant appearing 
in the Van der Waals 
equation has different values 
for different substances, and 
is not equal to the molar 
gas constant. Individual 
values of the gas constant 
are smaller than the molar 
values, thus indicating that 
molecules combine to form 
complexes near the critical 
state. Away from the critical 
state, the universal gas 
constant can replace the gas 
constant in the Van der 
Waals equation. 
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forces of attraction. between molecules or the short-range 
forces of repulsion. On account of the forces of repulsion, 
a molecule does not allow another molecule to penetrate the 
volume occupied by it. Consequently, the repulsive forces are 
characterized by the effective volume of a molecule. We 
denote by mb' the total effective volume of molecules which is 
proportional to the mass of the gas. In this case, the finite 
volume of molecules or, in other words, the repulsive forces, 
can be taken into account by considering that only the part 
V— mb' of the volume V may change in the ideal gas 
equation. 

The forces of attraction create an additional pressure on 
the gas. The molecules at the boundary of the gas in a vessel 
are attracted by other molecules inside the vessel, thus 

causing an effective additional pressure proportional to the 
number of particles per unit area of the boundary, and to the 
force with which the particles near the boundary are drawn 
inward by other particles. Obviously, this force is 
proportional to the number of particles taking part in its 
creation. In turn, the number of such particles is also 
proportional to the concentration ng of the particles. Hence, 
the additional pressure in the gas due to the forces of 
attraction is proportional to nZ, i.e. inversely proportional to 
the square of the specific volume (oc m? /V2). 

Taking into account the above two corrections, we can 
transform the equation of state for an ideal gas into the Van 
der Waals equation (1873): 

(p  m?a | V) (V — mb") — (m/M) RT, 

where a’ and b’ are constants having different values for 
different gases. They are called the Van der Walls constants. 
Dividing both sides of Eq. (32.4a) by m, we get 

(32.4a) 

(» + 5) (w — b')= RoT, (32.4b) 

where v — V/m is the specific volume, and Ry = R/M is the 
specific gas constant, equal to the ratio of molar gas constant 
to the molar mass. 

In place of constants a’ and b' in Eq. (324a), the constants 
a=a/M? and b=b'/M are often used. In this case, 
considering that v=m/M, Eq. (32.4a) assumes the form 

y (32.4c) 

where a and b are also called the Van der Waals constants 

and should not be confused with the constants a’ and b'. 

vla 
p+— ](V— vb) = vRT, 
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Fig. 71. Tothedetermination of the 
roots of a third-degree polynomial 
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Considering that V, = V/v, we can transform Eq. (32.4c) into 

(» 4 T (V, — 5) - RT, (32.4d) 
ps 

which is a frequently encountered form of this equation. 

If the specific volume and Eq. (32.4b) are used, the formulas contain 
the constants a and b’. In the calculations involving the molar 
volume obtained from Eq. (32.4d), we must use the constants a and 
b. This fact should always be borne in mind. 
Formulas (32.4b) and (32.4d) are of the same form. Hence, in order 
to simplify the notation and to make the formulas more general, the 
constants in them are denoted by a and b, and the gas constant 

R and volume V are used without subscripts. If V is taken for the 
molar volume, the formula has the sense of (32.4d) while if 
V indicates the specific volume, the formula has the sense of (32.4b), 

i.e. in this case R stands for Rọ and a and b for œd and V. 

VIRIAL FORM OF THE VAN DER WAALS EQUATION. The 

Van der Waals equation (32.4d) can be written as follows in 
the virial form (32.3): 

RTb—a p^ 
Va = RT+ ———— 3 2 Pana = RT+ V. RI yz (32.5) 

n=2 

This equation is obtained from (32.4d) if we use the series 
expansion 

ans = Msc): (32.6) 
1 — b/V Va 

n= 

which can always be carried out, since (b/V,,) is always less 
than unity in Eq. (32.4d). Thus, the Van der Waals equation 
is obtained analytically from the virial equation (32.3) by 
summing all its terms for a particular case when this 
summation is possible. It is more convenient to express Eq. 
(32.4d) in a different form for analyzing the isotherms. 
Multiplying both sides of this equation by V2, and removing 
the brackets, we get 

V3, —(b + RT/p) V2, + aV,,/p — ab/p = 0. (32.7) 

This is a third-order equation in Ka 
THE PROPERTIES OF THIRD-DEGREE POLYNOMIALS. 

Let us consider a polynomial 

f(x) =x? + Ax? + Aix + Ag, (32.8) 



Fig. 72. Van der Waals isotherms 
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where A; are real quantities. It follows from the equalities 
f(— 99) 2 — oo, f(oo) 2 oo that this polynomial must have 
a positive root, i.e. it must intersect the X-axis (Fig. 71). 
Thus, the third-order equation f(x) =0 has three roots in all, 
of which one is real. The other two roots are either both real 
or both complex. This is clear from the fact that if, after 
intersecting the X-axis for the first time (real root), the curve 

returns to the same axis and intersects it again (second root), 
f(x) will have a negative value. Hence, in order to satisfy the 
condition f(oo) — oo, the curve must intersect the X-axis for 
the third time. In other words, all three roots are real (solid 

line). The case of one real and two complex roots is shown 
by the dashed line. 
VAN DER WAALS ISOTHERMS. It is clear from the above 

description of the roots of the third-degree polynomial 
equation that if an isotherm is obtained by putting T= const 
in Eq. (32.7), V will have either one or three real values for 
different values of p. This means that in the p-V plane, the 
isotherm of this equation intersects the line p — const either 
at one or at three. points. Hence, the isotherms of the Van der 
Waals equation have the form shown in Fig. 72. 
The isotherm T,, separates nonmonotonic isotherms T< 

« T. having three points of intersection with straight lines 
p=const in the region p from monotonic isotherms which 
intersect straight lines p=const only once for all values of 
p (Fig. 72). The isotherm T,, corresponds to the critical 
temperature isotherm (see Fig. 66) obtained experimentally. 
The isotherms for T T, are similar in shape to the 
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isotherms of a gas at a temperature above T,,. For T< T,,, 
the isotherms are considerably different from the isotherms 
observed experimentally for a real gas (see Fig. 66). Let us 
consider these in greater detail by taking the isotherm T, as 
an example. 
On the region CB, the pressure increases with volume 

(6p/OV- 0). Obviously, this system cannot be in a stable 
equilibrium at any point on this region, since the slightest 
density fluctuations will be spontaneously amplified. Hence, 
the region CB cannot be in a stable state. In the regions 
D'DC and BAA', the pressure decreases with increasing 
volume, (ĉp/2V) < 0, and hence the corresponding states can 
physically exist. In this case, (Op/OV);« O is the necessary 
condition for stable equilibrium, although it may not always 
be a sufficient condition. It can be asked as to how a system 
can go over from the first to the second region if the 
intermediate region is absolutely unstable. 

It was shown experimentally (see Fig. 66) that the system 
undergoes this transition through a two-phase state, the 
isotherm in this transition being horizontal (Fig. 72, segment 
DA) The only problem is to find the level at which the 
straight line must be drawn. 
A transition from D to A can be accomplished via the 

isotherm DFA or the isotherm DCBA which does not exist in 
a stable state. However, the states through which it passes are 
characterized by a specific volume, pressure, entropy, etc. The 

entropy in the states A and D has definite values. If both the 
transitions are carried out reversibly, we can write for identical 
entropy variations 

ume | L (32.9) 
T T 

DFA DCBA 

Considering that T, const and 5Q=dU+pdV, we 
obtain from (32.9) 

U(4)- U(D) f pdV=U(A)—U(D)+ fj pdV, (3210 
DFA DCBA 

where dU is the exact differential. Consequently, the 
horizontal line DFA must be drawn in such a way that the 
following equation is satisfied: 

[ pdV- [ pdV. (32.11) 
DFA DCBA 

This means that the areas bounded by the curve DCBA and 
the straight line DFA must be identical or, in other words, 



Each gas with intermolecular 
interaction has its own 
equation of state. There is 
no universal equation of 
state for real gases. 
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the work done upon transitions along these two paths must 
be the same. This will be true if the areas bounded by the 
closed curves DCFD and FABF are equal. 
METASTABLE STATES. It is now clear that the segments 

A'A and DD' of the Van der Waals isotherms describe the 
gaseous and the liquid state. It remains to be found which 
states correspond to the regions AB and CD of the isotherms, 

since Op/OV « 0 on these segments, and hence their existence 
cannot be ruled out. It is shown experimentally that such 
states can actually be realized. The regions AB and DC 
characterize the states of supercooled vapour and super- 
heated liquid. A supercooled vapour is the state in which 
a substance must exist in the liquid state according to its 
parameters, but continues to remain in the gaseous state 
according to its properties, i.e. does not retain its volume but 
tends to expand like a gas. A superheated liquid is the state 
of a substance in which it must be a gas according to its 
parameters, but remains in the liquid state. 

These states are not absolutely stable. Under a small 
external perturbation, the system rapidly goes over to the 
nearest stable state. Such states are called metastable. 
These states can be experimentally realized as follows. If 

very pure vapour of a substance (for example, water) is 
prepared in a closed vessel and then cooled, a transition to 
the liquid state does not occur when the conditions for such 
a transition are attained (see Fig. 70, point R). A further 
decrease of temperature leads to the liquid state region (to 
the left of the curve AK), but the substance remains in the 

gaseous phase. If a small amount of ions of some other 
substance are introduced into the volume occupied by the 
gas, a rapid transition of a certain fraction of the gas to the 
liquid state takes place and can be observed in the form of 
a mist. 

The superheated liquid state is obtained as follows. We 
take a very pure liquid which is free not only of impurities 
but also from microscopic air bubbles. The latter condition is 
attained through a prolonged boiling of the liquid as a result 
of which all microscopic bubbles are expelled. If the liquid 
prepared in this way is heated, a transition from the liquid to 
the gaseous state is not observed when the conditions for 
such a transition are attained. The parameters of the 
substance (temperature, pressure) correspond to the gaseous 
state, but the substance remains in the liquid state. If a small 

amount of foreign matter (for example, a pinch of chalk) is 
added to the liquid, a rapid transition of a certain part of the 

liquid to the gaseous state occurs over the entire volume, and 
is accompanied by a vigorous boiling of the liquid. 
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? 

1. Enumerate the physical factors 
which make the compressibility 
of a real gas smaller than 
that of an ideal gas at a low 
pressure and larger at a high 
pressure. 

. On what basis can we choose 
the pressure at which 
a horizontal isotherm of 
a real gas corresponding to 
the two-phase state must be 
drawn? 

. Why are a supercooled vapour 
and a superheated liquid 
called the metastable states? 
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The physical factors ensuring the existence of metastable 
states of supercooled vapour and superheated liquid will 
become clear after analyzing the dependence of the saturated 
vapour pressure on the liquid surface shape (see Sec. 34). 

CRITICAL PARAMETERS. For T> T,,, the Van der Waals 

equation (32.7) has only one real root, while for T< T,,, this 

equation has three real roots in a certain domain of p. It is 
obvious (Fig. 72) that as the temperature increases the values 
of these three real roots become closer and ultimately merge 
into a single value at T=T,,. Consequently, Eq. (32.7) 
assumes the following form for the critical state: 

(V— VP = 0 = V? — 3V, V? + 3V2, V V}. (32.12) 

A comparison of Eqs. (32.12) and (32.7) gives 

IVe = b sb RT las am = a/p.,. Ve. ab/P.. T (32.13) 

This is a system of three equations in three unknowns V,,, 
Pes and Ta- Its solution is 

V.. — 3b, p, — a/(27b?), T,, — 8a/(27Rb). (32.142) 

Thus, the parameters of the critical state of a substance are 

expressed in terms of constants a and b of the Van der Waals 
equation. 

Hence, there are three equations for two Van der Waals 
constants. These equations can be satisfied only if R is also 
determined by Eq. (32.14a). Solving these equations for a, b, 
and R, we obtain 

a= 3p, V2 b P Vee {3s R = 8p..V./GT,,). cr? 
(32.14b) 

If we use specific volumes, Eqs. (32.14a) retain their form, 

only the following substitution must be made: a>a’, bb’, 
Vv, and R> Ro. 

Equations (32.14b) show that the individual value for the 
gas constant K must be calculated for each real gas. Each of 
these individual values differs from the molar gas constant 
kN, and is less than this value. Since the gas constant is 
proportional to the number of molecules per mole, it can be 
concluded that the number of structural units forming a gas 
constant decreases at the critical state, i.e. the molecules 
combine to form complexes. Away from the critical state, 
these complexes decompose and the individual gas constant 
becomes equal to the molar constant. Hence we can use the 
molar gas constant for R at large distances from the critical 
state. While analyzing phenomena in the vicinity of the 
critical state, the individual value of the gas constant must be 

used. 
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The values of critical parameters for some substances are 
listed in Table 2. 

Table 2 
Values of Critical Parameters 

Substance Ta K Pees 10° Pa Vis 
107? m?/kg 

Hydrogen 382 13.29 32.26 
Nitrogen 126.0 33.93 3.22 
Oxygen 154.3 50.34 2.32 
Chlorine 417.1 71.08 1.75 
Water vapour 647.25 220.53 2.50 

LAW OF CORRESPONDING STATES. It is convenient to 

represent the Van der Waals equation (324) in 
a dimensionless form. Taking the critical volume, pressure, 
and temperature from (32.14a) as the respective units, we can 
write 

V= VIV o> D. DÍDe s T,— T/T,, (32.15) 

where V, p,, and T, are dimensionless parameters for 
measuring the volume, pressure, and temperature respectively, 
of the substance under investigation. They are called the 
reduced parameters. Substituting (32.15) into (32.4) and 
taking into account (32.14b), we obtain 

(p, -- 3/V2) GV, — 1) - 8T,. (32.16) 

Thus, if we take the critical parameters of a substance as 
units, the equation of state assumes the form (32.16) which is 
the same for all substances. It can be concluded from here 
that the behaviour of different substances is also the same. 
This circumstance played an important role in science at 
a certain time, because the knowledge of the behaviour of 

some substances could be used for predicting the behaviour 
of other substances. For example, this led not only to the 
prediction that hydrogen can be converted from the gaseous 
to the liquid state, but also to the estimate of temperature 
and pressure at which this becomes possible. The statement 
about the identical behaviour of all liquid-gas systems is 
called the law of corresponding states. Quantitatively, this 
law can be formulated as follows: if two reduced parameters 
of a substance are identical, the third parameter is also the 
same. 
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Consequently, the law of corresponding states is not only 
the verbal expression for the peculiarities of the ditnensionless 
Van der Waals equation (32.16), but has a general sig- 
nificance independently of the Van der Waals equation, since 
the reduced parameters are determined independently of the 
equation of state of a substance. It must be remarked, 
however, that the law of corresponding states is not obeyed 
by real gases and liquids. 
COMPARISON OF THE VAN DER WAALS EQUATION 

WITH THE EXPERIMENTAL RESULTS. The Van der Waals 

equation takes into account the main peculiarities of 
a substance in the liquid or gaseous state in a simple, visual, 
and convenient form. Hence, for several decades after its for- 
mulation in 1873, it played a leading role in the works on 
liquefaction of gases not only in the sense that it allowed an 
estimation of temperatures and pressures at which lique- 
faction is possible, but mainly because it led to the firm belief 
that liquefaction is in general possible. 

Qualitatively, the Van der Waals equation describes the 
liquid-gas system very well, but quantitative predictions 
based on this equation deviate from the experimental results. 
The main differences are as follows: 

1. For a given substance, the constants a and b in the Van 
der Waals equation must be independent of temperature. In 
actual practice, however, different values of a and b have to 
be chosen for isotherms corresponding to different 
temperatures, i.e. a and b depend on temperature. 

2. It follows from Eq. (32.14a) that the quantity 

PaVa (RT a) = 3/8 = 0.375 (32.17) 

must be a universal-constant for all substances. However, it 
changes its value in actual practice. For example, it is equal 
to 023 for water and 031 for helium. In general, the 
agreement with the predictions of the Van der Waals 
equation is better for light gases than for heavy gases. This 
explains the success of the theoretical predictions concerning 
the liquefaction of hydrogen and helium, in which the 
experimental physicists were engaged at the beginning of the 
twentieth century. 

3. The relation. V,, — 3b is not obeyed. A more exact 
relation is V,, — 2b. 

4. In the region of two-phase equations, the Van der Waals 
equation is not proved theoretically and its results differ from 
the experiment. 

As mentioned above, a universal equation of state cannot 
exist for all substances, and the Van der Waais equation 
never claimed to play the role of such an equation. However, 
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even for describing a specific substance, the Van der Waals 
equation is only an approximate equation of state. 
THE INTERNAL ENERGY OF A VAN DER WAALS GAS. 

This energy consists of the internal energy of molecules 
constituting a gas and the kinetic energy of the motion of the 
centre of mass of molecules, which are together equal to 
CyT, as well as the potential energy of mutual attraction of 
molecules, which has a negative value. It should be noted 
that the first part of the heat capacity can be expressed in 
the form C,T only if Cy is independent of tempera- 
ture. 

The potential energy of attraction is equal to the work 
done against the forces of attraction in order to separate the 
molecules to an infinitely large distance where it can be 
assumed that there is no interaction between them and that 
the potential energy of their interaction is equal to zero. The 
pressure due to the intermolecular attraction in the Van der 
Waals equation is equal to a/V?, and hence the potential 
energy of interaction is given by the formula 

Va a 

where the lower limit of integration is chosen in such a way 
that the potential energy corresponding to it is equal to zero. 
Hence the internal energy of a Van der Waals gas is given by 

U —CyT — aJV. (32.19) 

Of course, this formula can be derived from purely 
thermodynamic considerations also. We start with formula 
(23.28): 

dU — CydT 4 [T (0p/OT)y — p] dV. (32.20) 

It follows from the Van der Waals equation that 

p^ RT/(V — b) — afV?. (32.21) 

Hence 

op RT a 
T(—) = = —=. 39.22 ca vob Py peg 

Equation (32.20) then assumes the form 

dU - CydT & 7, dV. (32.23) 
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The law of corresponding 
states: if two reduced 
parameters of a substance 

are identical, the third 
parameter is also the same. 

The pressure correction to 
the Van der Waals equation 
assumes that the 
intermolecular attraction 
extends to distances much 
larger than the molecular 
dimensions. However, 

experience shows that even 
at a distance equal to five 
times the diameter of 
a molecule, the forces of 

attraction are practically 
absent. Consequently, the 
Van der Waals equation can 
claim to give only 
a qualitative description of 
a real gas. 
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Considering that U 20 for T 20 and V —oo, we obtain 
from Eq. (32.23) 

T y 
v=( ore | — ir Sept ——, (32.24) 

0 +o V V 

where Cy is independent of T. 
INTERPRETATION OF QUANTITIES APPEARING IN THE 

VAN DER WAALS EQUATION. We introduce the equation of 
state of a gas whose statistical model is described in detail in 
Sec. 5. The maximum number of microscopic states 
corresponding to the equilibrium state of a system is given by 
formula (5.6): 

T9; NV(N —n)! (32.25) 

the values of the quantities used in this formula and in subse- 
quent formulas being the same as in Sec. 5. According to the 
Boltzmann relation (19.12), the entropy of such a system of 
molecules is 

S - kIn Ty — kIn [NV (N — n) !] 

zk[NInN —N —(N —n)In(N ^n) - N—- n], (32.26) 

where we have used Stirling's formula. Consequently, 

os 1 / és k I) up n. li ie (sr), a. p A Um qM 
k n k Pn 

k b 
== l-7 ; 

where V = NË, P is the volume of one of the unit cells into 
which the volume V is divided; b — n? is the Van der Waals 
constant. With the help of one of the Maxwell relations 
(23.23), viz (0S/0V)y — (Op/OT)y , we can represent Eq. (32.27) 
in the form 

Óp k b nk b 

(2). 5 -;sn(! -+)- - 25 In(1 -x) 
" i i b 

po” xl 

(32.27) 

(32.28) 
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Integrating with respect to T for V =const, we obtain 

sf Sm ag m py ee p C IW ce 
(32.29) 

where In (1 — b/V) is expanded into a series in (b/V) < 1. For 
b — 0, Eq. (32.29) coincides with the ideal gas equation, while 
for b x: 0, it is reminiscent of the Van der Waals equation in 
which a— O0 and 1/(V — b) is replaced by (1/b)In (1 — b/V). 

In order to take into account the forces of attraction, we 

shall assume that the energy of interaction is the sum of the 
energies of interaction between pairs of molecules. The 
number of these pairs is proportional to n?. If all the cells of 
the volume under investigation were filled by molecules, i.e. 
n — N, the total energy of interaction should be proportional 
to the volume of the vessel, in accordance with the concept of 

additivity of energy. Hence, the energy of pairwise interaction 
between n molecules is proportional to n?/N. In this case, the 
entropy remains unchanged, and the free energy will assume, 
in accordance with (23.18), the following form: 

F = An?/N — kT ln [N //(N — n) f], (32.30) 

where A is the proportionality factor. Substituting this 
expression into one of the formulas from (23.23), we get for 
pressure 

QIU(9FY  1(9FY | Am 
P< \ av), PNN) PN? 

k 
E S : rwr). (32.31) ay (Nal » 

where a= APn?, and the differentiation is performed in the 

same way as in (32.27). Formula (32.31) is almost identical to 

the Van der Waals equation, the only difference being that 
(1/b) In (1 — b/V) is substituted for 1/(V — b). The correction 
for pressure in the Van der Waals equation is made under 
the assumption that intermolecular attraction persists even at 
distances considerably exceeding the dimensions of 
a molecule. However, it is known from experiments that the 
forces of attraction between molecules practically vanish at 
distances of the order of five molecular diameters. This means 
that the Van der Waals equation is unable to provide 
a sufficiently accurate account of attractive forces between 
molecules, and can provide only a qualitative description. 
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Such an approximate method of describing the interaction 
between molecules, however, is widely used in other physical 
problems as well and is called the molecular field theory. It 

assumes that each molecule is in the potential field created by 
all the remaining molecules, and that the intensity of this 
field is proportional to the molecular density. 
EQUATION OF STATE BASED ON THE VIRIAL 

THEOREM. The equation of state for simple liquids can be 
obtained in the general form with the help of the virial 
theorem. A liquid is called simple if its molecules are 
spherically symmetric and the intermolecular potential 
depends only on the distance between molecules (for example, 
the Lennard-Johes potential). 

The equation of motion for each molecule has the form 

F, 7 md? y /dt*, (32.32) 

where F, is the total force acting on the ith molecule, r is its 
radius vector, and m is the mass of a molecule. The reference 
point for radíus vectors is arbitrary. Scalar multiplication of 
both sides of (32.32) by 4, gives 

Fy: = mya? x, /dt?. (32.33) 

Considering that 

Pr _ df di) _ (dnY ae a= a) 
dg ^ dr de dt 2 d : 

(32.34) 

we can rewrite (32.33) in the form 

m diy mc 6 
[or di? (ri) —-Fi rnm, (32.35) 

where v; — dr;/dt is the velocity of the ith molecule. Adding 
these equations for all the molecules (the number of addends 
in the sum for one mole of molecules is N4), we obtain 

7 S E Fent Em. (32.36) 

Averaging both sides of this equation over time, we find 
that the left-hand side is equal to zero, since the molecules in 
a finite volume are in a steady state. Hence, 

à Fira: + à mv; ), — 0. (32.37) 
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The force acting on a molecule can be expressed as the 
sum of two forces: 

F;,2FitFi (32.38) 

where F; is the force acting on the ith molecule from all the 
remaining molecules, and Fj is the force acting on the 
molecule from the walls of the vessel, which confine the 
liquid to the vessel and give it the shape of the vessel (the 
force of gravity is absent). 

In other words, the force F; takes into account the 

pressure exerted by the vessel walls on the liquid. Substi- 
tuting (32.38) into (32.37), we get 

CE Fir) + <È Fir) + CL mu? > = 0. (32.39) 

We take the vessel in the form of a cube with an edge L. 
The origin is made to coincide with the centre of the cube, 
and the coordinate axes are parallel to the edges. Clearly, the 
force F; in this case will be nonzero only for x;= + L/2, 
yı = + L/2, and z;= + L/2. Consequently, the second term in 

(32.39) assumes the form 

(Fio - X Fax Fio * Q Fiz) 

-(24 Y Fi»-ü2«4 X Fix.  (32.40a) 
xzL/2 x=-L/2 

where the dots stand for the terms corresponding to the other 
two coordinate axes. 

Considering that the pressure is directed inwards in the 
liquid, we get i 

€ Fib--—pS pL ¢ » Fio —pS—pL, 
x=L/2 x=-L/2 

(32.40b) 

where S — L? is the area of a face of the cube. Since we are 
considering one mole of liquid molecules, the volume of the 
cube is equal to the molar volume of the liquid, i.e. L? = V m- 

Relations similar to (32.40b) can be written for the Y- and 
Z-axes. Hence, (32.40a) assumes the form 

<E Fin) = = 3PV m (3241) 

while Eq. (32.39) can be written as follows: 

QU Fir? -3pV, — — Quum; 5. (32.42) 
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Further, we consider that the force F; acting on the ith 
molecule is equal to the sum of forces acting on it from all 
the remaining molecules, i.e. 

=}, Fy, (32.43) 
j*i 

where F; is the force acting on the ith molecule from the jth 
molecule. Taking (32.43) into consideration, we get 

2ER-OÓ F= (Fun Fun) 
(pairs) 

ix; 

= 2 Ean I; je x d ji Ya, (32.44) 
(pairs) (pairs) 

where r,,=1,—1, is the radius vector drawn from the jth 
molecule to the ith molecule. In (32.44), we have considered 
that Fj— — Fj, in accordance with Newton's third law of 
motion. Since the forces are central, the vectors F; and r; are 
collinear. Hence, 

Fit, =F yr; (32.45) ji ji ji ji^ 

where rj; is the distance between the jth and the ith molecule, 

and F; is the magnitude of the force acting from the jth 
molecule on the ith molecule (it is positive for repulsive 
forces and negative for attractive forces). 

According to the theorem of equipartition of energy, we 
can write 

<¥ mv? > = ¥ 3kT = 3RT, (32.46) 

since the number of addends in the sum is equal to the 
Avogadro constant N,. Taking into account (32.44)-(32.46), 
we can rewrite Eq. (32.42) in the form 

PV mn = RT +— Lgs Fara? (3247) 
(pairs) 

If p(r) characterizes the radial distribution of the 
concentration of molecules, the number of molecules in the 
layer of thickness dr at a distance r from the given molecule 
is equal to 4nr?p (r) dr. Denoting the intermolecular potential 
by U(r), we obtain 

dU 
< È Pr ji ? ENE Po qu (r) dr, (32.48) 

r (pairs) 
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where F, = — dU/dr for central forces. In order to calculate 
the total contribution to the sum from the interaction of the 
ith molecule with all the remaining molecules, we must 

integrate (32.48) over all the molecules: 

Fira? = —4n i an rp (r)dr, (32.49) 
j 0 

where the forces of interaction sharply decrease with distance, 
and hence the limits of integration can be extended to 
infinity. Next, the summation over i must be carried out, 
which gives N4 quantities (32.49). Since each molecule was 
considered twice in the interaction, we get 

Cx PF A? — 4n j 
(pairs) 

RS 
r?p (r) dr. (32.50) 

Then the equation of state (32.47) assumes the form 

zn 
r?p (r) dr. (32.51) 

The distribution of concentration p (r) depends on the state 
of the liquid, i.e. on its pressure and temperature, for 
example. It can be seen from (32.51) that we must know p — 
— p (r, p, T) and the intermolecular potential U (r) in order to 
find the equation of state. Formula (32.51) connects the 
macroscopic parameters of a liquid with its molecular 
characteristics (which may be independently measured in 
experiments) in the most general form. Hence, this formula 

provides a reliable basis for venfying the accuracy of the 
molecular-kinetic hypotheses about the structure of simple 
liquids. 
COMPUTER EXPERIMENTS. With the advent of high- 

speed computers it became possible to theoretically 
investigate the properties of liquids without knowing their 
equations of state. If the intermolecular potential and forces 
acting on a molecule from other molecules are known, 

a sufficiently fast computer can easily calculate the motion of 
hundreds of molecules, taking their interaction into account. 
For this purpose, we choose quite small time intervals àt in 
which the molecular picture does not change appreciably. 
Usually, ôt is of the order of 10^ !* s. 

At an average velocity of the order of 10° m/s, the distance 

traversed by a molecule during this time interval is equal to 
107 !! m, which is about 10 times smaller than the diameter 
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of a molecule. The coordinates and the velocities of a particle 
change during this time by Ar = vét + F (5t)?/(2m) and Ay = 
— Fót/m. Adding these quantities to the previous values of 
coordinates and velocities, we obtain the new values, 
calculate the forces, and take the next step. And so on. 
Irrespective of the initial distribution of coordinates and 
velocities, we obtain Maxwell’s velocity distribution after 
a few dozen or a few hundred steps. We can then use the 
data for coordinates and velocities of molecules to calculate 
all the characteristics, such as pressure, temperature, radial 

distribution p(r) of the concentration of molecules, etc. 
The ‘results of such experiments are in good agreement 

with experimental data obtained for liquids by using the 
Lennard-Jones potential. The discrepancy between the 
theoretical and experimental results can be used to find even 
small deviations from the potential used for calculations and 
to introduce appropriate corrections. Thus, a computer can 
be used for an accurate modelling of the behaviour of 
a liquid and for investigating its properties under different 
conditions, i.e. for carrying out numerical experiments. Such 
methods are widely used at present for studying liquids. 

The following physical processes occur in this case. Near 
the surface, there is a dynamic equilibrium, i.e. the number of 
molecules arriving at the surface per second from the inner 
regions is equal to the number of molecules leaving the 
surface per second for the inner regions. In order to go over 
from inner layers to the surface layer, a molecule must “push 
aside” the molecules of the surface layer and overcome the 
forces of attraction due to the inner layer molecules which 
strive to hold it back. 

In order to go over from the surface layer to an inner 
layer, on the other hand, a molecule must simply “push 
aside” the inner layer molecules. Thus, it is more difficult for 
a molecule to go over from an inner layer to the surface than 
vice versa. Hence, the dynamic equilibrium is possible only if 
the density of molecules in the surface layer is less than the 
bulk density of the liquid. 

Consequently, the surface layer is in a sort of stretched 
state. A decrease in the density of molecules in the surface 
layer is confirmed by experiments on the reflection of 
polarized light. The surface layer thickness is just a few 
molecular layers. 

Example 32.1. Find the Van der Waals constants for hy- 
drogen if it is known that its critical temperature T,, = 
— 33.2 K, the critical pressure p,,— 1.295 MPa, and the 

molar volume in the critical state Vme = 6.5.10 ̂  5 m?/mole. 
mer 
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On the basis of (32.14b), we can write: 

ac3p.Vi., beVieD. Rn Vue CTs) (32.52) 

whence 

à — 3-1.295- (0.065? . Pa m$/mole? 

— 1.64. 10^? Pa. m*/mole?, 

b —(6.5-1075)/3 m?/mole 2 22-107 5 m?/mole, 

Q,8 1295 109.83-q07*— .] 
MR MM T . E 

3 333 mek es 
(32.53) 

It can be seen that the individual molar gas constant for 
hydrogen in the vicinity of the critical point differs 
considerably from the molar gas constant which is equal to 
8.31 J/ (mole. K). 

Example 322. Find the hydrogen pressure from the Van 
der Waals equation for a molar volume 10^? m?/mole àt 
a temperature of 300 K, as well as for a molar volume 

107* m?/mole at a temperature of 35 K. 
In the first case, the state of the gas is far from critical, and 

hence we can use the molar gas constant: 

RT a | 8331. 300 a | 
= Pa 

PUy cb ©, | 7-220 oy 
m 

= 2.53-10° Pa. 

Under these conditions, the pressure of the ideal gas is 

RT 831.300 DU EE i se 
p. wy — P 

p= 

In the second case, the state of the gas is close to critical 

and the individual gas constant should be used (R= 
= 6.763 J/(mole-K) for hydrogen, see (32.53)): 

363. 1.64.1072 
p- L2 M E Pa = 1.39105 Pa. óp4-x33059' 00A 

(32.54) 

The pressure of the ideal gas in this case is equal to 

.,931«35 



Fig. 73. Schematic diagram of the 
Joule-Thomson process 
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which is twice the pressure of the real gas. Hence, the 
individual gas constant is quite significant in the vicinity of 
the critical point. 

Example 32.3. Given the Van der Waals constants and the 
individual gas constant for water vapour near the critical 
point: a — 0.199 Pa. m*/mole?; b — 1.83 x 1075 m?/mole; and 
R = 5.008 J/(mole-K). Find the parameters of the critical 
state. . 

Using formulas (32.142), we get 

0.199 
7033-10 3y T05) Pa = 22 MPa, 

Per 

Vas 7 3:1.83:1075 m?/mole — 5.51075 m?/mole, 

8-0.199 
T.. == K = 643 K. 

*  27-5,008 - 1.83. 107° 

In order to describe the behaviour of vapour at room 
temperature, we can use the molar gas constant, but in this 
case, we must take the following values for the Van der 
Waals constants: 

a — 0,554 Pa. mS/mole?; b —34.10^5 m?/mole. (32.56) 

Sec. 33. JOULE-THOMSON EFFECT 

The physical significance and 
mathematical calculations of 
the differential and integral 
Joule-Thomson effect are dis- 
cussed. The applications of 
the effect to liquefaction of 
gases, as well as the properties of 
a substance near OK, are 
considered. 

THE PHYSICAL CONTENT OF THE EFFECT. During 

expansion, a gas performs work. If the gas is isolated, the 
source of work is the internal energy. If the entire internal 
energy were reduced to the kinetic energy of particles, the 
temperature of the gas should decrease. If the expansion of 
the gas occurred without accomplishing work, the gas 
temperature should remain unchanged. The expansion 
without heat exchange can be realized as follows. 

Suppose that we have a cylinder (Fig. 73) divided into two 
parts by the porous plug A. The same gas occupies the 
volumes V, and V, at different pressures on both sides of the 
plug. If p, 7 p;, the gas slowly percolates through the porous 
plug from volume V, to volume V;. In order to maintain the 
pressures p, and p, at a constant level, the piston P, must be 
pushed into the cylinder, thus reducing the volume V, and 
performing work over the gas, while the piston P, must be 
pulled out, thus forcing the gas to perform work. For an 
ideal gas, the work done on the gas due to the motion of the 
piston P, is equal to the work done by the gas due to the 
motion of the piston P, in accordance with Boyle's law: 
P1] AV, p4 |AV,| (T — const). 
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Things are different in a real gas, where the internal energy 
also contains the potential energy of intermolecular 
interaction. Figure 65 shows the general nature of the change 
in the potentidl energy of interaction between molecules as 
a function of the distance between them. Actually, the 
molecules are in a state of rapid motion, and we can only 
speak of a certain average distance between them and 
a certain average potential energy. The mean distance 
depends on the density: the higher the density, the smaller 
the mean distance. It also depends on the temperature: the 
higher the temperature, the smaller the mean distance. This is 
due to the fact that the kinetic energy of molecules increases 
with temperature, and they approach closer to each other 
upon collisions. Consequently, the molecules spend 
a relatively large part of time at short distances from one 
another. It is clear that under these conditions, the expansion 
of a real gas without heat exchange must be accompanied by 
a change in its temperature. 

Indeed, if the density and temperature of a gas are 
sufficiently high, the mean distance between molecules is less 
than rg. Figure 65 shows the values of the kinetic energy E, 
the potential energy U, and the total energy E+U. 
Apparently, in the case under consideration, a small increase 
in the volume, and hence a small decrease in the pressure, 

should lead to an increase in the temperature. If the density 
and temperature of the gas are such that the mean distance 
between molecules is larger than rg, a small increase in the 
volume, and hence a small decrease in the pressure, will lead 
to a decrease in the temperature. Such a change in 
temperature of a real gas under a very small adiabatic change 
in its volume and pressure is called the differential Joule- 
Thomson effect. In case of a significant change in the 
pressure (volume) small temperature differences should be 
summed up. This total effect is called the integral Joule- 
Thomson effect. This effect may involve an increase in the gas 
temperature (when the contribution of the differential effects 
with AT > 0 exceeds the negative contribution with AT < 0) 
or a decrease in the gas temperature. 

Thorough experimental investigations of this phenomenon, which 
confirmed a variation of temperature for a steady-state flow of a gas 
through a porous plug were carried out in 1852-1862 by Joule and 
Thomson (later Lord Kelvin). The phenomenon discovered by them 
was called the Joule-Thomson (Joule-Kelvin) effect. 

CALCULATION OF THE DIFFERENTIAL JOULE- 

THOMSON EFFECT. There is no direct heat exchange 
between gases in volumes V, and V; through the porous 
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In a real gas, a permanent 
fight between attractive and 
repulsive forces takes place. 
If upon a certain change in 
pressure the mean energy of 
interaction between molecules 
decreases, the gas is heated, 
and if it increases, the gas is 
cooled. This determines the 
sign of the differential Joule- 
Thomson effect, which can 
be different at different 
pressures. 
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plug, which is usually made of a material with a very low 
thermal conductivity. The entire system is thermally insulat- 
ed. Hence, for a certain amount of a gas which occupied 
a volume AV, to the left of the plug and had an internal 
energy AU,, and which, after passing through the porous 
plug, occupies a volume AV, and has an internal energy 
AU,, the law of conservation of energy has the form 

AU, - p, AV, — AU, - p; AV,. (33.1) 

The quantities on the left- and right-hand sides of this 
relation are called the enthalpy of the gas under 
consideration. Hence, Eq. (33.1) indicates that the Joule- 
Thomson effect occurs at a constant enthalpy. For a certain 
mass of the gas, Eq. (33.1) assumes the form 

H =U +pV =const, (33.2) 

where the notation introduced in (17.7) is used. 
If we choose T and p as independent variables, we get 

from (33.2) 

oH oH 
dH =(—— | dT +{ —_} dp=0. (33.3) 
G ) ( op Ji 

Taking (23.30) into account, we can write 

eH ae oH mm oV (33.4) 

aT] 7 Vép]rp OT A. ' 

Consequently, (33.3) yields 7 

odg ^ H C, 

This formula describes the differential Joule-Thomson 
effect. 

For an ideal gas, (0V/OT),— R/p— V/T, and hence 
(OT/Op), —-0, the Joule-Thomson effect is not observed. 
INTEGRAL EFFECT. If the difference between the pressures 

pı and p, on different sides of the plug is finite, the Joule- 
Thomson process can be represented as a sequence of 
quasistatic Joule-Thomson processes in each of which the 
pressure changes by an infinitely small value dp. For this 
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sequence of processes, we can write 

El oV 
dp = uc — va : 

Op | J El er, p 

(33.6) 
Since the sequence of the quasistatic Joule-Thomson 

processes transforms the system from the same initial to the 
same final state, Eq. (33.6) gives the complete change in the 
temperature in a real Joule-Thomson process, i.e. is the for- 
mula for the integral effect. 
JOULE-THOMSON EFFECT IN THE VAN DER WAALS 

GAS. In the general case, the calculation of the derivative 
(0V/OT), is cumbersome, since the Van der Waals equation is 
a third-degree equation in V. For this reason, we shall 
confine ourselves to the case of a sufficiently rarefied Van der 
Waals gas, when in the virial representation (32.5) of this 
equation we can limit ourselves only to the terms which are 
linear in a and b, and take into account the first correction 
for the deviation of the gas from an ideal behaviour. Under 
these conditions, Eq. (32.5) assumes the form 

*! 

RT 1 RT 1 
V =—— + —(RTb — a) = ——  —— (RTb - a) 

p pV p RT 

RT a 

P 

where in the correction term RT is substituted for pV in 
accordance with the equation for an ideal gas, since such 
a substitution introduces only those corrections which have 
higher order in a and b than the corrections taken into 
account in this equation. It follows from (33.7) that 

oV E a (33.8) 

ors, p RE?’ 

Consequently, formula (33.5) for the differential effect assumes 
the form 

ôT 1 /TR Ta RT a 
—) =—|— + -— - t+ 
op Ju C,\ P RT p RT 

1 2a 
-àR è) (33.9) 
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This equation shows that at a sufficiently low temperature, 
(OT/Op)y 7 0, i.e. the gas is cooled upon expansion, while at 
a sufficiently high temperature, (OT/Op)g «O0, i.e. the gas is 
heated upon expansion. Such a behaviour of the gas is in 
complete agreement with the physical sense of the Joule- 
Thomson effect. The temperature at which (OT/Op)g — O, i.e. 
the Joule-Thomson effect changes its sign, is called the 
inversion temperature: 

T;,, — 2a/ (RD). (33.10) 

In order to calculate the integral Joule-Thomson effect for 
a Van der Waals gas, it is convenient to directly proceed 

from the constant enthalpy condition (33.2). Suppose that 
a gas has a volume V and V' before and after percolating 
through the porous plug. There are no limitations on the 
density of the gas in the initial state, while for the final state 
it is assumed that the gas is sufficiently rarefied and behaves 
as an ideal gas. The condition (33.2) then becomes 

CyT—a/V+pV =CyT'+pV=CyT' +RT, (33.11) 

where the unprimed quantities pertain to the initial state, and 
the primed quantities to the final state. It follows from the 
Van der Waals equation that 

U ee (33.12) PTyR EC V-b V. 

Combining this expression with (33.11), we get 

1 b 2a 
T'—T=AT =— |RT —-—-], 33.13 

€ ( V—b a ( 

where C, = Cy + R. This formula describes the integral Joule- 
Thomson effect. The sign reversal of this effect occurs at the 
points for which AT = 0, 1.e. 

b 2a 2a b 
-—20, T2——[1-— |. 33.14 

V-b V ' aa z) UN 

The inversion curve for the integral Joule-Thomson effect 
for a Van der Waals gas is shown in Fig. 74. The inversion 
temperature for a sufficiently rarefied gas 1s equal to 2a/ (Rb), 
which coincides with the inversion temperature for the 
differential effect, given by (33.10). With increasing density, 
the inversion temperature decreases. By definition, the 

RT 



Fig. 74. The inversion curve of the 
Joule-Thomson effect for the Van 
der Waals gas 
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0 b V 

smallest possible volume for a Van der Waals gas is equal to 
b. However, we must bear in mind that when deriving the 
formulas, we assumed that the initial state was gaseous, and 

the inversion temperature is meaningless for other states of 
aggregation. 

The shape of the inversion curve (Fig. 74), obtained for 
a Van der Waals gas, is typical of all real gases. This follows 
from the law of corresponding states. For most of gases, the 
inversion temperature is considerably higher than the room 
temperature, hence these gases are cooled in the Joule- 
Thomson process. Oxygen and nitrogen are examples of such 
gases. For some other gases such as hydrogen and helium, 
the inversion temperature is below the room temperature, 
and hence they are heated in the Joule-Thomson pro- 
cess. 
LIQUEFACTION OF GASES. If a gas is below its critical 

temperature, it can be liquefied simply by compression. 
However, the critical temperature for most gases is very low. 
For example, the critical temperature of helium, hydrogen, 
nitrogen, and oxygen is 5.3, 33, 126.1, and 1544K 
respectively. Yet it is simpler and technically more important 
for storage to liquefy gases at atmospheric pressure. For this 
purpose, the gases must be liquefied at temperature below the 
critical, at which their saturated vapour pressure is equal to 
the atmospheric pressure. For the gases indicated above, this 
temperature is 4.4, 20.5, 77.4, and 90 K respectively. 

It is not easy to attain such a low temperature. In order to 
decrease the temperature, a gas is cooled by using the Joule- 
Thomson process and adiabatic expansion. 

The procedure of cooling a gas by using these methods is 
as follows. The gas is isothermally compressed up to several 
hundreds atmospheres at an attainable (e.g. room) 
temperature. After this, it is allowed to expand either in the 
Joule-Thomson process, or adiabatically. In both cases the 
gas is cooled. It is then used to cool the next portions of the 
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gas, compressed to a higher pressure. Consequently, the next 
portion of compressed gas has a lower temperature than in 
the preceding act of cooling. Hence, after expansion either as 
a result of the Joule-Thomson process or adiabatically, this 
portion of gas has a lower temperature than attained in the 
previous act. It is used to cool the next portion of the initial 
gas, and so on. In the long run, the temperature is lowered to 
the required value. 

In real refrigerators, a combination of cooling processes is 
normally used. Besides, cooling is carried out quasicontinu- 
ously, i.e. a portion of gas cooled in the preceding stage is 
partially returned to the compression stage, and on its way 
cools the next portion of compressed gas, which then gets 
cooled as a result of the Joule-Thomson process or during 
adiabatic expansion. This method of cooling a gas through 
heat exchange between opposite gas flows is called the 
method of counterflow heat exchange. 

A device where this process occurs is called a heat ex- 
changer. The gas is cooled as a result of adiabatic expansion 
in a gas-expansion machine. A device where isothermal 
compression takes place is called a compressor. The Joule- 
Thomson processes and adiabatic expansion are technically 
combined so that the efficiency of liquefaction is maximum. It 
is often expedient to cool the gas in the initial compressed 
state to a sufficiently low temperature by another liquefied 
gas obtained in another machine. For example, in production 
of liquid helium, liquid hydrogen is used for preliminary 
cooling. The constructional details of machines and possible 
combinations of cooling methods are quite diverse and are 
beyond the scope of this book. Their description can be 
found in a low-temperature physics laboratory manual. 

Liquefied gases can be used for direct cooling of other 
objects, since heat exchange in this case is sufficiently good. 
Upon a further decrease in temperature, liquid gases solidify 
(except He II). However, substances in the solid state cannot 

be used as cooling agents, since in this case heat exchange is 
ineffective. Taking into account the crystallization and boiling 
temperatures of the indicated gases, we can obtain the 
following temperature intervals by liquefaction of gases: 

63.14-77.32 K (nitrogen) 
54.36-90.12 K (oxygen) 
14.04-20.39 K (hydrogen) 
0.7-421 K (helium) 

In the first three cases the external pressure is equal to the 
atmospheric pressure. For liquid helium, 0.7 K is the lowest 
temperature which can be attained upon evacuation of liquid 
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helium ^He vapour. In this case the pressure is 0.293 Pa. 
A further decrease in temperature by lowering pressure is 
impossible because helium has a tendency to evaporate 
rapidly and no pumps are available to evacuate the helium 
vapour and decrease the pressure. 

For attaining lower temperature, the magnetic cooling 
method is used. This method can be described as follows. 
There are substances whose molecules have à permanent 
magnetic moment. Such substances are called paramagnetics. 
When a paramagnetic is magnetized, the magnetic moments 
of molecules are reoriented along the magnetic field. This 
corresponds to a decrease in the potential energy of the 
magnetic moments of molecules in an external magnetic field. 
It is clear that as a result of magnetization, i.e. upon an 
ordering of molecules, the potential energy of interaction with 
the magnetic field decreases, and the entropy of the system 
drops (since we are talking about ordering). 

Suppose that a certain paramagnetic is cooled to liquid 
helium temperature (say, to 0.7 K) by direct contact. The 
paramagnetic is then placed into a slowly increasing magnetic 
field and is adiabatically magnetized. The entropy of the 
system does not change during the reversible adiabatic slow 
process. However, the entropy associated with the orientation 
of molecules in the magnetic field decreases, and hence the 
entropy associated with the thermal motion increases. In 
other words, the paramagnetic gets heated. The magnetized 
paramagnetic is then brought in contact with liquid helium, 
as a result of which its temperature must drop to 0.7 K. After 
this, it is isolated from the liquid helium, and the external 
magnetic field is slowly reduced to zero. The paramagnetic is 
demagnetized, and the entropy associated with the 
orientation of magnetic moments increases, while the entropy 
associated with the thermal motion of molecules decreases. In 
other words, the paramagnetic is cooled below the initial 
temperature of 0.7 K.. 

In actual practice, however, there is no need to 
adiabatically heat the paramagnetic. This process has been 
described only to give a complete physical picture. It is 
enough to magnetize the paramagnetic in contact with liquid 
helium, after which it is isolated and is adiabatically 
demagnetized very slowly so that the process is accomplished 
reversibly. 

Various paramagnetic salts are used for cooling. In 
particular, ammonium ferric alums are widely employed for 
this purpose. 

With the help of magnetic cooling, a record low 
temperature of the order of 107? K has been attained. The 
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cooled salt can be used for cooling other materials brought in 
contact with it. 
Many unusual properties are exhibited by materials at low 

temperatures. The most interesting of these properties, which 
are described in detail in Sec. 47, are observed in the case of 

He II. 
PROPERTIES OF MATERIALS NEAR ABSOLUTE ZERO. 

Since the heat capacity Cy is positive, the internal energy 
U is a monotonic function of temperature. The internal 
energy decreases with temperature, and hence attains its 
minimum possible value at absolute zero. This applies to the 
system as a whole, as well as to its parts. Hence, the internal 
energy of all parts of the system attains its minimum value at 
0K, i.e. any part of the system is in its ground state with 
minimum energy. 

It follows from the relation Q = T dS that the entropy of 
a substance decreases upon cooling. One can ask if the 
entropy tends to a certain definite value in this case. 
A positive answer to this question is given by the Nernst heat 
theorem which cannot be derived from the two laws of 
thermodynamics and is therefore sometimes called the third 
law of thermodynamics. Besides stating that the entropy 
tends to a certain limit as we approach absolute zero, this 
theorem also states that at O K all processes transferring 
a system from one equilibrium state to another take place 
without any change in entropy. The last statement means 
that at OK the entropy is independent of the parameters 
characterizing the state of the system (i.e. pressure, volume, 
etc). The third law of thermodynamics was enunciated in 
1906 by Nernst (1864-1941). 

The numerical value of the entropy at 0 K is not fixed, but 
it is convenient to take it equal to zero. When defined in this 
way, it is called the absolute entropy. In any state of 
a system, its value is 

(33.15) 

In this integral, the lower limit indicates the state at 0 K, 

while the upper limit, the state under investigation at 
a temperature T. The remaining parameters characterizing 
this state are not written in an explicit form. 

The Nernst theorem has a number of important corollaries. 
First of all, it follows from this theorem that 0 K cannot be 
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attained as a result of a finite number of operations. This is 
evident, for example, from the analysis of magnetic cooling. 
Each adiabatic reversal of magnetization leads to a decrease 
in temperature. In this way, we can gradually approach 0 K. 
But since the entropies of the system in a magnetic field and 
without it become closer in value and tend to a common 
limit as we approach absolute zero, these steps gradually 
become shorter and shorter. Hence, after a sufficiently large 
number of magnetization reversals, we can in principle come 

infinitely close to absolute zero, but 0 K cannot be attained 
as a result of a finite number of such steps. Sometimes, the 
third law of thermodynamics is formulated as a statement 
about unattainability of 0 K in a finite number of operations. 

It follows from the Nernst theorem that at OK heat 
capacities C, and Cy are equal to zero. In order to verify 
this, it is sufficient to rewrite the expressions for the heat 
capacities on the basis of their definition C = 6Q/éT and for- 
mula Q = TdS: 

és és 
= T — = ——_ 

= OT | OlnT' 
(33.16) 

where C may stand either for Cy or C,, and accordingly the 
derivatives on the right-hand side are calculated either at 
a constant V, or at a constant p. Since In T ̂ — oo as T^ 
— 0 K, and $ tends to a certain limit, it follows from formula 
(33.16) that 

Cy=0, C,=0 at T=0K. (33.17) 

Let us now consider the temperature dependencies of the 
pressure and volume of the system at 0K. The last two 
Maxwell thermodynamic relations (23.18) have the form 

(0S/OV)7 = (6p/6T)y ; 

(33.18) 
— (6S/ép)7 = (@V/6T),. 

It follows from the Nernst theorem that at O K the left- 
hand sides of these relations are equal to zero. Consequently, 

(0p/OT)y — 0, (6V/OT),—O at T=0K, (33.19) 

i.e. at 0 K the pressure and the volume become independent 
of temperature. In other words, as we approach O K, the 
coefficient of pressure increase at constant volume and the 
coefficient of volume increase at constant pressure both tend 
to zero. 
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Sec. 34. SURFACE TENSION 

The mechanism of emergence 
of the surface tension is ex- 
plained, and its quantitative 
characteristic is given. The 
equilibrium conditions at the 
interface between two media 
are considered. Capillary phe- 
nomena and the properties of 
surface-active materiais are 
described. 

Fig. 75. The resultant of the forces 
acting on a molecule in the vicinity of 
the liquid surface 

FREE SURFACE ENERGY. The liquid state emerges when the 
potential energy of attraction between molecules exceeds (in 
magnitude) their kinetic energy. The repulsive forces between 
molecules in a liquid are sufficiently large to retain the 
molecules in the volume of the liquid. Thus, a liquid has 
a surface confining its volume. It is well known from 
geometry that for a given volume, the minimum surface is 
spherical. 

The particles in a thin layer near the surface of a liquid are 
subjected to the forces acting from other molecules of the 
liquid. The resultant of these forces is directed inward 
normally to the surface (Fig. 75). As the surface increases, 
a certain number of molecules must go over from the bulk to 
the surface of the liquid. This can be done at the expense of 
work. If the formation of the surface is an isothermal process, 
the potential energy of the surface is equal to the energy 
spent in its formation and taken with the opposite sign. On 
the other hand (see Sec. 23), the role of potential energy in 
isothermal processes is played by the free energy F for which 
the following relation holds: 

dF — — dA, (34.1) 
where dA is the work associated with the emergence of the 
free energy dF. 

Since the surface is homogeneous, the free energy is 
obviously proportional to the area of the surface. Taking into 
account the above remarks and Eq. (34.1) we can write 

(342) 

where c is the free surface energy density. 
SURFACE TENSION. Just as in mechanics a system strives 

to attain the state with the minimum potential energy, this 
being the only stable state of the system, in thermodynamics, 
a system under isothermal conditions endeavors to attain the 
state with the minimum free energy. Hence, the surface of 
a liquid tends to contract. This gives rise to forces which act 
along the surface and are called surface tension forces. In this 
respect, a liquid is identical to a thin rubber film stretched in 
all directions in the plane of the surface. 

The presence of surface tension can be very effectively 
demonstrated with the help of soap films. For example, 
a wire frame immersed into a soap solution and taken out is 



Fig. 76. To the calculation of the 
surface tension 

Fig. 77. Schematic diagram of 
forces leading to the emergence of 
the surface tension 
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covered by a soap film (Fig. 76). If one side of the frame, say, 
MN, can slide without friction along the wires MM' and 
NN’, the forces of surface tension will pull it toward M'N', 
and the area of the film will contract. On the contrary, in 
order to increase the area of the soap film, we must apply 
a force f to MN. Upon a displacement of this wire by dx, the 
work dA — fdx is performed, and the area of the soap film in 
this case changes by dS = ldx. Therefore, if we take into 
account Eq. (34.1.), Eq. (34.2) assumes the form 

dF = 20dS = —fdx = —fdS/I, (34.3) 

where the factor 2 takes into account the fact that the film 
has two surfaces. The quantity — f/ (2I) is the force per unit 
length of MN for each of the film surfaces, acting toward the 
soap film. Numerically, this force is equal to the free surface 
energy density, since 1 J/m? 2 1 N/m. For this reason, the 
quantity c is called the surface tension. It depends on the 
properties of the liquid and varies over a wide range. For 
most liquids, the surface tension has an order of magnitude 
from 107? to 107! N/m at 20°C. For example, the surface 
tension of ether, acetone, benzene, glycerin, and water is 
equal to 1.71 x 1072, 2.33 x 107?, 2.89 x 1077, 6.57 x 1072, 
and 7.27 x 107? N/m respectively. However, for mercury o — 
= 0.465 N/m. 
THE MECHANISM OF EMERGENCE OF SURFACE 

TENSION. The free energy characterized by o is concentrated 
in a thin surface layer of a liquid. Consequently, the forces of 
surface tension also act in a thin surface layer only. In this 
respect, the thin surface layer is similar to a rubber 
membrane enveloping the liquid. The only difference is that 
the rubber membrane has a constant tension regardless of the 
changes in the liquid surface as a result of a change in the 
volume occupied by the liquid. 

At first glance (see Fig. 75), it is not clear how the forces of 
surface tension acting along the surface emerge. In order to 
understand this, we must take into account the fact that in 
addition to these forces, some other forces act on the 
molecules of the surface layer, and prevent them from leaving 
the surface layer. The resultant of these forces is responsible 
for the surface tension (Fig. 77; a rope passing over two fixed 
pulleys is acted upon by forces f in the vertical direction, the 
tension f of the rope acts in the horizontal direction). 

The surface tension depends on the properties of 
a substance in contact with the surface of the liquid. This is 
especially evident if we interpret o as the free-energy density, 
since the material in contact with the liquid surface also acts 
on the surface layer molecules, and hence alters the forces 
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Fig. 78. Equilibrium conditions at 
the interface between two liquids 

Liquid drops have 
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a given volume the sphere 
has the minimum surface. 

It is easier for molecules in 
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the liquid than in the 
opposite direction. For this 
reason, the concentration of 

molecules in the surface layer 
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This causes the surface 
tension to appear. 
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pulling them inwards from the surface. This means that the 
surface tension o changes. Consequently, when we speak of 
surface tension, we must specify not only the liquid we are 
dealing with but also the substance in contact with its 
surface, i.e. we must assign two subscripts to the symbol 
c indicating the two boardering media, for example, 6,5, 65,, 
etc. It is clear that the surface tension at the interface 
between two liquids must be lower than on the free sur- 
face. For instance, 6 — 0.0122 N/m at the ether-water 
interface and 0.0336 N/m for water-benzene interface. 

On the interface between a solid and a liquid, the surface 
tension also decreases in comparison with the free surface. 
For example, on the free surface of mercury o = 0.465 N/m, 
while at the mercury-water interface it becomes equal to 
0.427 N/m, and on the interface with alcohol, 0.399 N/m. 

The values of o given above correspond to room 
temperature. 

DIRECT MANIFESTATIONS OF SURFACE TENSION. 

Since for a given fixed volume the sphere has the minimum 
volume, liquids assume spherical shape under zero-gravity 
condition. In the gravitational field of the Earth, only small 
drops assume spherical shape. This is due to the fact that the 
free surface energy decreases in proportion to the area of the 
surface, i.e. as the square of the linear dimensions of a drop, 
while the force of gravity acting on it decreases in proportion 
to its mass, i.e. as the cube of the linear dimensions. There- 
fore, with decreasing size the relative significance of the free 
surface energy increases, and for sufficiently small dimensions 
the drop assumes a shape close to spherical. Small mercury 
globules are another example illustrating surface tension. If 
we take two immiscible liquids of approximately identical 
densities and introduce a small amount of one of them into 
the other, the former will assume the shape of a sphere. In 
this case, the Archimedes buoyancy force balances the force 
of gravity, and surface tension is manifested in an almost 
pure form. 
EQUILIBRIUM CONDITIONS AT THE INTERFACE 

BETWEEN TWO LIQUIDS. If a drop of a liquid is placed on 
the surface of another lighter liquid, two cases are possible 
(Fig. 78) depending on the relation between surface tensions. 
If d! denotes the element of length along the line of contact 
between the three media 1, 2, and 3, the surface tension forces 
acting on this element will be o,,d/, o,,d/, and c;d]. Note 
that d? is directed perpendicularly to the plane of the 
drawing. If 0,4,«6054,--0,,, we will have the case of 
equilibrium shown in Fig. 78a. In the equilibrium state, the 
resultant of all forces acting on the element d! becomes equal 
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Fig. 79. Equilibrium conditions at 
the liquid-solid interface 
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to zero: 

0,4 0540080, - 0,5c050,, 0,,sin0, — 0,5,sin0,. (34.4) 

This system of equations allows us to determine the angles 
6, and 06,, which are called wetting angles. 

If, however, 6,;>623;+6,,, the equilibrium case 
indicated above is impossible, and the drop of liquid 2 will 
spread over the surface of liquid / in the form of a thin 
molecular layer (Fig. 78b). 

EQUILIBRIUM CONDITIONS FOR THE LIQUID-SOLID 

INTERFACE. Two equilibrium cases are possible, shown in 
Fig. 79a, b. The equilibrium conditions in this case have the 
form 

0,3 — 05340050 -- 60,5; and 654c0s0 + 613 = O12. (34.5) 

If 0,47 60554 - 0,5, the liquid spreads over the surface of 
the solid in the form of a molecular layer. In this case it is 
said to wet the surface of the solid. This is the case of 
a complete wetting (Fig. 79c). Figure 79a illustrates a partial 
wetting, while Fig. 79b shows a completely nonwetting liquid. 

The shape of the surface of a liquid in contact with the 
vertical walls of the vessel containing it depends on whether 
or not the liquid wets the vessel walls. Figure 80a illustrates 
the case of wetting, and Fig. 80b shows the shape assumed 
by a nonwetting liquid. 

Wetting and nonwetting effects create additional forces on 
a floating body, which either increase or decrease the 

buoyancy. If the liquid wets the solid (Fig. 81a), the surface 
tension acts against the buoyant force and tends to immerse 
the body into the liquid. On the other hand, if the liquid does 
not wet the solid, the surface tension is directed upwards and 
tends to push the body out of the liquid (Fig. 81b). These 
additional forces due to surface tension are normally small in 
comparison with the Archimedes buoyant force. However, in 
some situations these forces are significant. For example, if 
the density of a floating body only slightly exceeds the 
density of the liquid, and the line of its contact with the 
liquid surface is sufficiently long, it may happen that the 
body will not sink only due to the surface tension in the case 
of a nonwetting liquid. Some insects can run over the water 
surface and are not drowned due to the surface tension of 
water. 

THE PRESSURE UNDER A CURVED SURFACE. If 

a surface is not flat, the surface tension leads to a pressure 
exerted by the surface layer on the deeper-lying layers. In 
order to calculate this pressure, let us consider a spherical 
soap bubble. The pressure p' inside the bubble, excessive in 
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Fig. 80. The shape of the liquid 
surface near the vessel wall for 
a wetting (a) and nonwetting (b) 

liquid 

(b) 

Fig- 81. Flotation of a body wetted 
(a) and nonwetted (b) by a liquid 
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comparison with the atmospheric pressure, is 
counterbalanced by the pressure from the bubble walls, 
caused by the surface tension. If the pressure inside the 
bubble increases, its radius receives an increment dr, and the 

work 4nr?p'dr accomplished in this case is converted into the 
free surface energy odS of the bubble. It should be noted that 
the quantity dS is the total increase of the inner and outer 
surfaces of the soap bubble, i.e. d$ — 2d (4nr?) — 2 x 8nrdr. 
According to the law of conservation of energy, 

4nr’p'dr = 20 -8nrdr, (34.6) 

whence 

p'—2-2ofr, (34.7) 

the pressure being created by the two curved surfaces of the 
soap bubble (inner and outer). One surface creates half of this 
pressure: 

p=p/2=2o/r. (34.8) 

In the general case, the curvature of a surface is determined 
by two principal radii of curvature, r, and r,. In this case, the 
pressure is given by the relation 

p o(l/r, + l/rj), (34.9) 

which is called the Laplace formula and which is given here 
without derivation. When r,=r,, this formula becomes 
(34.8). 
CAPILLARY EFFECTS. In the interaction between a liquid 

and a surface wall, the surface tension forces tend either to 
raise the level of the liquid (see Fig. 80a), or to lower it 
(Fig. 80b). If a liquid wets the walls of a tube, its level rises 
(Fig. 82a), while if it does not wet the walls, the level falls 
(Fig. 82b). The pressure of the column of liquid in a tube, 
raised to a height A, is compensated by the pressure created 
by the surface tension of the curved surface and directed 
upwards (Fig. 82a) Taking into account formula (34.8) we 
get 

pgh = 20/R — 260 cos O/r, (34.10) 

where p is the density of the liquid, R is the radius of curva- 
ture of its surface, and r is the radius of the tube (r = Rcos 8). 

In a similar way we can calculate the depth to which the 
level of a nonwetting liquid drops (Fig. 82b) in a tube. 

As the radius of the tube decreases, the height to which the 
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Fig. 82. Capillary phenomena 

34. Surface Tension 299 

level of the nonwetting liquid rises increases and attains large 
values for sufficiently narrow tubes called capillaries (by 
analogy with very narrow blood vessels in animals and 
plants). For this reason, the effects associated with the 
interaction between the surface tension of a liquid and the 
tube walls are called capillary effects. 

Liquids move in capillary tubes under the effect of the 
surface tension. These forces, however, may cause not only 
the motion of a liquid in a capillary, but also the motion of 
particles on the surface of a liquid. The most typical example 
of this effect is the “camphor dance”. 

During dissolution of camphor, the surface tension of 
water changes. For camphor crystals in the upper layers of 
water, dissolution occurs at different rates in different parts of 
the crystal surface. As a result, different forces of surface 
tension act on crystals from different sides. A small crystal 
sets in motion whose direction varies in accordance with the 
change in the distribution of the surface tension around it. 
The motion of the crystal causes certain hydrodynamic 
displacements of the liquid in the nearest layers and may 
even create ripples on the surface. 
SURFACE-ACTIVE SUBSTANCES (SURFACTANTS). The 

surface energy tends to attain its minimum value. This can be 
done through a decrease in the surface area as well as the 
surface tension o. Hence, if we add a liquid with a smaller 
tension to the liquid under consideration, the former will be 
mainly adsorbed in the surface layer, as a result of which the 
surface tension decreases. Such a substance is called 
a surfactant (for example, soap). Other materials increase the 
surface tension (e.g. solutions of sugar and various salts). 
Such materials are, on the contrary, concentrated beyond the 
surface layer of the liquid. If such a material is added to 
a solution containing surface-active substances, the latter are 
strongly pushed out to the surface. For example, the addition 
of salt to soap solution causes the expulsion of soap to the 
surface of the solution. 

Example 34.1. Figure 76 shows a film formed by water. 
The approximate temperature dependence of the surface 
tension o is given by the formula o=73 x 107? [1+ 
+ 0.5(1 — T/273)]. The length of the movable wire is 5 mm. 
Treating the process as isothermal at T= 293 K, find the 

force f, work A spent in stretching the film by d = 1 cm, and 
the change in the internal energy AU of the system upon 
increasing the film area by 1 cm?. Calculate the latent heat 
L — (0Q/Os)r of film formation, where s is the area of the film. 
We denote the heat capacity of the filn by C — (0Q/0T), 
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Under which conditions is 
a dissolved substance 
concentrated either in the 
surface layer, or beyond it? 
Give examples supporting your 

answer. 
. Surface tension does not 
depend on the geometrical 
sizes of vessels and the 
volume of a liquid. But why is 
it manifested most clearly only 
in narrow tubes or in small 
drops? 

. Does the density of a liquid 
depend (in principle) on its 
amount under zero gravity 
conditions? In which way? 
Which factors must be taken 
into account in order to 
estimate the magnitude of this 
effect? 
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and write the energy balance equation: 

30 = CdT+ Lds. (34.11) 

The first law of thermodynamics in this case has the form 

dU — CdT- (L4 c)ds. 

The work and the force can be easily calculated: 

293 E 

(34.12) 

f-2o0l22x73x 10-2] «os, 

= 0.7 mN; 

A=fd=Tx10"* x 40-727 qu. 

where we took into account the fact that the film has two 
surfaces. 

Using (34.11), we obtain the following. formula for the 
entropy: 

ô cC E 
dS = —— 2 —dT4 —ds. 4. T T T+ 7i (34.13) 

Since dS is a total differential, we can write 

of[C Of L 
SS | ee 34.14 
Os ( k s F). ( 

whence 

1/0C L i fol 
—| —] = -— +|). 34.15 ed ler) paga 

On the other hand, considering that dU in (34.12) is also 

a total differential, we get 

ac\ _(aL) , (0 G6) Gr). Gr). iss 
The last two equations yield 

óc 
L-2-T|—J. 34.17 Gor), id 

Considering that | 0c/OT — [— 7.3 x 107? x 0.5/273] JJ 
/m?-K), we obtain 

pd 293 x 10°? x 7.3 x 0.5 
a -2 2 73 J/m* 239 x 10 ^ J/m*. 
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Since Lis positive, the film gets cooled as the area of the 
surface increases. 

According to (34.12), the change in the internal energy at 
T= const is 

E o)As, (34.18) 
59 

since L and c are independent of s. Considering that 

293 
= 7, TO? eil o (293) = 7.3 x | +0 ( 2 ) [Nm 

=7 x 107? N/m =7 x 107? J/m?, 

and using (34.18), we get 

AU =(39 x 107? +7 x 107?) x 0.5 x 1074 J = 5.45 yJ. 

Example 34.2. Assuming the initial area of the film (see 
Example 34.1) to be 0.5 cm? and its initial thickness as 1 um, 
find the change in the entropy of the film upon a 2 cm? 
increase in its area at 273 K, and the change in the entropy 
caused by the temperature increase from 273 to 293 K for 
a constant area. Find the change in the film temperature 
accompanying an adiabatic increase of its surface by 1 cm?. 
The initial data are the same as in the previous example. 

The change in the entropy can be found from formula 
(34.13). Since the volume of the film is 

V—1079 x 0.5 x 107^ m? 2 0,5 x 107!? m? — const, 

its heat capacity (see (34.13)) is equal to 

C=0.5 x 107!° x 4.18 x 10° x 10? J/K = 2.09 x 1074 J/K 

= const. 

Integrating (34.13), we find 

T ĉo 
S sum as g= 344 o — Cln T er So), (34.19) 

where we have taken into account relation (34.17). 
When the temperature changes at a constant surface area, 

we get 

293 J T AS), = CIn—— = 2.09 x 1074 In = — a y EH K 

= 1.4776 x 1075 J/K . 
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If the area changes by As—2 x 107^ m? at a constant 
temperature, we obtain 

óc +73 x 1072-x 0/5. X 2 x 10747 
A = — | — A = 

eee a : 273 K 
= 2.67 x 10-8 J/K. 

Proceeding from (34.11), we find for the adiabatic increase 
in the area (8Q = 0) 

L T/a 
agli NE dE (a9) G C\ oT}, 

whence 

x 293 x 133 x 10 ̂ x 2x 10 K = — 0.038 K. 
2.09 x 1074 

Example 34.3. Find the radius of a liquid drop emerging 
from a narrow vertical tube of radius r. Assume that the drop 
has a spherical shape when it breaks away from the tube. 

The drop is held at the tube by the surface tension acting 
along the circumference 2xr. Hence, the force is equal to 
2nro. The weight of a suspended drop of radius R is equal to 
4n R? pg/3, where p is the density of the liquid. The drop tears 
away when 4nR?pg/3 — 2nrc, whence 

R = [25/Qpg)]'^. 
If, for example, we assume that c — 7.5 x 10? N/m for 

water we get for r— 107? m 

R =2.26 x 107° m. 

Sec. 35. EVAPORATION AND BOILING OF LIQUIDS 

The dependence of the satu- 
rated vapour pressure on the 
curvature of the surface and 
the role of this dependence in 
evaporation and boiling is 
investigated. The conditions 
for the existence of super- 
heated liquid and supercooled 
vapour and their applications 
are considered, 

EVAPORATION. The forces acting in the surface layer and 
near the surface of a liquid determine the existence of the 
surface and do not allow the molecules to leave the volume 
of the liquid. Due to thermal motion, a certain part of 
molecules have sufficiently high velocities to overcome the 
forces confining them in the liquid and to leave it. This 
phenomenon is called evaporation. It is observed at any 
temperature, but its intensity increases with tempera- 
ture. 

DYNAMIC EQUILIBRIUM. VAPOUR-LIQUID SYSTEM. If 
the molecules which have left a liquid are removed from the 
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Table 3 
Saturated Vapour Pressure for Some Substances at 20? C 

Substance p, kPa Substance p. kPa 

Acetone 24.0 Mercury 1.63 x 107 * 
Benzene 10.0 Toluene 2.93 
Water 234 . Cloroform 21.3 
Methyl alcohol 129 Ethyl alcohol 5.87 

space near the surface of the liquid, the entire liquid will 
evaporate in the long run. However, if the molecules which 
have left the liquid are not removed but are kept in a closed 
volume near the liquid surface, the process develops in 
a different way. The molecules leaving the liquid form its 
vapour. Vapour molecules which get into the region near the 
liquid surface are pulled into the liquid by the forces of 
attraction. Thus, the evaporation rate decreases. A further 
increase in the vapour density leads to a state in which the 
number of molecules leaving a liquid during a certain time is 
equal to the number of molecules returning to the liquid 
during the same time. Thus, a state of dynamic equilibrium 
sets in. The vapour which is in dynamic equilibrium with its 
liquid is called the saturated vapour (see Sec. 30). 

It is clear from what has been said above that with 
increasing temperature, the density (and hence the saturated 
vapour pressure) increases (Tables 3 and 4), as was shown by 
an analysis of the isotherms of a real gas. As the density of 
saturated vapour increases, the surface tension of the liquid 
decreases, since the forces directed inwards diminish due to 
an increase of the oppositely directed forces exerted by the 
saturated vapour. It also follows from the above arguments 
that with increasing temperature the latent heat of 
evaporation decreases. At the critical temperature, the density 
of the saturated vapour becomes equal to the density of the 
liquid, and the difference between them vanishes. This means 
that the interface between the liquid and the vapour 

Temperature Dependence of the Saturated Vapour Pressure for Water 

iG 

p, kPa 
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Fig. 83. Schematic diagram il- 
lustrating the dependence of the 
saturated vapour pressure on the 

shape of the liquid surface 
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(a) (b (6) 

disappears, and at the critical temperature, the latent heat of 
evaporation and the surface tension become equal to zero. 

In the strict sense of the word, a vapour is not a gas. À gas 
is the state of aggregation of a substance at a certain pressure 
and temperature, while the vapour is not a state of aggre- 
gation, because at a given temperature and pressure the state 
of aggregation of the corresponding substance is liquid. For 
this reason, the behaviour of vapour differs from the behavi- 
our of gas. For one, in ideal gases the pressure is exactly 
inversely proportional to the volume, while in real gases this 
dependence holds with a sufficiently high degree of accuracy. 
However, for nearly-saturated vapour the pressure changes 
with the volume insignificantly and for saturated vapours 
does not change at all. Gas laws can be applied to unsa- 
turated vapours to a rough approximation. But if a vapour is 
far from saturation, it can be described by the gas laws to 
a very good approximation. 
SATURATED VAPOUR PRESSURE NEAR THE CURVED 

SURFACE OF A LIQUID. At the curved surface of a liquid, 

the pressure of its saturated vapour differs from that at a flat 
surface. In order to investigate the nature of this dependence, 
it is necessary to consider the conditions of dynamic equi- 
librium between the vapour and the liquid. In their physical 
content, they are similar to the conditions at a flat surface, 
under which the molecular intensities of transition from 
liquid to gas and from gas to liquid are equal. However, in 
the case of a curved surface, the intensity of the molecular 
exchange depends on the curvature of the surface. The 
calculation of this dependence allows us to determine the 
saturated vapour pressure near the curved surface. Figure 83 
shows different types of curved surfaces (letter A denotes 
a molecule at the surface of a liquid, attracted by liquid 
molecules). Clearly, in case b this force is greater, and in case 
c smaller than for a flat surface (a). Hence, in case b, it is 
more difficult for liquid molecules to leave the liquid, while 
vapour molecules are pulled towards the liquid more 



Fig. 84. To the calculation of the 
saturated vapour pressure above the 
curved surface 
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intensely than in case a. This means that in the case of 
a concave surface, the saturated vapour pressure is lower 
than at a flat surface. A similar reasoning shows that the 
saturated vapour pressure is higher in case c than in case a. 

There is one more reason which makes the dependence of 
saturated vapour pressure on the curvature still stronger. In 
case b, the pressure due to surface tension is directed away 
from the liquid. As a result, the pressure inside the liquid 
near its surface becomes lower, the number of collisions 
between particles becomes smaller, which causes a decrease in 
the number of particles leaving the liquid, i.e. lowers the SVP 
near the concave surface still further. In case c similar causes 
have an opposite effect and increase the SVP near the convex 
surface. 

In order to derive a relation connecting the change Ap in 
the SVP with the curvature of the surface, let us examine 

Fig. 84. If a tube and a liquid are contained in a closed 
vessel, the space above the liquid will be filled with its 
saturated vapour. The height ^ of the column of liquid in 
a capillary tube and the radius R of curvature of the liquid 
surface in the capillary depend on the surface tension, density 
of the liquid and its saturated vapour. At the surface of the 
liquid, the pressure inside the capillary tube is equal to the 
pressure outside it. The saturated vapour pressure at the 
height h is also the same in all parts of the vessel. If the 
opposite were true, horizontal flows of saturated vapour 

would appear. For this process to be steady-state, the 
appropriate flows would appear in the liquid, closing the 
lines of circulation of substance. In this case we should 
assume that at the same temperature, the nature of the 
liquid-vapour dynamic equilibrium in different parts of a flat 
surface is different (see Sec. 34). But this is in contradiction 

with the pattern of dynamic equilibrium described above. 
Denoting by p, the saturated vapour pressure at a height h, 

we can write 

Po = Part Pgh, (35.1a) 

Do 7 p, — 20/R + py gh, (35.1b) 

where p, and p, are the densities of the liquid and saturated 
vapour. Equation (35.la) expresses the pressure difference 
between the levels under consideration in vapour, while 
(35.1b) is the similar relation for liquid. The term —26/R 
takes into account the difference in pressure on different sides 
of the curved surface of liquid. Equating the expressions 
(35.1a) and (35.1b) for po we find 

gh = 2o/ [R(p, — p]. (35.2) 
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An ion becomes a nucleus 
for condensation because the 
energy of its electric field 
decreases upon the formation 
and growth of a water drop 
around it. 

The temperature dependence 
of the density and pressure 
of saturated vapour and the 
dependence of the boiling 
point on pressure are 
determined by the physical 
content of dynamic equilib- 
rium. As the temperature 
increases, the dynamic 
equilibrium is maintained by 
increasing the saturated 
vapour pressure. If the 
pressure increases, the 
equilibrium is ensured by 
increasing the temperature. 
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From Eq. (35.1a) we get 

Ap — po — p, 7 p,gh — 2op,/ [R(p, — p]. (35.3) 

where for gh we have substituted its expression (35.2). 
This expression is called the Thomson formula. In formula 

(35.1a) we have assumed that the density of saturated vapour 

does not change with height. In most cases, this assumption 
holds quite well. If necessary, we can use the barometric for- 
mula (10.13) in order to take into account the effect of 
variation of the saturated vapour density with height. 

BOILING. When a liquid is heated to a temperature at 
which its saturated vapour pressure becomes equal to the 
atmospheric pressure, the equilibrium between the liquid and 
its saturated vapour sets in. If additional amount of heat is 
supplied to the liquid, a certain portion of the liquid 
immediately evaporates. Theoretically, the lowest pressure in 
the liquid is observed in its upper layers, hence the liquid 
must vaporize first of all in the upper layers. Actually, 
however, the difference in pressures between various layers of 
the liquid is insignificant in comparison with the pressure 
itself, since 10? Pa correspond to the pressure of a 10 m thick 

layer of water. Besides, the liquid is usually heated from 
below. These two circumstances ensure an intense 
vaporization of liquid over the entire volume. This process is 
called boiling. The boiling point is the temperature at which 
the saturated vapour pressure becomes equal to the external 
atmospheric pressure. The boiling point rises with increasing 
pressure and falls with decreasing pressure. In a hermetically 
closed vessel, water can be heated to a temperature 
considerably higher than 100°C without boiling. This is used 
in everyday life when we cook food with the help of 
a pressure cooker. On the other hand, we can cause boiling 
at room temperature if we lower the pressure above the water 
surface, say, by pumping out the air from a closed vessel 
containing the liquid. 

Thus, strictly speaking, at different levels in a liquid boiling 
occurs at different temperatures, and there is no definite 
boiling point for a liquid. But the saturated vapour above the 
surface of a boiling liquid has a definite temperature. This 
temperature does not depend on the nature of boiling at 
various depths and is determined by the external pressure 
alone. It is this temperature of the saturated vapour above 
the surface of a boiling liquid which is meant when we speak 
of a boiling point. 
SUPERHEATED LIQUID. Now, we can explain the 

existence of a superheated liquid (see Sec. 32). If a liquid 
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containing no impurities or vapour bubbles is heated to the 
boiling point, vapour bubbles tend to form inside it. But as 
soon as such a bubble appears inside the liquid, the vapour 
inside the bubble, being saturated with respect to flat surface, 
Is oversaturated with respect to concave surface confining this 
bubble. For this reason, the vapour in the bubble 
immediately condenses and the bubble disappears. This 
process is facilitated by an increase in pressure on the bubble 
from the concave surface of the liquid confining the bubble 
under consideration. This pressure also strives to break the 
vapour bubble formed. 

Boiling starts if we introduce into the liquid something 
which would ensure the formation of vapour bubbles which 
from the very outset would have a sufficiently large radius so 
that the vapour inside the bubble is not too much supersa- 
turated and the pressure from the bubble walls is not very 
high. This “something” can be, for example, chalk powder. 
Individual particles of the powder are the “nuclei” around 
which vapour bubbles are formed. Thus, if we drop a pinch 
of chalk into superheated water, we will cause vigorous 

boiling resembling an explosion. Another cause of bubble 
formation in a superheated liquid can be, for example, ions. 
This effect is used for tracing charged particles. 

The maximum allowed superheating of a liquid can be 
estimated as follows. First of all, we must set the maximum 
radii R of the bubbles which may be formed around 
a nucleating centre in the liquid. From formula (35.3) we find 
the pressure required by this vapour to be saturated inside 
a bubble. In this case, since the density of saturated vapour 
at the boiling point is much lower than the density of the 
liquid, we can use this formula in the form Ap = 20p,/(Rp)). 
Considering that V;« V, we find the permissible super- 
heating from the Clausius-Clapeyron equation: 

AT= TV, Ap/L. 

Substituting into this formula the values of the quantities 
taken from the tables, we find that AT~0.5K for R= 
= 0.5-:10~7 m. Similarly, we can estimate the elevation of 
the boiling point with depth: 

Hence, it follows that AT/Ah ~ 0.03 K/cm. In other words, 
the boiling point at a depth of 10cm from the surface in 
a kettle is about 0.3 K higher than at the surface. 
BUBBLE CHAMBERS. If a charged particle flies through 

a superheated liquid, it ionizes the atoms of the liquid on its 
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path. These ionized atoms become the nucleating centres 
around which bubbles of saturated vapour are formed. In 
other words, the superheated liquid locally boils along the 
trajectory of a charged particle, owing to which the trajectory 
becomes visible and can be photographed. 

Such photographs make it possible to study the motion of 
particles in various fields, their interaction, and so on. 
Usually, in experimental investigations of elementary particles 
liquid hydrogen is used. The above description explains the 
name “bubble chamber” given to this type of instruments for 
investigating the trajectories of charged particles. They play 
an important role in the elementary particle research. Bubble 
chambers helped to detect the majority of new particles and 
to make many other important discoveries. 
SUPERCOOLED VAPOUR. À saturated vapour at a certain 

temperature is supersaturated with respect to a lower 
temperature. For this reason, a part of this vapour becomes 
liquid when the temperature is decreased. This phenomenon 
is called condensation. Under normal conditions, water 

vapour condenses in the entire volume of vapour in the form 
of very small droplets or mist. However, if the air containing 
saturated vapour is sufficiently well purified, its cooling will 
not lead to a condensation of the vapour, and a metastable 

state, called supercooled vapour, appears (see Sec. 32) 
Small droplets of liquid are formed upon cooling 

a saturated vapour. However, they cannot exist infinitely long 
since the saturated vapour in which they are formed is unsa- 
turated for the convex surface of the drops (see Fig. 83c). 
Hence the liquid of the drops immediately evaporates, and 
the drops disappear. Before the condensation starts, it must 
be ensured that liquid drops of sufficiently large radius can 
be formed so that the vapour would not be highly unsa- 
turated for them. For this purpose, condensation nuclei must 
be present. In this respect, the situation is quite similar to 
that with a superheated liquid. Such nuclei can be, for 
example, ions, specks of dust, microbes, etc. 
WILSON CLOUD CHAMBER. In a supercooled vapour 

a charged particle ionizes vapour molecules along its track. 
The ions become condensation sites around which liquid 
drops are formed. Owing to this, the trajectory of the particle 
becomes clouded and visible. This makes it possible to 
investigate charged particles, their interaction, and so on. 
Such an apparatus is called the Wilson cloud chamber, and it 
has played an important role in scientific investigations of 
elementary particles. 
Why do ions become condensation nuclei? This is 

stipulated by the balance between the energy of condensation, 



The density and pressure of 
saturated vapour increase 
with temperature, while the 
surface tension and latent 
heat of evaporation decrease. 
The saturated vapour 
pressure above a concave 
surface is lower, and above 
à convex surface is higher 
than the pressure above 
a flat surface. 
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the surface energy, and the Coulomb energy. Water molecules 
have a large dipole moment. They surround a charged ion, 
being oriented with respect to it so that their dipoles turn to 
the ion with the opposite charge. An aggregate formed as 
a result of this process acts on surrounding particles as an 
ionic charge, causing another layer of molecules to join it. 
Thus, a growing drop of water is formed. The energy of this 
drop depends on its radius and consists of three components: 
the surface energy E,,- 4nr^?o, where o is the surface 
tension, the electric energy of the Coulomb field of the drop 
E, — q? /(Angor) (q is the charge of the ion and &g is the 
electric constant), and E = — (4/3) nr? pL the energy due to 

the latent heat of condensation, where p is the density of the 
substance forming the drop and L the latent heat of 
condensation. 

The total energy is 

E = 4nr?c + q?/(4neor) — (4/3) ar pL. 

The behaviour of a drop is determined by the changes in 
its energy during its growth, as the mass 5m is added to it. If 
the energy increases, the drop cannot grow. The growth of 
the drop is possible only provided that (5E/5m) <0. 
Considering that ôm = 4nr?pér, we obtain 

5E E ör 20 q? 

öm ör óm pr  l6r?e,pr* 

It can be seen that in the absence of an ion (q — 0), the 
conditions are unfavourable for condensation, since for small 
r the first term on the right-hand side is large. The radii rj of 
nuclei must be very large to ensure that [20/(pr.)] < L. The 
presence of an ion radically changes the situation. For small 
r, the negative term — q?/(16n7e,pr*) is modulo sufficiently 
large, which makes condensation advantageous. The electric 
energy compensates the action of, the surface energy 
preventing condensation if the radius of the drop satisfies 
the condition 2cfpr)= q?/(l6n*egpr*), ic. for r= 
— [q?/ (82n*gge)] ^. 
For singly charged ions q =e and the value of r is of the 

order of several angströms. This means that the appearance 
of an ion has created highly favourable conditions for the 
formation of condensation sites. 

Example 35.1. Find the molar heat of evaporation of 
a liquid at temperature T and saturated vapour pressure p, 
assuming that the liquid and its saturated vapour obey the 
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1. What is the difference 
between the properties of 

a vapour and a gas? Under 
which conditions can the gas 
laws be applied to vapours? 

2. What is the mechanism of 
formation of a supercooled 
vapour and a superheated 
liquid? 

4. Gases with Intermolecular Interaction and Liquids 

Van der Waals equation with given a and b, and the 
temperature T is far from critical (this allows us to take the 
molar gas constant for R). 

Applying the first law of thermodynamics to the process of 
evaporation, we get 

L-U,—U,* p(V, - Vi) (35.4) 

where U, and U, are the internal energies of the vapour and 
the liquid, p(V,— V;) is the work performed during 
evaporation against a constant external pressure p. According 
to the Van der Waals equation, the difference in internal 
energies is equal to 

U,-— U,=a/V,—a/V,, 

and hence 

L=a(i/V,—1/V,)+p(VYi-— Vy) 

= V, [RT/(V, — b) — 2a/V2] — V, [RT/(V, — 5 — 2a]V2]. 
(35.5) 

Example 35.2. Find the rate of evaporation of a liquid, i.e. 
the ratio of the mass of the liquid converted into vapour to 
the interval of time and the area of the surface from which 
evaporation occurred, if the saturated vapour pressure and 
temperature of the liquid are known. 

In dynamic equilibrium between vapour and liquid, the 
evaporation rate is equal to the rate of condensation. In 
saturated vapour, the velocities of molecules obey Maxwell's 
distribution law, and hence, according to formula (8.32), the 

evaporation rate for the liquid is equal to 

I, = mo =nom [kT/(2nm)]"/?, (35.6) 

where m, ng, and T are the mass of a molecule, the molecular 

concentration, and the temperature respectively. 
Considering that ny — p,/(kT), we get 

I4 — p, [m/ QnkT)]'? 2 p, [M/QnRT)]'?, (35.7) 

where M — mN4 is the molar mass of the vapour. 
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Sec. 36. STRUCTURE OF LIQUIDS. LIQUID CRYSTALS 

The pair distribution function is 
used to characterize the short- 
range and long-range orders 
and to calculate the poten- 
tial energy of intermolecular 
interaction. The dependence of 
the properties of a liquid on its 
molecular structure is ana- 
lyzed. Basic properties and 
applications of liquid crystals 
are considered. 

PAIR DISTRIBUTION FUNCTION. Molecules in gases are 

distributed quite randomly in space. A gas may serve as an 
example of a structureless formation. Solids illustrate the 
opposite case, since their atoms are located at quite definite 
points in space, which are called lattice sites. Clearly, 
crystalline solids have a definite internal structure. What is 
the position of liquids in this respect? 

Initially, it was assumed that liquids are similar to gases in 
their structure, i.e. are structureless formations. With this 
approach, a liquid was simply considered a very dense gas. 
Experiments showed, however, that this is not true. 
Essentially, these experiments consist in the following. If 
a crystalline solid is exposed to X-rays, the pattern formed by 
the rays scattered by the solid has a certain order. This order 
is sufficient to draw definite conclusion about the structure of 
the crystal lattice. In other words, the pattern of the scattered 
X-ray radiation reflects the structure of the crystal lattice of 
a solid. 
When X-rays are passed through a gas, the analysis of 

scattered radiation does not reveal any ordering. It can thus 
be concluded that gases are structureless formations. 
However, when X-rays are passed through a liquid, the 
scattered X-ray radiation is not as ordered as in the case of 
solids but still not as random as in the case of gases. Hence 
we can state that liquids have a structure which is not 
pronounced as clearly as in solids, but which differs from 
structureless gases. In their internal structure, liquids occupy 
an intermediate place between gases and solids. While 
considering some problems, it turned out to be more 
convenient to represent a liquid as a disordered solid in 
a certain sense. 

For example, one of such approaches treats a liquid as 
a crystal in which a part of cells is not filled. 
A quantitative characteristic of ordering in a structure is 

a pair distribution function g (1) defined in the following way. 
Suppose that a certain hypothetical observer is at the site of 
some molecule and observes the mean density of other 
molecules in various small regions of the space, characterized 
by the radius vector r. This density distribution is described 
by the function gí(r. If we consider a solid, the density 
of molecules in it differs from zero only at the lattice 
sites. 

For example, if we select a direction passing through the 
lattice points, the distribution function g(r) along this 



Fig. 85. Pair distribution function 
for a crystal 

Fig. 86. Pair distribution function 
for liquids 
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direction has the form depicted in Fig. 85. The peaks 
correspond to the lattice sites, and the shape of curves in the 
vicinity of the peaks is Gaussian, since an atom is not fixed 
precisely at the lattice point but moves in the vicinity of this 
point. Obviously, the function g(r) for a crystal depends not 
only on the magnitude of the vector r but also on its 
direction. In some other direction, the peaks are separated by 
different distances from each other and from the reference 
point. In an ideal gas, the distribution of molecules is 
uniform in all directions and at all distances from the 
reference point, i.e. for gases g (r) = const. Experimental and 
theoretical investigations have shown that the pair 
distribution function for liquids is isotropic, but depends on 
the distance (Fig. 86). The density g(r) oscillates about the 
mean density, and at large distances becomes equal to the 
mean density. This indicates that molecules in a liquid are 
distributed not as randomly as in a gas, although not as 
regularly as in a solid. 
When we spoke of the mean density, we meant an 

averaging over time. Naturally, this definition can be refor- 
mulated on the basis of the ergodic hypothesis about the 
ensemble average. Let us fix the positions of all the molecules 
at a certain instant of time and consider various pairs of 
molecules. We calculate the total number of pairs whose 
separation lies between r and r+dr for various values of 
r and divide it by the total number of pairs and dr. This 
relative number of molecules for different values of r will 
give, on a certain scale, the pair distribution function g(r). 
Consequently, different separations of molecules in a liquid 
are not equally probable. This statement is just the 
quantitative formulation of the idea that a liquid has an 
internal structure (we mean short-range ordering). 

The following rough analogy may help in proving the 
existence of a certain structure in a liquid. If we must put 
a small number of jars on a large shelf in a cupboard, there is 
no need to care about their relative positions so that they 
could be placed on the shelf. If, however, the number of jars 
is large, so that they can hardly be placed on the shelf, that is 
another matter. It is impossible to place the jars at random, 
and we must find some way which would ensure the 
maximum saving of space. The jars arranged in this way form 
a definite structure. Although the distribution of molecules in 
a liquid naturally differs from the arrangement of jars on 
a shelf, we can still use purely geometrical considerations 
about possible mutual positions of molecules to obtain the 
curves for g(r) similar to those shown in Fig. 86. 



The existence of pair distri- 
bution function for liquids 
indicates a short-range order 
in them. 

In theoretical studies of some 
phenomena in liquids, it is 

sometimes expedient to take 
the model of a solid rather 
than the model of a gas as 
a first approximation. 

In their structure, liquids 
occupy an intermediate 
position between gases and 
solids: the arrangement of 
molecules in a liquid is not 
as regular as the structure of 
solids, but we cannot say 
that it is irregular at all, like 

gases. 
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CALCULATION OF POTENTIAL ENERGY. The 

importance of the pair distribution function lies in that it can 
be used to calculate the potential energy of interaction if we 
know the interaction potential U(r) (see Fig. 65) The 
number of pairs of molecules separated by the distance r is 
proportional to r?g(r), and hence the potential energy of 
interaction is proportional to the integral 

oo 

f r°g (r) U (r) dr. 
0 

(36.1) 

If g(r) and U(r) are known as functions of density and 
pressure, all equilibrium properties of the liquid can be 
determined. 
DEPENDENCE OF PROPERTIES OF A LIQUID ON 

MOLECULAR STRUCTURE. Since molecules in a liquid are 
close to each other, their internal structure and properties 
considerably influence the properties of the liquid. For 
example, the presence of constant dipole moments in 
molecules and their mutual orientation make different mutual 
orientations of molecules inequivalent. The shape of 
molecules considerably affects their mutual motion. For 
example, long molecules move with respect to each other not 
in the same way as spherical molecules do, and so on. This 
makes the description of the liquid state still more 
complicated. 

LIQUID CRYSTALS. Thus, a liquid has a definite structure, 
though it is not as regular as the crystalline structure of 
a solid. However, there are many cases when liquids have 
more ordered structure than simply a structure with short- 
range order. It turns out that for many substances, especially 
organic materials, we cannot treat the transition from the 
solid to the liquid state as a single transition. For such 
materials this transition consists of a sequence of transitions 
in each of which the state and structure of the substance 
changes, and it is impossible to state that it is either in the 
liquid or in the solid state. The mechanical properties and 
structure of substances in such intermediate states lie between 
the solid and liquid states. A substance in the intermediate 
states is called liquid crystal. 
TYPES OF LIQUID CRYSTALS. Liquids are characterized 

by the absence of any spatial ordering and anisotropy of their 
properties. The most significant property of the crystalline 
structure of solids is its three-dimensional ordering. Liquid 
crystals exhibit an ordering which is intermediate between 
those of solids and liquids and which results in corresponding 
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Fig. 87. Smectic structure of the 
A type. The molecules in liquid 
layers are oriented on the average 
along the normal to the surface 
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Fig. 88. Smectic structure of the 
C type. The molecules in liquid 
layers are oriented at an angle to the 
surface of layers 
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anisotropy of their properties. Accordingly, liquid crystals can 
be divided into two groups. The first group of liquid crystals 
called smectics is characterized by a one-dimensional spatial 
ordering. Smectic liquid can be represented as consisting of 
parallel layers, which regularly alternate and differ from each 
other in their structural ordering. The second group of liquid 
crystals, called nematics, does not have spatial ordering and 
is characterized by orientational ordering of their molecules. 
The molecules of nematics are strongly elongated, and 
orientational ordering appears because of the preferential 
orientation of these long molecules. The molecules of 
smectics are also elongated. Hence, we can say that from the 
molecular point of view, a peculiar feature of liquid crystals is 
the elongated shape of their molecules, leading to anisotropy 
of their properties. 
SMECTICS. There are three types of smectics. Let us 

denote them by A, B, and C. In A- and C-type smectics, the 
layers of liquid behave as a two-dimensional liquid, for which 
the distribution of centres of mass of the molecules is 
described by a binary function. In B-type smectics, the layers 
of liquid are closer in their properties to a two-dimensional 
solid. Within the layers, periodicity and rigidity typical of 
solids are observed. Owing to this, in particular, within each 
layer the diffraction of X-rays by solid-state ordering is 
observed. In contrast to the A- and C-type smectics in which 
the layers, as a rule, are curved, the layers of the B-type 
smectics are flat. 

The thickness of the layers in A-type smectics is close to 
the length of molecules directed on the average 
perpendicularly to the boundary surface between the layers 
(Fig. 87). The local properties of the system of layers are 
axially symmetric with respect to the rotation axis, which is 
normal to the boundary surface between the layers, both 
directions of the normal being equivalent. Hence, it follows 
that from the point of view of optics, A-type smectics exhibit 
the properties of uniaxial crystal. 
The thickness of the layers in C-type smectics is less than 

the length of molecules, and it is natural to assume that the 
molecules in these liquid crystals form an angle with the 
boundary surface (Fig. 88). For this reason, the local 
properties are not axially symmetric with respect to an axis 
normal to the interface. C-type smectics have properties 
typical of biaxial crystals. If long molecules forming a C-type 
smectic are optically active, and if the number of left- and 
right-hand types of molecules is not the same, the structure of 
the smectic becomes very complicated. In this case, in 
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Fig. 89. Precession ofthe molecular 
axes of a C-type smectic with 
optically active molecules during 
a layer-to-layer transition 
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Fig. 90. Orientation order of mo- 
lecules in a nematic 
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Liquid crystals have many 
optical, electrical, magnetic, 

and other properties typical 
of crystals, but at the same 
time retain many mechanical 
properties typical of liquids 
(for example, fluidity). 
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a layer-to-layer transition the direction of inclination 
precesses about the normal to the interface between the 
layers (Fig. 89). 

In addition to A-, B-, and C-type smectics, there are some 
other types (H, D, E, ...) which will not be considered in this 

book. 
NEMATICS. These liquid crystals do not have a spatial 

ordering. Anisotropy in their properties appears as a result of 
orientational ordering in their long molecules (Fig. 90), and 
the long-range order in the arrangement of the centres of 
mass of their molecules is not observed, as is typical of the 
binary distribution function for liquids. The line of 
orientation of nematic molecules serves as a preferred 
direction. This line is the symmetry axis for the properties of 
the nematic, the two directions along this line being 
equivalent. If the molecules possess a dipole moment, the 
orientation of dipoles in these two directions is equally 
probable: the dipole moments of one half of molecules are 
oriented in one direction, and of the other half, in the 
opposite direction. For this reason, a nematic is optically 
a uniaxial crystal, its optical axis coinciding with a preferred 
direction. Nematics can be found only among the materials 
in which the right- and left-handed forms of molecules 
coincide. If they are different, their amounts are equal 
(racemic system). 
CHOLESTERICS. If an excess of right- or left-handed 

molecules is created in a nematic, the structure of the nematic 
phase is distorted (namely, spiral-type distortion appears in 
the structure). This type of distortion is observed, in 
particular, for a pure ester of cholesterol. For this reason, 
a spiral phase appearing here is called cholesteric. In this 
case, just as for the nematic phase, the distribution of centres 
of mass of the molecules does not exhibit a long-range order, 
and the local properties in each region are characterized by 
the direction of orientation of molecules in it. However, in 
contrast to nematics, the direction of preferential orientation 
changes upon transitions from one region to another, as 
a result of which a helical structure appears (Fig. 91). The 
spirals can have right-handed as well as left-handed rotation 
depending on the type of molecules in excess. Obviously, 
cholesterics can be found only among substances whose 
right- and left-handed forms of molecules are different and 
present in different amounts (nonracemic systems). 

PROPERTIES AND APPLICATIONS OF LIQUID 

CRYSTALS. Liquid crystals have very important optical 
properties which have found a wide application and aroused 
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Fig. 91. To the explanation of 
a cholesteric structure 

? 

1. What is the physical 
interpretation of the pair 
distribution function? 

2. In which phenomena and how 
are structural properties of 
liquids manifested? 

3. What basic mechanisms of 
emergence of anisotropy exist 

in liquid crystals? 
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an interest toward their investigation. Nematics, as well as 
A-type smectics, are uniaxial crystals whose properties readily 
change under external effects over a wide range. This opens 
wide opportunities for controlling light flows with the help of 
liquid crystals. 

Owing to helical periodicity in their structure, cholesterics 
exhibit diffractional properties in the visible part of the 
spectrum. Since the pitch of a helix changes under the action 
of external factors, say, temperature, these external effects can 

also be used to control the light flow. 
Electric and magnetic fields produce a strong effect on the 

properties of liquid crystals. At the present time, the 
investigation of these effects has become a subject of intense 
scientific research, and the results obtained are used in 
practice. Digital indicators (displays) based on liquid crystals 
are well known. A method has been developed for obtaining 
visual images in microwave radiation. The advantages of 
liquid-crystal films are their comparatively low cost and low 
electric power consumptions. 



37. Liquid Solutions 317 

Sec. 37. LIQUID SOLUTIONS 

The physical aspect of disso- 
lution and its basic quantitative 
characteristics are considered. 
The dependence of solubility on 
temperature and pressure is 
analyzed. State diagrams of 
solutions are given. 

DEFINITION. Liquid solutions are mixtures of two or several 
substances in the liquid state. If the amount of one of the 
substances in a solution is considerably larger than the 
others, it is called the solvent, other substances are called 
solutes. Solutions containing two substances are called 
binary. 
QUANTITATIVE CHARACTERISTICS. It is convenient to 

characterize the relative concentration of substances in 
a solution by its molar concentration which is defined as the 
ratio of the number of moles of a substance in the solution to 
the total number of moles: 

qi 7 V/(vi t v3) 92 =V2/i+¥2), Gi tq2=1.  (37.1a) 

This characteristic is convenient since it corresponds to the 
fraction of the number of molecules (or atoms) of each of the 
substances in the total number of molecules in a solution. 
Indeed, by the definition of the number of atoms, we have 
N,—-N,4v, and N;—N,4v;, where Ny, is the Avogadro 
number. Hence, we can rewrite Eq. (37.1a) in the form 

gq, =N,/(N, +N), 42 =N2/(Ni + Na), Gy + 42 = 1. (37.1b) 

The concentration is frequently characterized by the 
relative values of the masses of components of a solution. In 
this case, the following formulas are used instead of (37.1) for 
the concentrations qj and q;: 

qi =m, /(m, +m), 42 =m,/(m, +m), qi +42=1, (37.2) 

where m, and m, are the masses of the components in the 
solution. 

SOLUBILITY. A solution can be formed either by 
dissolving a solid or a gas in a liquid, or by mixing liquids. 
Different situations are possible in this case. 

Any number of components can be present in a solution. 
In some cases, there is a limit on the concentration of one of 
the substances. If the amount of this substance is in excess of 
the solubility limit, it will not dissolve. For example, we 
cannot dissolve an inordinately large amount of sugar in 
a given amount of water. In this case, the maximum equilib- 
rium concentration is called solubility. It depends on 
temperature and pressure. Solid substances always have 
a concentration limit when they are dissolved in liquids. On 
the other hand, liquids can usually be mixed in any 
proportions (for example, alcohol and water). 
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With increasing temperature, 
the solubility of substances 
with positive heat of solution 
decreases, while with negative 
heat of solution, it increases. 
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HEAT OF SOLUTION. The mechanism of solution consists 
in rupture of the bonds between molecules of each of the 
initial substances and in the formation of new bonds between 
molecules of substances in a solution. In many cases, 
molecules of a substance dissociate into their components, 
viz. ions (in salts, alkali, etc.) during solution. 

Usually, a certain amount of energy is spent for 
dissociation of molecules during dissolution. Consequently, 
the substances are cooled upon solution. The energy spent for 
solution is called the heat of solution. 

After dissociation of molecules of the substance being 
dissolved, the forces of attraction between the solute and the 
solvent molecules may become so large that molecular 
complexes are formed. In this case, the internal energy 
increases at the expense of the work done by the attractive 
forces, and heating takes place. If this heating exceeds cooling 
accompanying the dissociation of molecules, the net result of 
the solution process is heating. The amount of heat liberated 
in this case is also called the heat of solution. An example of 
such a process is the solution of acids in water. The 
interaction between molecules in gases is very weak. There- 
fore, solution of gases is accompanied by a liberation of heat 
in most cases. 
IDEAL SOLUTIONS. These are solutions for which the heat 

of solution is equal to zero. Obviously, the nature of 
interaction between the solute molecules and the solvent 
molecules in these solutions is the same as for the solvent 
molecules. This means that the interaction between molecules 
in the solution does not change if we substitute a certain 
number of solvent molecules for the same number of solute 
molecules and vice versa. 

RAOULT'S LAW. From the condition of dynamic equilibri- 
um at the interface between a saturated vapour and 
a solution it follows that the saturated vapour pressure above 
the solvent must be less than that above the pure solvent by 
as many times as the density of solvent molecules in the 
solution is less than that of the pure solvent, i.e. when it does 

not contain any solute molecules. In other words, the 
saturated vapour pressure decreases in direct proportion to 
the concentration of the solvent in a solution: 

where p, is the saturated vapour pressure above the solution 
and p? is the saturated vapour pressure above the pure 



Pi = pevi/(vi + V2) 

? 

l. Which factors make the heat 
of solution positive or 
negative? 

2. Why do Raoult’s and Henry's 
laws hold only for ideal 
solutions ? 
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solvent. Similarly, for the saturated vapour pressure p, of the 
solute we obtain 

D2 = V2p)”/(v, + V2). (374) 
Formulas (37.3) and (37.4) express the Raoult law for ideal 

solutions. However, this law is satisfied sufficiently well for all 
weak solutions also (not necessarily ideal), if we consider the 

saturated vapour of the solvent. This is due to the insig- 
nificant concentration of the solute, which cannot noticeably 
change the interaction between solvent molecules as a whole. 

The saturated vapour pressure of nonideal solutions 
changes not only due to a change in the density of molecules 
near the surface, but also due to a change in the forces of 
interaction between the solvent and solute molecules in the 
solution. This may cause a deviation from the values 
predicted by the Raoult law to either side. There is no law as 
simple as Raoult's law for nonideal solutions. 

HENRY'S LAW. The expression (37.4) for the Raoult law 
can be read from right to left. In this case, it will characterize 
the concentration of a substance in a solution if the saturated 
vapour pressure p, above it is maintained at a constant 

value: 

where « = 1/p®. 
The concentration of a gas dissolved in a liquid is 

proportional to the pressure of the gas above the surface of 
the liquid. For this reason, in particular, carbon dioxide is 

supplied under a high pressure for obtaining soda water. 
TEMPERATURE DEPENDENCE OF SOLUBILITY. This 

dependence can be predicted on the basis of the Le 
Chatelier-Brown principle (see Sec. 23). It is determined by 
the sign of the heat of solution. 

If the solution of a substance is accompanied by heating, 
an attempt to heat it further by adding the solute after 
saturation results in its precipitation (the solution is already 
saturated !). Hence it follows from the Le Chatelier principle 
that the solubility of substances with a positive heat of 
solution decreases with increasing temperature. 

On the other hand, if a substance is cooled upon solution, 

an attempt to cool it further by adding the solute after 
saturation also leads to its precipitation. Consequently, the 
solubility of substances with a negative heat of solution 
decreases or increases with temperature. In particular, it was 
mentioned above that for most gases the heat of solution is 



A,(0%) A, (100%) 

A,(100%) A,(0%) 

Fig. 92. Constitution diagram of 
a binary mixture with the upper 
critical temperature of mixing 

A, (0%) A, (100%) 
A,(100%) (0%) 

Fig. 93. Constitution diagram of 
a binary mixture with the lower 
critical temperature of mixing 
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negative. This means that the solubility of gases increases 
with temperature in most cases. 
BINARY CONSTITUTION DIAGRAMS FOR SOLUTIONS. 

The behaviour of a solution is usually investigated under 
atmospheric pressure. In this case, the independent 
parameters are the relative concentrations of the components, 
and the temperature. Hence, the state of a binary mixture can 

be characterized by a point on the plane in the Cartesian 
coordinate system with the concentration of the components 
along the X-axis and the temperature along the Y-axis. 

Figure 92 shows the constitution diagram for liquids A, 
and A, which are mixed in arbitrary amounts only at 
a sufficiently high temperature. At a lower temperature, these 
liquids cannot be mixed in arbitrary proportions. The line 
MNK characterizes the saturated solution of liquid A, in 
liquid A,, while the points to the left of this line correspond 
to unsaturated solution of A, in A,. The line RPK describes 
the saturated solution of liquid A, in liquid A,, while the 
points to the right of this line correspond to unsaturated 
solution of A, in A,. The region below the curve MNKPR 
describes the state of the binary system comprising the 
saturated solution of A, in A, and the saturated solution of 
A, in A,. These saturated solutions have different densities, 
owing to which the heavier component occupies the lower 
part of the vessel. The components are divided by the 
interface which allows us to speak about the binary system. 

Above the critical temperature T,,, liquids A, and A, mix in 
any proportions. 
The states of a binary system can be characterized by 

a lever rule which is similar to that described in Sec. 30. For 
example, in the states characterized by the point O (Fig. 92), 
the masses m,, and m,, of saturated solutions are inversely 
proportional to the lengths of the segments OP and ON: 

er? 

m,;[m;, —|OP|/|ON |. (37.6) 

We recommend that the reader derive this rule independently 
as an exercise. 

Figure 93 shows the constitution diagram of liquids A, and 
A; which are mixed in arbitrary amounts only at 
a sufficiently low temperature. At a higher temperature, these 
liquids cannot be mixed in arbitrary proportions. This case is 
similar to the previous one, the only difference being that the 
unlimited mixing region now lies below the temperature T. 

which is called the lower critical temperature of mixing. 
Finally, the situation is possible when there are two critical 

temperatures of mixing-the upper and the lower one. 



A, (0%) A,(100%) 

A,(100%) A,(0%) 

Fig. 94. Constitution diagram of 
a binary mixture with two critical 
temperatures of mixing 
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A typical constitution diagram for this case is shown in 
Fig. 94. The region inside the closed curve corresponds to 
the state of the binary system. Different regions in this 
diagram have the same sense as the corresponding regions in 
Figs. 92 and 93. 

However, under real conditions at atmospheric pressure 
the critical temperature can be attained only rarely (the upper 
one because the solution boils at a lower temperature and the 
lower one because it freezes at a higher temperature). 

Example 37.1. The number v' of moles of dissolved sugar 
constitutes 3% of the number v of moles of water. The 
saturated vapour pressure for water at the temperature under 
consideration is pg — 2.66 kPa. Find the pressure of water 
vapour above the sugar solution. 

In accordance with the Raoult law, we can write 

P = Po (1 — v/v) = 2.58 kPa. 

Sec. 38. BOILING OF LIQUID SOLUTIONS 

The peculiarities of boiling and 
constitution diagrams of bi- 
nary mixtures are considered. 
The possibilities of separating 
the components and elevating 
the boiling point are discussed. 

21—761 

PECULIARITIES OF BOILING OF SOLUTIONS. The 

saturated vapour pressure of components above a solution 
depends on their concentration and is generally not the same. 
For a given pressure, the saturated vapour pressure of one of 
the components above a certain temperature may become 
equal to the external pressure which, however, is not equal to 
the saturated vapour pressure for the other component at this 
temperature. For these parameters, boiling is attained for the 
first component and not for the second. Hence, the first 
component will start vaporizing vigorously, while the second 
wil be converted into vapour by evaporation, i.e. not so 
vigorously. As a result, the concentration of components in 
the vapour differs from their concentration in the boiling 
liquid. This leads to a change in the relative concentration of 
the boiling component of the liquid, and hence in its boiling 
temperature. Thus, vaporization of a solution is a more 
complicated process than vaporization of a pure liquid. 
BINARY CONSTITUTION DIAGRAMS. Constitution 

diagrams give the most visual representation of the state of 
a vapour-liquid solution system. Usually, we are interested in 
the behaviour of the system at a constant (atmospheric) 
pressure. In this case, the state of the system is characterized 
by two independent parameters, viz. the composition and 
temperature. Consequently, a state of the system can be 
characterized by a point on the plane formed by plotting the 



A, (94) A (100%) 
A,(100%) A3 (094) 

Fig. 95. The most common diag- 
ram of boiling for two unlimitedly 
mixing liquids 
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component concentrations along the X-axis and temperature 
along the Y-axis. 

Figure 95 shows the simplest constitution. diagram of 
a binary mixture whose components can be mixed in any 
proportions. The region bounded by the closed curve 
NMPRSN corresponds to two-phase states, when a saturated 
vapour and a solution exist simultaneously in the volume. 
A one-phase state, i.e. only the solution, exists below NSR. 
The region above NMPR corresponds to one-phase states in 
the form of vapour. 

At temperature T, the state described by the point 
S corresponds to a pure solution, whose concentration is 
determined by the abscissa of this point, while the point 
M characterizes the vapour state at the same temperature 
T,, the concentration of the components being determined 

by the abscissa of the point M. The point O corresponds to 
a two-phase system. The total concentration of the 
components in the system (the sum of the concentrations of 
the liquid and gaseous phases) is given by the abscissa of this 
point, and the ratio of the masses of the liquid and the 
gaseous phase is inversely proportional to the ratio of lengths 
of segments |OS| and |OM| (lever rule). 

Suppose that a closed vessel contains a solution whose 
concentration is given by the abscissa of the point S at 
a temperature below T,. As the temperature increases, the 
system remains in the one-phase state until the temperature 
T, is attained, corresponding to a state in which boiling of 
the solution begins (point S). The concentration of the vapour 
being formed is described by the point M. Consequently, the 
composition of the solution changes as a result of boiling. It 
can be easily seen that the concentration of the component 
A, in the solution increases. This leads to an elevation of the 
boiling point of the solution. If boiling occurs in a closed 
vessel whose volume changes in the process of boiling in such 
a way that the pressure is maintained at a constant value 
(with the help of a moving piston), the ratio of the total 
concentrations of the components of the two phases remains 
the same during boiling. Hence, the change in the state of the 
system during boiling is described by the motion of the point 
along SP. For example, at a point O' the temperature of the 
system is T, the ratio of the total amount of A, and A, 
being the same as at the point S, and the ratio of the masses 
of the gaseous and liquid phases being equal to the ratio 
O'S' : O'M'. As point P is reached, the entire volume is filled 
with vapour while the ratio of the masses of components A, 
and A, remains the same as for liquid at the point 
S corresponding to the beginning of boiling. Thus, a liquid 
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solution vaporizes not at a constant temperature but in 
a certain temperature interval depending on the initial 
concentration of the solution. 
SEPARATION OF SOLUTION COMPONENTS. If a system 

is not contained in a closed vessel and if the vapour formed 
during boiling is removed from the surface of the boiling 
solution, the concentration of the solution will change and its 

boiling point will rise just as in the previous case. However, 
in this case the system will contain only one phase all the 
time. Consequently, the point representing the state of the 
system moves along the curve SS'R. When the point R is 
attained, the component A, is completely boiled away, and 
pure liquid A, remains in the vessel. This phenomenon is 
used in one of the most widespread methods of separation of 
a liquid solution into its components. The vapour is mainly 
enriched in the substance A, but also contains a certain 
amount of the substance A,. Hence the vapour can be 
condensed and the process repeated. The concentration of the 
substance A, in the vapour formed in the repeated process is 
even higher. By repeating this process, we can separate the 
components A, and A, to any degree of purity. 

Along with the most common phase diagram considered 
above, there are also other types of diagrams. One such 
diagram is shown in Fig. 96. The two-phase region is 
bounded by a loop-shaped curve. The point O corresponds to 
a state for which the liquid and the saturated vapour have 
the same composition. Moreover, if boiling occurs in an open 
vessel, the point O represents a state to which the boiling 
solution comes regardless of whether its initial concentration 
was characterized by a point on the right or left of the 
abscissa of the point O. After attaining the concentration 
corresponding to the point O, the solution boils as a pure 
liquid at a constant temperature, since its concentration does 
not change as a result of boiling. There are also other phase 
diagrams which will not be considered in this book. 
ELEVATION OF THE BOILING POINT OF A SOLUTION. 

The boiling point of a saturated solution of a nonvolatile 
substance is higher than the boiling point of the pure solvent. 
In order to verify this, we take into consideration the fact 
that the saturated vapour pressure above a solution is lower 
than above the pure solvent. This means that on the liquid- 
vapour phase diagram (see Fig. 92), the solution-vapour 
curve lies below and to the right of the curve AK 
corresponding to the pure liquid-vapour system, which 
indicates that at a fixed pressure, the boiling point of the 
solution of a nonvolatile substance is higher than for pure 
solvent. 
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Sec. 39, OSMOTIC PRESSURE 

The mechanism of emergence, 
regularities, and different man- 
ifestations of osmotic pressure 
are considered. 

MECHANISM OF EMERGENCE. Suppose that the solution of 
a substance and the pure solvent are separated by 
a semipermeable membrane which lets through the molecules 
of the solvent and is impermeable for the molecules of the 
solute (Fig. 97). Such membranes are usually films of plant or 
animal origin. After a sufficiently long interval of time, 
equilibrium sets in and the molecules of the solvent freely 
interact with one another through the semipermeable 
membrane. The nature of this interaction is not completely 
clear so far. The semipermeable membrane cannot be treated 
purely mechanically by assuming that it has pores permeable 
for one type of molecules and impermeable for the other 
from purely geometrical point of view. Actually, we 
apparently have a more complicated interaction between the 
molecules and the semipermeable membrane, involving the 
penetration of the solvent into the material of the membrane. 
But regardless of the details of this mechanism, the pressure 
on the plug due to the impacts of the solvent molecules on 
both sides must be the same in the equilibrium state. On the 
other hand, the pressure of the solute is not transmitted 

through the membrane to the solvent on the other side. Thus, 
the total pressure on one side of the membrane, equal to the 
sum of the pressures of the solvent and the solute, is higher 
than the pressure on the other side of the membrane, equal 
to the pressure of the solvent. As a result, the level of the 
pure solvent becomes lower than the level of the solution 
(Fig. 97). If initially the level of the pure solvent was the 
same as the level of the solution, the pure solvent will 
penetrate through the semipermeable membrane to the region 
occupied by the solution, which leads to an increase in 
pressure and the level of the solution in this region. The 
process of penetration of a solvent through a semipermeable 
membrane is called osmosis. The pressure difference created 
between the regions occupied by the pure solvent and the 
solution separated by a semipermeable membrane is called 
Osmotic pressure. 
FACTORS DETERMINING THE OSMOTIC PRESSURE. The 

molecules of a solute in a sufficiently diluted solution behave 
as molecules in a rarefied gas, since in accordance with the 
law of equipartition of energy, their kinetic energy depends 
only on temperature. The osmotic pressure is equal to the 
pressure of the rarefied gas of these molecules, i.e. it can be 

calculated with the help of the formula for ideal gases: 

Tl =nkT/V =vRT/V, n=vNa, kN4a=R, (39.1) 
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where n is the total number of solute molecules in the volume 
V and v is the number of moles of the molecules. Formula 
(39.1) is the analytic expression of the Van't Hoff law. The 
osmotic pressure of weak solutions is independent of the 
nature of the solvent and the solute and depends only on the 
molar concentration of the solute. In order to estimate the 
order of magnitude of the osmotic pressure, it is useful to 

note that in the presence of a mole of molecules in one litre 
volume, the osmotic pressure is equal to 2.39 MPa. However, 
the walls of the vessel do not experience this pressure, since it 
also acts on the free surface of the liquid, and the stresses 
appearing in the surface layer of the liquid compensate the 
osmotic pressure. Only hydrostatic pressure acts on the vessel 
walls. 
MANIFESTATION OF OSMOTIC PRESSURE. Osmotic 

pressure can be effectively demonstrated in a lecture room. 
For example, if we drop a potassium ferrocyanide crystal into 
a 5% solution of blue vitriol, it is covered by 
a semipermeable envelope whose dimensions are increased by 
the osmotic pressure acting from the inside. A kind of an 
“artificial cell” is created, which grows and forms a dendrite 
structure. 

If we fill an animal bladder with alcohol, tie it and 
immerse into water, the latter penetrates into the bladder. It 
blows up and may burst. Osmosis plays an extremely 
important role in the world of animals and plants. Most of 
the partitions in the living organisms and plants are 
semipermeable. For example, the osmotic pressure in plant 
cells reaches several atmospheres, owing to which ground 
water can rise along the trunk of a tree to a large height. 
Osmotic pressure facilitates the transition of water from some 
liquid media to the others through semipermeable 
membranes in living organisms. 

Example 39.1. Find the osmotic pressure when 50g of 
methyl alcohol CH4OH (M, — 32) are dissolved in 101 of 
water. The temperature of the solution is 27°C. 

The concentration of the solute is low, so we can use for- 
mula (39.1) for calculating the pressure: 

nea RT 50 x 1073 8.31 x 300 x 10° 
Sa ae m TETTE Pa — 389.5 kPa. 
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Sec. 40. CHEMICAL POTENTIAL AND PHASE 
EQUILIBRIUM 

Systems with varying number 
of particles are considered and 
the chemical potential is de- 
fined. The concept of chemical 
potential is used for analyzing 

the conditions of phase equi- 
librium. 

CHEMICAL POTENTIAL. There are systems that consist not 
just of two components or two phases, but involve a large 
number of components. Their composition varies depending 
on temperature, pressure, etc. If there are several components 
in a system, its internal energy depends on the number 
density n; of each component. It is convenient to take volume 
V and entropy S as other independent variables determining 
the internal energy: 

U-UXS, Vh, i5 ni). (40.1) 

Then 

ôU au eu du=(—)\ ds+(—) av = NET ( as j" E ( oV ls » x an, Ji M on 
i 

where the summation is carried out over all ns, and when 
we take a partial derivative with respect to n;, the remaining 
nj#n, are assumed to be fixed. Formula (402) is 

a generalization of Eq. (23.14) for a multicomponent system. 
These formulas coincide for dn; = 0, i.e. for a one-component 
system. Comparing these formulas, we get 

oU oU 
= —p={—] . 40. 

T ( oS E : (S k ( 3) 

Equation (40.2) then assumes the form 

dU = TdS— pdV +) 'u,dn,, (40.4) 

where 

QU 
»-( ) > ny#N,. (40.5) 

ôn; V,S,nj 

Similarly, we can modify the remaining thermodynamic 
functions considered in Sec. 23 if we take into account the 
varying number of particles. For example, the Gibbs function 
G defined by (23.13) can be assumed to depend on pressure p, 
temperature T, and concentration n; of various components 
of the system: 

G — G(T,p,n, nj, ..., nj). (40.6) 
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If we take (23.18) into account, the relation 

eG 0G 0G 
dG=( 2} 4 ee 2 i Gr) er (m) ar Pm), m ce 
becomes 

0G 
dG= -sar+vap+ Y ( ) dn;. (40.8) 

ôn; T, pn 
i 

Combining (23.12) and (23.13), we get 

dG=dU+pdV4+Vdp—TdS—SdT. (40.9) 

Taking into account (40.8) and (40.4), we obtain 

0G E A s ER: (40.10) 
ôn; T, p,n; 

Hence, formula (40.8) finally becomes 

dG 2 —SdT * V dp Y ndn. (40.11) 

In a similar way, we obtain the following expressions 
for enthalpy and free energy instead of (23.15) and 
(23.16): 

dH — TdS - V dp - Yu dn;, (40.12) 

dF = —SdT — pdV 4 $ pidn,. (40.13) 

Here 

pH er x (40.14) =| -—— Bl s sm | 
Hi ôn; S, pn p ôn; T,V,nj J 

The quantity p; is called the chemical potential. Formulas 
(40.14), (40.10), and (40.5) define it for different variables 
taken as independent. 
EQUILIBRIUM CONDITIONS. It follows from formula 

(23.17) that at constant pressure and temperature, the 
equilibrium condition is expressed as follows: 

(dG)r., — 0. (40.15) 
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A system may consist of many components, but in all 
practically important cases the number of phases is equal to 
two or three. For the sake of definiteness, we shall assume 
that there are two phases 7 and 2 and two components a and 
b. The Gibbs function for the entire system is equal to the 
sum of the Gibbs functions of its phases. As usual, we shall 
assume that the phases are homogeneous. It follows from the 
conservation condition for the total number of particles in 
the entire system that 

Nai Naz =CONSt, ny, + Np = CONS, (40.16) 

whence 

dn,, +dn,,=0, dn, -dn,, — 0. (40.17) 

The Gibbs functions of the first and second phases can be 
expressed as follows: 

dG, = —SdT +V dp + pa dn, + Hy; diy, , 

(40.18) 

dG, ==> SdT + V dp + Ho2 dn, Tt dn,» . 

For constant T and p, the following condition must be 
satisfied in equilibrium: 

(dG)r, p = (dG,)7, p+ (dG2)7,,= 9, (40.19) 

which in combination with (40.18) and (40.17) leads to the 
following equation: 

(Har — Haz) dnar + (Hpi — Hor) dng, = 0. (40.20) 

Since n, and n, are independent, it follows that 

Hai S Haz» Hoi 5 Hez: (40.21) 

Similar calculations made for a larger number of 
components lead to the same kind of expressions for the 
chemical potential of each component for all phases. Let y; 
be the chemical potential of the ith component in the jth 
phase. Under equilibrium conditions at constant temperature 
and pressure, we have 

Ha S Hi S... 5 Hijs P= f 2e (40.22) 
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i.e. the chemical potential for each component has the same 
value in all the phases under equilibrium conditions at 
constant pressure and temperature. 

CHEMICAL POTENTIAL FOR A ONE-COMPONENT 

SYSTEM. Obviously, the above statement is valid for 
a one-component system as well. In this case, for a pure 
phase Eq. (40.11) yields 

(dG)7,,=pdn. (40,23) 

Consequently, the Gibbs function can increase only due to 
an increase in the mass of the phase. On the other hand, it is 
clear that the Gibbs function is proportional to the total 
number of molecules in the system. Hence, on the basis of 
(40.23), we can write 

u= G/n, (40.24) 

i.e. the chemical potential of a one-component system is 
equal to the mean value of the Gibbs function per molecule. 

Sec. 41. PHASE RULE 

Phase rule is derived and used 
to analyze possible types of 
phase diagrams. 

FORMULATION OF THE PROBLEM. How many inde- 

pendent parameters characterize the state of K-component 
system comprising ® phases? 

The answer to this question is given by the phase rule 
derived by Gibbs. 

PHASE RULE. The equilibrium condition for each of the 
system at constant temperature and pressure can be written, 
in accordance with (40.11), as follows: 

(dG)7,,= Y nijdni = 0, (41.1) 

ij 

where t1;; have the same sense as in (40.22), and dn,; is the 

differential of the ith component in the jth phase. These 
equations involve K® quantities p,;, not all of which are 
independent. Firstly, the law of constant proportions for each 
phase yields one relation connecting chemical potentials 
(hence there are 4^ such relations in all). Secondly, in 
accordance with (40.22), the chemical potentials of each 
component in all phases must be the same: 

Hit = Hi2 = --- = Hio- (41.2) 

For each i we have @®—1 = equalities, and for 
K components we get K (®—1) conditions. Consequently, 
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the total number of independent variables p; is 

K®—-®—K(®-1)=K—-®. (41.3) 

In addition, the temperature and pressure are also two 
independent parameters. Therefore, the total number of 
independent parameters characterizing the equilibrium state 
of the system consisting of K components and comprising 
d phases is equal to 

C-K-0242 (41.4) 

Equation (41.4) expresses the Gibbs phase rule. It gives the 
number of degrees of freedom of a system, which cannot be 

negative, i.e. C z 0. This means that 

®<K+2, (41.5) 

i.e. the number of phases which can be in equilibrium cannot 
exceed the number of components by more than two. This 
statement is another possible formulation of the phase rule 
(41.4). 

PHASE DIAGRAMS. The state of each phase is determined 
by the pressure, temperature, and K-—1 values of the 
chemical potentials of the components, since K chemical 
potentials are connected through one relation expressing the 
constancy of the number of moles in the system. Hence, such 
a state of the system is characterized by a point in a K — 1 + 
+2=(K+1)-dimensional space. For a one-component 
system, a state is represented by a point on the plane as was 
done, for example, while considering the processes in an ideal 
gas (see Sec. 18). On the other hand, for a multiphase system 
in equilibrium, the number of degrees of freedom is 
determined by the phase rule (41.4). Suppose, for example, 
that we have a two-phase one-component liquid-vapour 
system (see Sec. 32). In this case, P= 2, K=1, and hence 

C1. (41.6) 

This means that the state of the two-phase system is 
represented by the line AK on the phase diagram (see 
Fig. 70) which depicts the states of the one-component 
system as points on the two-dimensional plane [T,p]. 

In the case of a one-component system, the number of 

degrees of freedom of a three-phase state (db — 3) is 

C - 0. (41.7) 
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This means that three phases (gas, liquid, and solid) can be 
in equilibrium only for a unique relation connecting the 
parameters which characterize this system. The equilibrium 
state for the three phases is depicted by a point called the 
triple point. This question will be considered in greater detail 
in the next chapter. 
When analyzing the boiling of liquid solutions (see 

Sec. 38), we assumed that the system consisted of two 

components (K = 2). Consequently, we should have used 
a three-dimensional space in order to represent the states of 
each of its phases. However, we fixed one of the parameters 
(pressure) and characterized the state of the system by two 
parameters, viz. temperature and concentration. The number 
of degrees of freedom of the two-phase state in this case is 
equal to 

Cato 7 29= 9. (41.8) 

For this reason, the two-phase states shown in Figs. 95 and 
96 occupy a certain area separated by phase curves from the 
one-phase states. 

Calculate the osmotic pressure for 10 g of ethyl alcohol (M, — 46) 
dissolved in 101 of water at 20°C. 
Find the mass m of sugar (M, = 342.3) dissolved in 200 g of water at 
25°C, if the osmotic pressure is 0.196 MPa. 
Find the change in the melting point of ice if the pressure has chan- 
ged from 0.098 to 0.196 MPa. The density of ice p — 0.9 g/cm? and 
its heat of fusion is 334 kJ/kg. 
Calculate the heat of evaporation of water and its saturated vapour 
pressure at 50°C. 
Find the boiling point of water under the air pressure of 0.1 and 
0.1024 MPa. 
The spherical water film, whose values of o and L are given in 
Example 34.1, expands isothermally at T = 293 K from r, =2 cm to 
r;—3 cm. Find the change in the entropy of the film. 
Find the inversion temperature of the differential Joule-Thomson 
effect and the change in temperature in the Joule-Thomson process 
when the pressure changes by 10.13 kPa at t= 27°C, assuming that 
the Van der Waals constants for air are a — 0.142 Pa- m?/mole? and 
b=3.9 x 1077 m?/mole. 
The surface tension of soap solution is 4x 107? N/m. Find the 
additional pressure inside a soap bubble of radius 2 x 10 ^? m. 
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There are 0.04 mole of sugar molecules per mole of water molecules 
in a solution of sugar in water. The saturated vapour pressure for 
water at a given temperature is 1995 Pa. Find the pressure of water 
vapour above the surface of the solution. 
The Van der Waals constants for carbon dioxide are a = 3.64 x 
x 10° Pa-m®/kmole? and b=4.26x 107? m3/kmole. Find the 
pressure of carbon dioxide if 1 kmole occupies a volume of 1 m? at 
100°C (use the formula for an ideal gas and the Van der Waals 
equation). 
Find the temperature drop in 10 kg of nitrogen upon its expansion 
from | to 2 m?, assuming that for nitrogen the Van der Waals 
constant a= 1.36 x 10° Pa-m®/kmole?. 
The saturated vapour pressure of ethyl alcohol C,H,OH at 40°C is 
17.69 kPa, while at 68°C it is 67.7 kPa. Find the change in entropy 
upon evaporation of 5 g of ethyl alcohol at 50°C. 
The density of a substance at 0°C is 10 g/cm?, and the mean value 
of the volume expansion coefficient in the temperature interval from 
0 to 300°C is 1.85 x 107 * K ^'. Find the density of this substance 
at 300°C. 
The temperature coefficient of thermal expansion of mercury is 
1.82x107*K^!. Find the compressibility of mercury, if it is 
known that the external pressure must be increased by 4.6 MPa 
upon heating by 1 K in order to maintain the volume cons- 
tant. 

The surface tension of mercury is 0.49 N/m. Find the temperature 
increase for a drop of mercury obtained when two drops of radius 
0.5 mm each merge. 
The additional pressure inside a soap bubble whose surface tension 
is 4.3 x 1077 N/m is equal to 266 Pa. Find the radius of the 
bubble. 
Alcohol flows out of a vessel through a vertical capillary of inner 
radius 1 mm. The drops fall every second. What time does it take for 
20 g of alcohol to flow out? 
The inner radius of an open capillary immersed into a vessel with 
mercury is 1 mm. The level of mercury in the capillary is lower than 
the level of mercury in the vessel by 3 mm. Find the radius of curva- 
ture of the mercury meniscus in the capillary. 
Two g of common salt are dissolved in 11 of water at T — 300 K. 
The degree of dissociation of the common salt molecules upon 
dissolution is 40%. Find the osmotic pressure of the solution. 
Find the pressure of water at a depth Ah if the density of water at the 
surface is py and pressure is pg (a) when compressibility is not taken 
into account and (b) when the compressibility x is taken into 
account. The temperature and the acceleration due to gravity are 
assumed to be constant. 
Find the change in the saturated vapour pressure at the surface of 
a spherical water drop of radius 10~° cm at 20°C, if the pressure 
for a flat surface is py — 2333 Pa. Assume that o — 0.075 N/m and 
p 10? kg/m?. 
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4.4. I1 0.338 MPa. 4.2. m-— 10g. 4.3. dT — —0.009 K. 4.4. 
2.383 MJ/kg; 0.126.105 Pa. 4.5. 99.3^C; 10037^C. 4.6. AS= 
= 840 mJ/K. 4.7. 870 K; — 0.026 K. 4.8. 0.8 Pa. 4.9. 1915 Pa. 4.10. 
2.87 MPa; 273 MPa. 4.11. AT =1.16 K. 4.12. AS — 14.3 J/K. 4.13. 
9.5 Mg/m?. 4.14. 3.85.10 !! Pa^!, 4.15. AT=3.3-10°* K. 4.16. 
0.65 mm. 4.17. 26 min. 4.18. 2.5 mm. 4.19. 0.122 MPa. 4.20. (a) p= 
= Po t+ Pogh; (b) p — po — (1/x)In (1 — xpogh). 4.21. 260 Pa. 





Chapter 5 

Solids 

Physical situation: forces of attraction between molecules 
dominate. A stable equilibrium is attained for a certain 
arrangement of molecules in the vicinity of each molecule. 
Since this must be observed over the entire volume, the 
mutual arrangement of molecules is periodically repeated, 
and a crystalline structure appears. 

Finite number of structures: since the number of possible 
classes of symmetry of crystal lattices is finite, the total 
number of different crystalline structures is limited. 

Sec. 42. SYMMETRY OF SOLIDS 

Symmetry elements of a solid 
are described and it is shown 
that they can be represented 
by reflections in a plane. Point 
symmetry groups are defined. 

SOLIDS. The most typical feature of solids distinguishing 
them from other states of aggregation is the property to 
retain their shape and volume. Owing to this property, solids 
have played a major role in the formation of our concepts 
about space, geometrical images and relations between 

them as well as in developing the theory of measuring in 
space. 

The movement of solids formed the basis for the evolution 
of concepts of mechanical motion and displacement of mate- 
tial bodies in space. 

The place occupied by a material body and its shape are 
abstract in our mind as separate geometrical spatial images. 
Owing to this, a comparison of shape, size, and other 
parameters of solids becomes meaningful. 

Symmetry is a very important geometrical property of 
solids. For example, a stone picked up on the road differs 
from a brick in that, first of all, it has an irregular shape. The 
words “regular” and “irregular” are a subjective reflection of 
objective properties of the form of material bodies, viz. their 
symmetry. 

We say that a right cylinder is more symmetric than 
a right parallelepiped, while a sphere is more symmetric than 
a cylinder. We also say that the shape of a human body is 
symmetric as well as that of the bodies of most animals. 
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Fig. 98. Four-fold symmetry axis, 
symmetry plane, 
symmetry O 

and centre of 

5. Solids 

Now, we must try to give a mathematical definition of the 
concept of symmetry. 
DEFINITION OF SYMMETRY. Symmetry is the ability of 

a solid to coincide with itself as a result of its movements or 
imaginary operations on its points. The larger the number of 
ways of attaining such a coincidence, the more symmetric is 
the shape of a body. 

For example, a right circular cylinder coincides with itself 
upon rotation about its axis through any angle. It also 
coincides with itself upon a rotation through 180° about any 
axis perpendicular to its axis and passing through the point 
on the axis lying at. the middle of the height. If we consider 
a sphere, it can be made to coincide with itself upon its 
rotation through any angle around an axis passing through 
its centre. Obviously, a sphere has much more possibilities of 
coincidence with itself than a cylinder. It is just this fact that 
is expressed in the statement that a sphere is more symmetric 
than a right circular cylinder. 

However, symmetry consists not only in coincidences of 
a body with itself as a result of spatial movements. For 
example, there are no spatial movements that can make the 

left half of a human body coincide with the right half. In 
other words, a right-hand glove cannot be put on the left 
hand. By the symmetry of left and right hands we mean not 
the possibility of their spatial coincidence but the possibility 
for the right hand to coincide with the mirror reflection of 
the left hand. 

Despite the seemingly large variety of possible symmetries 
of solids, they are all composed of four symmetry elements. 
Various combinations of these four elements make up all the 
possible symmetries of solids. 
SYMMETRY AXIS OF THE nTH ORDER. If a_ body 

coincides with itself upon its rotation about a certain axis 
through the angle 2x/n, this axis is called an n-fold symmetry 
axis. For example, a quadratic cylinder (Fig. 98) coincides 
with itself upon a rotation through 2/2 about the axis passing 
through the points of intersection of the diagonals of the 
squares forming its bases. Consequently, this axis is a four- 
fold symmetry axis. Obviously, any axis of a body is 
a one-fold symmetry axis. 
SYMMETRY PLANE. If a body coincides with itself as 

a result of the mirror reflection of its points in a certain 
plane, this plane is called the symmetry plane of the body. 
The shaded surface in Fig. 98 is a symmetry plane. 
CENTRE OF SYMMETRY. If a body coincides with itself 

upon inversion through a certain point, this point is called 
the centre of symmetry (point O' in Fig. 98). 



Fig. 99. A rotoreflection two-fold 
axis 

Fig. 100. A rotation as a result of 
Iwo consecutive reflections in planes 
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THE n-FOLD ROTOREFLECTION AXIS. If a body coincides 

with itself upon a rotation through an angle 2x/n and 
reflection in a plane perpendicular to the axis of rotation, this 
axis is called an n-fold reflection-rotation axis. A two-fold 
axis of this type is shown in Fig. 99. 

POINT SYMMETRY GROUPS. The totality of symmetry 
elements of a body is called its symmetry group. The 
symmetry elements considered above have a common 
property: they leave at least one point of a body at rest. The 
symmetry groups corresponding to these elements are called 

point groups. 
All the symmetries listed above can be described by using 

only reflections in a plane. The rotation through an angle 
x can be represented as two consecutive reflections in planes 
intersecting along the axis of rotation at the angle «/2 
(Fig. 100). The inversion about the centre of symmetry can 
be reduced to three reflections in three mutually 
perpendicular planes, passing through the centre of 
symmetry. 
MIRROR ISOMERS. Two bodies can be similar and made 

to coincide with the help of reflection in a plane, but cannot 
be made to coincide by any spatial movement. By way of an 
example, we can mention the palms of hands. Such bodies 
are called mirror isomers. There are many molecules that are 
known to be mirror isomers. They differ in their properties in 
the same sense as the right differs from the left. For example, 
they rotate in opposite directions the plane of optical 
polarization passing through them (if such a rotation takes 
place). Chemical reactions between like mirror isomers occur 
not in the same way as between unlike isomers. For example, 
the right isomers of two substances do not react in the same 
way as a right isomer and a left one. 
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Sec. 43. CRYSTAL LATTICE 

Physical reasons behind the 
existence of periodic structure 
of solids are discussed. Trans- 
lational symmetry and spatial 
symmetry groups are described. 
These groups form the basis 
for analyzing the main features 
of crystal lattice classification. 
The notation for atomic planes 
and directions is introduced. 

THE NECESSITY OF PERIODIC STRUCTURE. A solid is 

formed when the interaction between molecules (atoms or 
ions) is so strong that thermal motion of molecules is not so 
significant as in the case of liquids and especially gases. As 
a result, the molecules of a solid are arranged with respect to 
each other in certain precisely fixed positions and perform 
small thermal vibrations near equilibrium positions. The 
mutual arrangement of equilibrium positions is determined 
by equilibrium conditions. Naturally, if these conditions are 
satisfled in a certain region of space and stipulate some 
mutual arrangement of molecules in this region, they must be 
satisfied in another region, and hence must stipulate a similar 
arrangement of molecules there. This means that the mutual 
arrangement of molecules is repeated as we go over from one 
spatial region to another, i.e. solids have periodic structure. 
It is realized in the form of a crystal lattice, and solids 

themselves are crystals. The points of equilibrium for atoms, 
molecules, or ions constituting a crystal are called lattice 
sites. 

Such a reasoning, however, raises the question as to why 
amorphous bodies like glasses and plastics, which have no 
periodic structure, exist along with crystals. As a matter of 
fact, these materials are not in equilibrium states. Their struc- 
ture changes with time, approaching a crystalline state. For 
example, glass crystallizes in several hundreds of years. The 
process of its crystallization can be considerably accelerated 
at a high temperature, when it softens. Crystallization in 
plastics is considerably hampered since long molecules 
constituting them are entangled. In order to improve the 
quality of a plastic, special treatment is employed to make 
most of its molecules different (in their physical length, side 
chains, etc.). Thus, stability can be ensured even without 
a periodic structure. 
PRIMITIVE LATTICE. The periodic structure of a crystal 

lattice means that there must exist a certain elementary group 
of atoms which, repeated in all directions, can cover the 
entire lattice in space. Generally speaking, the elementary 
group of atoms (we consider atoms for the sake of simplicity 
though it can be molecules or ions) as well as the lattice 
generated by its repetition are very complicated struc- 
tures. 

For this reason, it is expedient to divide the entire lattice into 
certain simpler sublattices each of which is quite simple. 
Obviously, a sublattice is also a lattice. The simplest lattice 
consists of elementary groups of atoms in the form of 



Fig. 101. The basis of a primitive 
crystal lattice 
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parelielepipeds whose repetition covers the entire lattice 
(Fig. 101). 

By choosing the origin of coordinates at a certain site of 
such a lattice, we can represent the radius vector of any other 
site in the form 

r=n,a, +n,a, +7n3a;, (43.1) 

where n,, n5, and n4 are integers (including zero). The vectors 
ap âp and a, are called basis vectors, and the set of these 
vectors is called the basis of the lattice. The lengths of the 
vectors à,, a;, and a, are called the primitive periods of the 
lattice. The parallelepiped with the edges a, a, a, and 
having atoms at its corners is called the unit cell of the 
crystal lattice. When the numbers n,, n;, and n4 in formula 
(43.1) assume all possible integral values from — oo to 4- oo, 
the radius vector r runs through all sites of the crystal lattice 
and there are no lattice sites that are not described by for- 
mula (43.1). Such a lattice is called the primitive, or Bravais 
lattice, and its unit cell is termed the primitive cell. 

Generally, a specific crystal lattice cannot be represented in 
the form of one Bravais lattice but is a combination of 
several such lattices. For this reason, it is called a composite 

lattice. 
AMBIGUITY IN THE CHOICE OF A PRIMITIVE LATTICE 

BASIS. The choice of the basis of even a primitive lattice is 
not unambiguous. This can be easily seen from Fig. 102, 
where two possible structures of a primitive lattice with 
different bases for a two-dimensional case are shown by 
dashed lines. In the first case, the basis is formed by the 
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vectors a, and a,, while in the second, by the vectors aj and 
a5. In the first case, the unit cell is a rectangle, while in the 

second it is a parallelogram. In two dimensions, each atom at 
the lattice site is surrounded by four unit cells. Consequently, 
the area occupied by an atom in the cell, equal to the total 
area divided by the number of atoms, is equal to the unit cell 
area |a, X a,| in the first case and |a; x a;| in the second. 

As expected, the unit cell areas are equal in both cases, 
although the bases are different. These results can be easily 
extended to the three-dimensional case for which the choice 
of a unit cell in a crystal is also ambiguous, but the unit cell 
volume is the same for all possible ways of choosing the 
basis. This volume is calculated by using the formula for the 
volume of a parallelepiped: 

19 7 8,7839 X 83. (43.2) 

This is the volume per atom in a crystal lattice. 
Primitive bases differ from one another in the length of 

basis vectors or, which is the same, in the primitive lattice 
periods. A Bravais lattice with minimal primitive periods is 
called the reduced lattice. 

It is not always easy to determine at first sight whether 
a given lattice is primitive or composite. This can be done 
best of all if we consider the entire lattice rather than its 
small part equal approximately to a unit cell. The problem 
consists in determining whether it is possible to draw three 
systems of perpendicular planes such that all the atoms of the 
lattice are at the points of intersection of the planes and there 
are no atoms beyond these points. 

By way of an example, let us consider a plane lattice 
(Fig. 103). If we take the vectors a, and a, as the basis, the 
lattice seems to be composite since the atoms at the centres 
of squares do not lie at the sites of the primitive lattice 
constructed on this basis. It seems at a first glance that one 
more primitive lattice is required, and hence the initial lattice 
is not of the Bravais type. This, however, is wrong. Let us 
take the vectors a, and a; as the basis. In this basis, the 
entire initial lattice can be represented as a Bravais lattice. 
Hence the initial lattice is also primitive. 

This becomes clear if we consider the system of dashed 
lines (Fig. 103). 
TRANSLATIONAL SYSTEM. Owing to its infinite 

dimensions, the lattice has, in addition to symmetries typical 
of solids, a translational symmetry, i.e. the ability of 
self-coincidence as a result of translational motion. For 
example, if a primitive lattice is moved along one of the edges 
of its unit cell by an integral number of the primitive periods, 
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Fig. 104. To the determination of 
a possible order of rotation and 
rotoreflection axes in the crystal 
lattice 
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the lattice will coincide with itself, If the lattice is displaced 
by the vector r defined by (43.1), the self-coincidence will take 
place again. For this reason the vector r is caled 
a translational vector. Thus we can say that the entire 
primitive lattice can be obtained from any site if we subject it 
to all possible translations parallel to the basis vectors. 

SPACE GROUPS. Symmetry elements of a solid form point 
symmetry groups. If they are supplemented by the 
translational symmetry typical of infinite periodic structures, 
they will together form a symmetry group. Consequently, we 
can state that crystal lattices are characterized by space 
symmetry groups. 

ELEMENTS OF LATTICE SYMMETRY. First of all, it 

should be noted that the symmetries of a lattice as a whole 
differ from the symmetries of its unit cell. This follows from 
the fact that the choice of a unit cell is ambiguous, and 
different unit cells may have different symmetries. Hence, the 
lattice symmetry is just the symmetry of the lattice and not of 
its unit cell. 

It is clear that any primitive lattice has its centre of 
symmetry which may coincide with any site of a primitive 
perallelepiped, the mid-points of its edges, or the centres of 
its faces. Symmetry planes are also elements of lattice 
symmetry. As regards the symmetry axes and 
reflection-rotation axes, they can only be two-, three-, four-, 
or six-fold axes, the axes of other orders being impossible. 
This can be proved if we consider that during rotation the 
atoms of the lattice move in planes perpendicular to the axis 
of rotation. 

Let us consider atoms lying in a certain plane. They form 
a plane crystal lattice whose sites create a system of regular 
identical polygons coinciding with one another upon rotation 
and hence densely (without intervals) covering the surface. 
Let us consider the point O (Fig. 104) at which the edges of 
adjoining regular polygons meet. If the number of points 
meeting at this point is equal to p, the angles between the 
edges are equal to 2n/p. On the other hand, the angle 
between the sides of a regular n-sided polygon is equal to 
n (n — 2) /n. 

If a plane is filled by regular polygons without gaps, these 
angles are equal: 

2x/p 2 n(n — 2)/n. (43.3) 

Hence it follows that 

p — 2n[ in — 2), (434) 
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. What is a primitive lattice? 

. Can a crystal lattice, 
generally speaking, be 
represented in the form of one 
primitive lattice? 

. What is a reduced primitive 
lattice? 

. Does the lattice symmetry 
coincide completely with the 
symmetry of its unit cell? 
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. How many types of crystal 
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. What are the notations of the 
directions and planes in 
crystals? 
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where p and n are integers. The solutions of this equation are 

n=3, n=4, n=6. (43.5) 

Thus, the surface can be covered without gaps by 

equilateral triangles (n = 3) KI 

squares (n = 4) FH 

and regular hexagons (n = 6) (honeycomb sar O 

There are no other regular polygons capable of covering 
the plane without gaps. 

They can be obviously supplemented by the axis n=2 
corresponding to the reflection in a plane passing through 
this axis, as well as by the trivial axis n = 1 corresponding to 
rotation through 2r. Thus, a crystal lattice may have only 
two-, three-, four-, and six-fold axes. Similarly, it can be 
proved that reflection-rotation axes may have only these 
orders. 

As a result, we see that the number of elements of point 
symmetry groups in crystal lattices is finite, as well as the 
number of possible symmetries. 
CRYSTAL CLASSES. Since composite crystal lattices consist 

of Bravais lattices it is expedient to classify crystals in 
accordance with the symmetry of the Bravais lattices (as 
mentioned above, we mean point symmetry in this case). 
Such a classification was made by Bravais. He showed that 
although the lattice symmetry does not necessarily coincide 
with the symmetry of any primitive cell, it is always possible 
to find a primitive cell having the same symmetry elements as 
the lattice on the whole. The smallest of the primitive cells 
including all the elements of lattice symmetry is called the 
Bravais cell or parallelepiped. 

There are six types of Bravais primitive cells and hence, if 

we take into account the hexagonal lattice, seven types of 
lattices or seven kinds of crystal systems in all. If new atoms 
are placed at the centres of the faces or at the centre of the 
volume of the Bravais parallelepiped, this will not change the 
lattice symmetry but adds new types of lattices. Hence, there 
exist 14 types of Bravais lattices, distributed among seven 
crystal systems. 

These lattices are described in detail in crystallography 
textbooks. Here, we shall confine ourselves to brief remarks 

only. 



Fig. 105. Crystal classes and lattice 
types. Systems: (a) cubic, (b) 

tetragonal, (c) hexagonal, (d) rhom- 

bohedral, (e) rhombic, (f) monocli- 

nic, and (g) triclinic 
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Figure 105 shows the lattices belonging to seven crystal 
systems. In each system (with the exception of the hexagonal 
system), the first picture shows the Bravais primitive cell 
followed by lattices obtained by centring the volume and 
faces of the primitive parallelepiped. This operation does not 
change the lattice symmetry, but the primitive cells thus 
obtained naturally do not coincide with the Bravais primitive 
cell and have symmetries differing from the lattice symmetry. 
As regards the hexagonal system, its unit cell has the same 
symmetry elements as those of the lattice, and is not 
a parallelepiped. The unit parallelepiped in this case is shown 
in the diagram along with the unit cell. 

Figure 106 gives the notation for axes and angles of the 
Bravais primitive parallelepiped. With the help of this 



Fig. 106. Notation for axes and 

angles in the 
parallelepiped 

Bravais primitive 

5. Solids 

notation, the Bravais primitive cells for various crystal 
systems are described in Table 5. 
SYMMETRIES OF  COMPOSITE  LATTICES. Since 

a composite lattice consists of primitive ones having different 
types of symmetry, the symmetry of a composite lattice 
considerably differs from the symmetry of its component 
primitive lattices. Besides, additional symmetry elements are 
possible for the composite lattice, viz. the screw axis and the 
mirror slip plane. 

The n-fold screw axis is a straight line such that the motion 
of the lattice along this line with simultaneous rotation 
through 2x/n leads to its self-coincidence. Screw axes of the 
same order differ in the direction of rotation, i.e. can be “left- 
handed" and “right-handed”. 

The mirror slip plane is a plane such that reflection in it 
with simultaneous displacement by a certain distance parallel 
to this plane leads the lattice to self-coincidence. 

Thus, along with the point symmetry elements and 
translational symmetry, the lattice has other symmetry 
elements, viz. the screw axes and mirror slip planes. The set 
of all symmetry elements of a lattice is called its space group. 
It was shown by E.S. Fedorov that there can be 230 space 
groups altogether. These groups are called the Fedorov 
groups. Not all of them were found in natural crystals. The 
crystals for 177 Fedorov groups have been found so far. For 
greater detail, we refer the reader to textbooks on crystal 
physics. 
CRYSTALLOGRAPHIC SYSTEMS OF COORDINATES. For 

the coordinate systems in which the positions of lattice atoms 
are specified, we use rectangular coordinate systems whose 

Table 5 
Characteristics of Crystal Systems 

Relation between 
angles in unit cell 

Relation between 
edges of unit 

cell 

Crystal system 

Triclinic a, #a,F# a3 aXe By 
Monoclinic a,#a,#a, w2=P=90 #y 
Rhombic a,#0,#a, w=P=y=90° 
Tetragonal a,=a,#a, a2=P=y=90° 
Cubic a,=a,=a, a=Pp=y=90° 
Rhombohedral a =a, =a, «&=fP=y, but <120° and 

# 90° 
Hexagonal a,;=a,4a, &®=B=90°, y= 120° 
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Fig. 107. To the definition of the 
Miller indices of the planes 

43. Crystal Lattice 345 

axes coincide with the edges of the Bravais parallelepiped and 
the origin is at one of the lattice sites. The length of the 
corresponding edge of the Bravais parallelepiped is chosen as 
a unit length along each axis. Hence, the coordinates of 
atoms are expressed by integers. Such coordinate systems are 
called crystallographic. The choice of the coordinate axes is 
indicated in Table 5. The coordinate systems are rectangular 
lor cubic, tetragonal, and rhombic crystals, while for other 
crystals they are oblique. The X- and Y-axes of the Bravais 
parallelepiped in hexagonal crystals are the sides of the 
regular hexagon in the base (see Fig. 105), forming the angle 
of 120° with each other, while the Z-axis is directed normally 
to the base. The choice of the Bravais parallelepiped for 
monoclinic and triclinic crystals is ambiguous. It is assumed 
that the axis forming right angles with two other axes is the 
Z-axis for monoclinic crystals (see Table 5). 
NOTATION FOR ATOMIC PLANES. An infinite number of 

planes can be drawn in a crystal, each plane containing an 
infinite number of atoms. In order to characterize the family 
of parallel planes, it is sufficient to define one of them. 
Without loss of generality, we can confine ourselves to 
primitive lattices only. 

In rectilinear (but not necessarily rectangular!) coordinate 
system, the equation of a plane has the form 

x/|OA|+ y/|OB| +2/|OC|=1, (43.6) 

where |OA|, |OB|, and |OC| are the lengths (in units of the 
axis) of segments intercepted by the plane on the axes of 
coordinates (Fig. 107). If there is an atom at the point of 
intersection of an axis with the plane, the corresponding 
value of A, B, or C is integral. But, generally speaking, the 
atomic plane may intersect the coordinate axes at a point 
where there is no atom. In this case, the corresponding value 
of |OA|, |OB|, and |OC| will not be integral. However, it is 
always expressed by a rational (positive or negative) number. 
In order to prove this, it is sufficient to note that the 
quantities x, y, and z appearing in Eq. (43.6) and 
corresponding to atoms in the plane under consideration are 
integral. Hence, taking any three specific atoms in planes not 
lying on a straight line, we obtain from (43.6) three linear 
equations with integral coefficients, that can be used for 
finding three unknowns (1/|OA|, 1/|OB|, and 1/|OC|). The 
solution of these equations is obviously given by rational 
numbers. Consequently, | OA|, | OB|, and |OC| are rational 
numbers. Thus, Eq. (43.6) can be rewritten in the form 

hx +ky+lz=D, (43.7) 
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where h, k, and l are integers. We can assume that these 
numbers have no common factor since otherwise all the 
terms of this equation could be divided by this common 
factor. The integers h, k, and / unambiguously define the 
position of the plane. They are called Miller indices and are 
written in the form of a sequence of numbers in parentheses: 
(hk). If an index has a negative value, the minus sign is put 
above the corresponding number, e.g. (hkl). 
NOTATION FOR DIRECTIONS. The direction 

perpendicular to a plane characterized by the Miller indices 
(hkl) is denoted by the same numbers in brackets: [hkl]. 

Sec. 44. DEFECTS OF CRYSTAL LATTICES 

DEFINITION. By defects in a crystal lattice we mean any 
deviations from the strict periodicity which characterizes the 
lattice. Defects can be macroscopic or microscopic. The 
defects of the first type include all kinds of cracks, 
macroscopic cavities and various macroscopic inclusions in 
the crystal lattice. The defects of the second type are due to 
microscopic deviations from periodicity. They can be either 
point defects or line defects (dislocations). 

POINT DEFECTS. There are three types of these defects: (1) 
a vacancy formed when an atom is missing from the lattice 
site (Schottky defect) (Fig. 108); (2) substitution by a foreign 

atom at the lattice site (Fig. 109); and (3) interstitial, i.e. 
atoms between lattice sites (Frenkel defect) (Fig. 110). 

A typical feature of point defects is that they violate just 
the short-range order and do not disturb the long-range 
order. 
DISLOCATIONS, Unlike point defects, line defects violate 

the long-range order. Dislocations disturb the regular 
alteration of atomic planes. They can be of edge or screw 
type. 

o o e oe TEREE 
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Fig. 110. Interstitial Fig. 111. Edge dislocation 
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An edge dislocation corresponds to an extra atomic ‘half- 
plane introduced between atomic planes in a crystal 
(Fig. 111). 

A screw dislocation is formed as a result of slip of two 
atomic half-planes by a period with respect to one another 
starting from a certain line. Figure 112 shows the lattice 
atoms in planes that have slipped with respect to one 
another. The dashed line demarcates the half-plane with slip 
from that without slip. Dislocations are important for 

Fig. 112. Screw dislocation studying the mechanical properties of solids. 

Sec. 45. MECHANICAL PROPERTIES OF SOLIDS 

Various types of deformations DEFORMATIONS. In spite of a large variety of possible 
in solids and the relations strains, they can all be reduced to two elementary strains: 
between parameters characte- uniform tension (compression) and shear. 
rizing them are considered. Tensile (compressive) strain is characterized by the relative 
Plastic deformation, creep, and : ` : : : altimetre ctrenaliy Are di cuss- elongation of the strained region (Fig. 113): 

ed. Molecular mechanism of 

strength is analyzed. g — (I4 — D/l 2 Al/T. (45.1) 

For £ > 0 we have elongation, while for e « 0 compression 
takes place. 

Shear strain is characterized by the relative shear 
(Fig. 114a): 

y =tana =|AB|/|OA|. (45.2) 

One of the directions of shear is conventionally considered 
positive and the opposite direction negative. 
Any deformation is characterized by three elongations 

along three coordinate axes and by three shears parallel to 
three coordinate planes, i.e. by six quantities altogether. 

All other types of deformation can be expressed in terms of 
these two elementary strains. For example, bending (Fig. 115) 
is a combination of nonuniform tension and compression. 
The dashed line on the figure denotes the line along which 
there is no strain. Torsion is reduced to a nonuniform shear 
strain (Fig. 116). 

STRAIN TENSOR. The six quantities that describe an 
arbitrary strain vary from point to point. The set of these 
quantities constitutes the strain tensor. 

In order to find the expression for this tensor, let us 
consider a deformed body. As a result of strain, a point of the 



348 

Fig. 113. Relative elongation 

Fig. 114. Relative shear (a); shear as 

a combination of bulk compression 
and extension (b) 
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body with radius vector r shifts to a point r', i.e. the 
displacement vector of this point is equal to r'-r, while the 
displacement components along the coordinate axes are equal 
to u—x;—x, where we put x, —x, x; — y, x4 —z. If the 
distance between certain two points before deformation was 

dl = |/dx? + dx} + dx} after deformation it will be equal to 
dř = [(dx, +du,)? + (dx, + du,)? + (dx, +du,)?]'/?. In sub- 
sequent transformations, it will be convenient to use the rule 
of summation over repeating indices: 

di’? = (dx, + du,)? = dx? + 2dx,du, + du2 

= dl? + 2dx,du, + duż. (45.3) 

Considering that 

du, = (Gu, /Gxg) dx, (45.4) 

we give Eq. (45.3) the form 

Ou, ðu, ô di! -dP «25 ame dx, d —1— dx, dx,. 45.5 E Xp dx, + e Un Xy dx, (45.5) 

Since summation in formula (45.5) is performed over 
indices a, B, and y, they are dummy indices and can be 
replaced by any others. In particular, it is obvious that 

Qu, Oug 
LM = ——dx,dx,. 45.6 LP dxgdx, x X,dXg (45.6) 

Hence, formula (45.5) becomes 

di? 2dP 4 2u,, dx, dxp, (45.7) 

where 

l1/20u, ug Gu, Ou, 

Ub 7p Ox, ^ Ox, ^ Oxy Ox 

(a) 



Fig. 115. Bendingas a combination 
of nonuniform extension and 
compression 

Fig. 116. Torsion as a nonuniform 
shear 
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is the strain tensor. It is symmetric (4,5 — Uga), and hence 
contains only six different quantities. 

It is known that a symmetric tensor can be reduced to the 
principal axes, thus giving it a diagonal form. Clearly, tensor 
u,, can also be reduced to the principal axes. In this case, 
only the diagonal elements u,,, uj; and u,, will differ from 
zero, and formula (45.7) can be written in the form 

d/? 2 (14-2u,,) dx2 - (1 -2u,,)dxZ - (1--2u44)dx2, (45.9) 

i.e. the strain is reduced to simple compression (or tension) 
along three independent mutually perpendicular directions 
which coincide with principal axes. For example, the length 
dx, along the X,-axis becomes equal to dx,= 

=dx,/1+2u,,, and so on. As we move from point to 
point, the direction of principal axes changes, and therefore 
the strain tensor is generally nondiagonal for a fixed direction 
of axes. Hence, the strain cannot be represented as 
a combination of independent compressions of tensions in 
these three invariable directions. 

In most of the practically important cases, strains are 
small, i.e. |u,,| «<1. Under these conditions, the third term in 
the parantheses in (45.8) can be ignored in comparison with 
the first two terms as a quantity of the second order of 
smallness. Thus, we can assume that 

(45.10) 

According to (45.9), the relative elongation along the first 
principal axis is equal to 

dx, VYt+2u,,;—dx, | (45.11) 
Qe eis 

where V1 + 2u ~ 14+ uy, for [ul « I. 

Similarly, the relative elongations along the two other axes 
are given by 

£5 X U2, £3 DV U33. (45.12) 

As a result of deformation, a certain volume dV= dx,dx,dx, 
becomes 

dV’ =dx,V1+u,,dx,/1 + 2u,,dx,)/ 1+ 2u,, 

- dx,dx4dx4 (1 4- u4,) (I 4- u54) (E - u33) 

=dV(1 + u,, +4. +433), (45.13) 
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and hence the relative change in the volume is 

(dV’ — dV)/dV = uy, + u22 + U33 =S Ua, (45.14) 

i.e. it is equal to the sum of diagonal elements of the strain 
tensor. 

ELASTIC STRESS. Experiments show that the relative 
elongation & is proportional to the force and inversely 
proportional to the area of the cross section to which the 
tensile or compressive force is applied (see Fig. 113): 

] F IF 45.15 
CES nae 

Here the proportionality factor is written in the form 1/E (E 
is Young's modulus), the force F acts along the normal to the 

surface S, and F/S=o is the normal stress. Then formula 
(45.15) can be written in the form 

and gives the value of the normal stress as a function of the 
relative elongation. The sign of o is determined by the sign of 
£, Similarly (see Fig. 114), for shear strain we have 

y - F/(GS), (45.17) 

where G is the shear modulus, F is the tangential force 
directed along the tangent to the surface, and F/S — t is the 
tangential stress. Formula (45.17) can then be written in the 
form 

t= Gy. (45.18) 

The quantity 1/G is called the shear coefficient. 
POISSON'S RATIO. In uniaxial tension (compression), the 

change in the length of a rod is accompanied by a change in 
its cross-sectional area: it decreases during tension and 
increases upon compression. The relative change in the 
transverse dimension is deterimned by the relation 

£1 — Al /li, (45.19) 

where !, and Al, are some linear transverse dimensions of 
the rod and its elongation respectively. The quantity 
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2 (00/1) (AU (45.20) 

is called the Poisson ratio. The minus sign takes into account 
the fact that the transverse dimensions of a body decrease in 
tension and increase upon compression. The Poisson ratio 
characterizes the change in the volume upon a unilateral 
compression or tension. 

Suppose we have a right square cylinder of the volume 
V= 17. The volume of the body after tension will be 

V,=l14+e)R (1 +e)? = VU +e 4 264), (45.21) 

where we disregarded the second-order terms in £ and g], i.e. 
the terms of the second order of smallness. It follows from 
(45.21) that 

(V, —V)/V=AV/V=e + 26, =e(1 — 2p). (45.22) 

The volume of the body increases upon tension and 
decreases upon compression. Consequently, AV and e in 
(45.22) have the same sign, and hence 

ji 2050 n« 13. (45.23) 

Thus, the maximum value of the Poisson ratio is equal to 
Umax = 1/2. In this case, the volume of the body does not 
change upon a unilateral tension or compression, since the 
change in the volume due to tension (compression) in one 
direction is compensated by the change in the volume due to 
the change in linear dimensions in perpendicular directions. 
The Poisson ratio lies between 0.30 and 0.40 for most of 
bodies. 

Obviously, shear strain is not accompanied by a change in 
the volume. 
UNIFORM TENSION OR COMPRESSION. If a body is 

subjected to a uniform compression, the relative change in 
volume, AV/V, is proportional to the applied stress o: 

(45.24) 

where # is the bulk modulus, and 1/2£ —*x is the 

compressibility. In the case of solids, large stresses are 
required to cause an appreciable change in the volume, i.e. 
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compressibilities are extremely small (of the order of 
1071! Pa !), 

Clearly, uniform compression is equivalent to 
a compression along the three coordinate axes. However, we 
must take into consideration that in accordance with (45.20), 
the relative elongation, say, along the X-axis is due both to 
the action of stresses along the X-axis and to elongations 
along this axis as a result of stresses along the Y- and Z-axes. 
Denoting the relative elongations along the axes as ¢,, £,, and 
£, We can write 

£, — o, /E — ye, — ue, — [c, — n (o, - o)]/E, 

e, = 6, /E — pe, — ug, — [o, — n (o,  o,)]/ EE, (45.25) 

€, = 0, /E — pE, — HE, = [o; — u (0, - o)]/ E. 

These formulas can be considerably simplified for the case 
of uniform bulk compression when 0,—0,-70,—90: 

£, — (1 - 2!) o/E, £, 2 (1 — 20060 / E, £, (1 — 25) o7 E. 

(45.26) 

Thus, in bulk compression (tension) the relative elongation 

in a given direction differs from the elongation for unilateral 
compression (tension) under the action of the same stress. 
RELATION BETWEEN THE BULK MODULUS AND 

YOUNG'S MODULUS. The relive change in the volume upon 
bulk compression (tension) also differs from that upon 
unilateral compression. For a right parallelepiped of volume 
V- lll, we have for uniform bulk compression (o, — 6, — 
=6,=6) 

Al, Al, Al, AinV=A(nl, +inl, +Inl,)=—*+—% +5 
x y z 

3-3 Jete te LIS (45.27) 

This means that the bulk modulus 2€^ is connected with 
Young's modulus E through the relation 

X —-E/[3(1—2y9]. (45.28) 

RELATION BETWEEN THE SHEAR MODULUS AND 

YOUNG'S MODULUS. In the case of a pure shear, the 
volume remains unchanged. Hence, the following relation 
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must be observed: 

AV/V=e,+e,+6,=0, (45.29) 

which can be reduced with the help of (45.25) to the form 

AV/V= (1 — 2u)(o, +5, +6,)/E=0. (45.30) 

Thus, pure shear is realized only when the following 
relation is observed between stresses along the coordinate 
axes: 

6,+90,+6,=0. (45.31) 

Using (45.31), relations (45.25) are transformed as follows: 

&,=(1+u)o,/E, ¢,=(1+p)o,/E, ¢,=(1+y)o,/E. (45.32) 

In order to connect these quantities with shear, let us 
consider how the latter appears as a result of a combination 
of compressions and extensions. Figure 114b illustrates the 
case o,=0, i.e. when the shear occurs in a _ plane 
perpendicular to the plane of the figure. From (45.31), it 
follows that 

6, = — 0, (45.33): 

This means that if compression takes place along the 
X-axis, extension occurs along the Y-axis. If we consider 
a square /,=1,=/, then |AL|—]AL| (see Fig. 1146). 
Consequently, the shear is parallel to the diagonal of the 
square. It can be seen (see Fig. 1145) that 

Al VAL? (AL E JNZ RN 
"wa- ya CAN) e) (//2) q/y 2) I l, 

-yayéxs- yz! z Vol +o. (45.34) 

The resultant of the normal stresses co, and 6, is a shear 
stress t acting along the diagonal (see Fig. 1145). Since the 
length of the diagonal is L— |/ 21, we immediately obtain for 
the shear stress 

t=/o2 +02///2 (45.35) 

and formula (45.34) assumes the form 

y=2(1+y)t/E. (45.36) 
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Fig. 117. Stress-strain diagram. 
The region of elastic (0, £1), plastic 
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> £). In the latter region the ma- 
terial undergoes destruction 
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Comparing this formula with (45.18) we obtain the 
required relation between the shear modulus and Young’s 
modulus: 

G=E/J[20 +9], (45.37) 

which also involves the Poisson ratio. 
Since Poisson's ratio u is of the order of unity, the 

quantities G and E have approximately the same order of 
magnitude. 

The shear modulus and Young's modulus for solids are of 
the order of 10'°-10!! Pa. For example, for steel E = 2.2 x 
x 10!! Pa, G— 0.8 x 101! Pa; for copper E = 1.2 x 10!! Pa, 
G=044 x 10!! Pa, for lead E=1.6x10'° Pa, G=0.6 x 
x 10!? Pa, Thus, the values for lead are an order of magni- 

tude lower than for steel. 
PLASTIC DEFORMATION. After the stresses causing 

a deformation are removed, a body completely restores its 
original shape and volume although with a certain delay 
(relaxation time). Consequently, the deformation is reversible. 
The strain depends linearly on the stress (region OA in 
Fig. 117). Such deformations are called elastic. 

The maximum value of stress o, up to which deformations 
remain elastic is called the elastic limit. 

If the stress is increased beyond this limit, the strain 
increases more rapidly than the stresses (region AB). After the 
stress is removed, the body does not regain its original shape 
and size, but shows a residual deformation (region OB’). 
Thus, the region of elastic deformation is followed by the 
region of irreversible deformation, which is known as plastic 
deformation. 

YIELD. At the boundary of the plastic deformation region 
(point B) a situation may arise when the strain grows at 

a constant stress (region BC). This region is called the yield 
region, and the stress at which the material “yields” is called 
the yield point. The yield region does not always exist. 
Beyond the yield region, after the point C (or point B if the 
yield is missing) the behaviour of the c versus € curve may be 
quite diverse. In all cases, however, at a certain stress a limit 

is attained after which the material breaks down. 
ULTIMATE STRENGTH. The stress at which the material 

fails is called the ultimate strength. 
Substances for which the elastic limit and ultimate strength 

are close and the yield region is practically missing are called 
brittle. These materials fail almost immediately after the 
elastic limit (as in the case of cast iron or tempered steel). 
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If after undergoing plastic deformation, a material is 
deformed again, the deformation will be elastic, the elastic 
limit being usually higher than in the previous deformation 
(region AB). Even o,, i.e. the upper limit of the pevious 
region of plastic deformation, can now be the elastic limit. It 
can be stated that plastic deformation has made the material 
stronger. There are other methods of strengthening materials, 
for example, tempering or strengthening with the help of for- 
eing impurities, i.e. alloying. Tempering consists in rapid 
cooling of a metal heated to a high temperature by sub- 
merging it into water or oil. 
MOLECULAR MECHANISM OF STRENGTH. Clearly, de- 

formations cause a change in the mutual arrangement of 
lattice atoms and the distance between them. 

The stresses appearing in this case are manifestations of the 
forces of intermolecular interaction in their nature. 
Experimental studies and theoretical calculations show that 
the elastic limit of real crystals is considerably lower than for 
ideal crystals. 

This leads to a conclusion that the role of crystal lattice 
defects in its strength is very important. It was found that 
dislocations play the decisive role. Dislocations move as 
a result of deformations, and the strength of a material 

is determined mainly by the ease with which dislocations 
move. 

The factors that hamper the movement of dislocations 
improve the strength of a material. In particular, strength- 
ening caused by plastic deformation can be explained by an 
increase in the number of dislocations, as a result of which 
their mobility decreases, and, therefore, the material is 
strengthened. 

Impurities also usually hamper the movement of 
dislocations, i.e. increase the strength of materials. 

However, the strength of a material can be increased many 
times if lattice defects are eliminated. In this case, in 
particular, dislocations will also disappear in the crystal, and 
we cannot speak of their movement. Such an increase in the 
strength of materials having an ideal crystal lattice was 
confirmed in experiments. However, the production of 
materials with a crystal lattice without defects is extremely 
difficult. 
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Sec. 46. HEAT CAPACITY OF SOLIDS 

The Einstein and Debye theo- 
ries of heat capacities and the 
conditions of their applicability 
are considered. The formula 
for heat capacity is derived 
by using the concept of pho- 
nons. 

CLASSICAL THEORY. A crystalline solid whose atoms 
vibrate near equilibrium positions at the lattice sites is used 
as a model. Each atom can vibrate independently in three 
mutually perpendicular directions and is a linear oscillator 
with respect to each of these directions. In accordance with 
the law of equipartition of energy, each oscillator has 
a vibrational energy equal to kT, which consists of kinetic 
and potential energies equal to kT/2 each. 

Thus, as a result of thermal motion, a body consisting of 
n atoms has the energy 

U = 3nkT, (46.1) 

while its heat capacity is equal to 

Cy = (6U/6T)y = 3nk, (46.2) 

i.e. the heat capacity of a solid is constant. If we take one 
mole of molecules of a substance, n will be equal to the 
Avogadro constant N4, and nk = R, the molar gas constant. 
Formula (46.2) shows that the molar heat capacity is equal to 
3R and is independent of temperature. This is the law of 
Dulong and Petit. 
HEAT CAPACITY AT LOW TEMPERATURES. Experiments 

on measurement of heat capacity at low temperatures have 
shown that, as in the case of gases (see Sec. 17), it depends 
on temperature. As the temperature approaches 0 K, the heat 
capacity tends to zero in accordance with the power law 
Cya T*. The experimentally obtained temperature de- 
pendence of the heat capacity is depicted in Fig. 118. It 
should be noted that such a dependence of heat capacity on 
temperature is observed only for nonmetallic solids whose 
only energy associated with thermal motion is the energy of 
atomic vibrations at the lattice sites. In metals, free electrons 

take part in thermal motion and contribute to the heat 
capacity. However, this contribution is small since only 
a small number of electrons whose energy is close to the 
energy of the Fermi surface participate in thermal motion. 
The electron heat capacity plays a major role only when the 
temperature is low, and the main heat capacity becomes very 
small. 

EINSTEIN’S MODEL. In order to explain the temperature 
dependence of heat capacity, Einstein proposed (1907) that 
we should take into consideration the discrete nature of 
energies that the oscillators forming a solid may assume, as it 
was done earlier by M. Planck while deriving the formula for 
the black-body radiation. 
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Fig. 118. Temperature dependence 
of the heat capacity for nonmetallic 
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Let £ be the “elementary” portion of energy which a linear 
oscillator may possess. This energy can be assumed to be 
connected with a certain frequency of the oscillator through 
the same relation that connects the photon energy with its 
frequency: 

Generally speaking, we cannot state that the minimum 
energy of an oscillator is equal to zero. Let us denote this 
energy by €,. The exact value of this energy is not important 
for calculating the heat capacity. Hence the possible energies 
that the oscillator may have can be represented in the form 

£,— £o -n£& (n=0,1,2,...). (46.4) 

It is natural to assume that the probability #, of the state 
of the oscillator with energy ¢, is given by Boltzmann’s for- 

mula. Hence we can write 

P, = Aexp[—e,/(kT)] = A exp [ — (£o + ne) /(kT)], (46.5) 

where A is a normalized constant determined by the 
normalization condition for probability: 

y P,=exp[—£)/(kT)] A Y exp[ —ng/(kT)] 2 1. (46.6) 
n=0 n=0 

We can now calculate the mean energy of the oscillator: 

oo 

(5 — Y £P, 
n=0 

=e +e y n exp [ — ng/(kT)]/ x exp [ — ng/(kT)]. (46.7) 
n=0 n=0 

The formula for geometric progression gives 

$ exp [ — ne/(kT)] = {1 — exp[—&/(kT)]) !. (46.8) 

Differentiating both sides of this equation with respect to &, 
we obtain 

Yn exp [ —ne/(kT)] 
n=0 

= exp [ — £/(kT)] {1 — exp [ — £/ (kT)]} ~? . (46.9) 
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The motion of system of 
coupled oscillators is describ- 
ed by taking into account 
the normal vibrational modes 
of the system. In this case, 
the energy is carried not by 
an individual oscillator but 
by a normal vibrational 
mode of the system as 
a whole, which is considered 
as a quasiparticle called the 
phonon. 
Phonons and other 
quasiparticles that are normal 
modes of corresponding 
excitations (magnons, 
polarons, excitons, etc.) are 
not particles in the same 
sense as photons, although 
the mathematical algorithms 
for describing their behaviour 
may have much in commpn. 

5. Solids 

Consequently, the relation (46.7) becomes 

£ 
welgenp-r (46.10) (£5 — £g 

Hence we obtain the following expression for the 
vibrational energy of one mole of oscillators: 

3N4£ Ep OA) SSR Alt ner T 
(46.11) 

Then the heat capacity at constant volume is given by 

cya (aU 
au 2- 

2 

=3N4k (zz) exp [/(k T)]/ {exp [e/(kT)] — 1}. 
(46.12a) 

This is the Einstein formula for heat capacity. The behavi- 
our of heat capacity dependence on temperature described by 
this formula is qualitatively in good agreement with the 
experimental results presented in Fig. 118. Indeed, formula 
(46.12a) shows that for a sufficiently high temperature (T > 
—o0)Cy 3R, while for T—0 we obtain 

Cy 3R [e/(kT)]? exp [ — £/(kT)] ^O. 

EINSTEIN’S TEMPERATURE. The “elementary portion of 
energy” £ depends on the material properties of a solid. This 
quantity increases with “hardness” of the material, since in 
this case the vibrational frequency œ in formula (46.3) 
increases. This energy is usually characterized in terms of the 
Einstein temperature Og defined by the relation 

Formula (46.12a) can then be rewritten as 

3R (Og/TYF O/T . 3R(Og/TY exp (Og/T) (46.12c) 

[exp (@g/T) — 1]? 

INSUFFICIENCY OF EINSTEIN’S THEORY. However, for- 
mula (46.12a) does not quantitatively agree with experimental 
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results, since it predicts an exponential decrease in the heat 
capacity Cy oc exp [ — £/(kT)] as we approach 0 K, while the 
experiments give a decrease only in accordance with the 
power law Cyoc T?. 

Thus, Einstein’s model is unsuitable for calculating the heat 
capacity and must be replaced by some other model. Besides 
the quantitative discrepancy between the calculated and 
experimental results, there is another serious drawback in this 
theory. It is assumed that a solid is a system of independent 
linear oscillators whose energies are given by formula (46.4), 
i.e. the movements of atoms in the solid are assumed to be 
independent of each other as the motions of atoms and 
molecules in gases. But this is known to be wrong, since the 
confinement of atoms near certain equilibrium positions is 
itself the result of interaction between the atoms. Therefore 
atoms in a solid cannot be assumed to be independent; we 

must take into account their cooperative interactions. Taking 
this interaction into consideration, we arrive at a theory of 

heat capacity that is in agreement with experimental re- 
sults. 
ELEMENTARY EXCITATIONS. At OK, the system of 

atoms comprising a solid is in the ground state having the 
minimum energy. In order to investigate the heat capacity in 
the vicinity of 0 K, we must specify the energies the system 
may have at temperatures close to 0 K. Suppose that after 
receiving an energy from outside, an atom moves in a certain 
direction from its equilibrium position. The force striving to 
return it to the equilibrium position is just the repulsive force 
exerted on it by other lattice atoms. Therefore, while leaving 
the equilibrium position, the atom acts with a certain force 
on neighbouring atoms which in turn are to leave their 
equilibrium positions, as a result of which the motion 
becomes cooperative. This cooperative motion, when the 
displacement of one atom is transferred to the neighbouring 
atom, and then to the next neighbour, and so on, is nothing 

but an acoustic wave in a solid. Thus, elementary excitations- 
are acoustic vibrations. 
NORMAL MODES. Taking into account the interaction 

described above, a system of atoms must be considered as 
a set of coupled oscillators. In this case, any motion of the 
system of atoms can be represented as a superposition of 
normal oscillations, or normal modes of the system. Each of 

the normal modes is characterized, in addition to other 
parameters, by its frequency, and the energy of this mode is 
given by formula (46.3), i.e. a mode with frequency œ; has the 
energy 

e, = hoy, (46.13) 
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where the energy £g, which is the same for all modes, is 
discarded. One, two, or more oscillations of a given mode 
can be excited in a solid. If n oscillations of a given mode are 
excited, the total energy of these n oscillations is obviously 
equal to 

£j, — nho. (46.14) 

The probability that the total energy £j, corresponds to 
a given mode is assumed to obey the Boltzmann distribution, 
and hence 

Pin = Aexp [ — &;,/(kT)] = A exp [ — nha, /(kT)], (46.15) 

where A is the normalization factor. This formula is similar 
to (46.5). It can be used to calculate the mean energy per 
mode under consideration. By dividing this energy into the 
energy of one oscillation of the mode, we can immediately 
obtain the mean number <n; of oscillations of the given 
mode, excited in a system. Calculations, completely 
analogous in the mathematical sense to those which led to 
(46.10) from (46.5), give the following result: 

i> 1 ee eee CT Tho, he, L 7 exp [has ET] - 1. 
(46.16) 

The problem of calculating the total energy of excitation is 
thus reduced to determining the frequencies of normal modes 
and their number. 
PHONONS. Expression (46.13) for the energy corres- 

ponding to the mode with frequency œ; suggests, in analogy 
with the corresponding formula for the photon energy, that 
such a mode should be treated as a quasiparticle. Essentially, 
this representation has already been used in (46.15) when we 
applied the Boltzmann formula for determining the mean 
energy in a mode. Such a quasiparticle associated with the 
modes of acoustic oscillations is called a phonon. The 
introduction of the phonon concept is a fruitful approach 
which considerably simplifies the reasoning. This approach is 
also very effective from a mathematical point of view, since 
the formal mathematical methods of calculating various 
quantities associated with phonons are similar to the 
corresponding calculations for photons. This analogy is due 
to the fact that mathematically we are dealing with identical 
wave processes. The physical nature of these processes is, 
however, quite different. Therefore the fact that photons exist 
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as particles which have an experimentally observable energy 
and can exist independently does not imply that phonons are 
also particles with similar properties. In modern physics there 
is a large number of other similar quasiparticles that are 
normal modes of the corresponding excitations (magnons, 
polarons, excitons, etc.) All that has, been said about 
phonons is also valid for these quasiparticles. 
DEBYE MODEL. Longitudinal and transverse waves may 

propagate in a solid with different velocities. Transverse 
modes may have two different directions of polarization. 
Thus, we can simply speak about long-wave modes of 
acoustic waves with three different polarizations which are 
generally different and may depend on the direction of 
propagation of the wave. For the sake of simplicity, we shall 
consider the case of an isotropic solid. The number of modes 
for each polarization is calculated in the same way. The 
Debye theory of heat capacity is based on the calculation of 
the number of modes of acoustic oscillations in a solid. We 
must only add to what has been said above that we shall be 
dealing with sufficiently long-wave modes since near 0 K the 
excitations and oscillation frequencies must correspond to 
sufficiently low energies, i.e. they must be small. 

DISPERSION RELATION. First of all, we shall derive the 
wave equation, for example, for longitudinal waves 
propagating along the X-axis (Fig. 119). Suppose that we 
have a thin cylinder with the area S of the base and height 
Ax. We denote the density of the substance by p (x,t), the 
pressure appearing in it as a result of a change in density by 
p (x, t), and the velocity of oscillations of particles along the 
X-axis by u (x, t). This velocity is not equal to the velocity of 
propagation of the wave but is many hundreds of times 
lower. 
We shall write the law of conservation of mass in 

a volume: the change in the mass in the volume per unit time 
O(pSAx)/Ot is equal to the difference between the masses 
entering the volume and leaving it: 

6 (pSAx) 
à = Sp (x, t) u(x, t) — Sp (x + Ax, t) u(x + Ax, 1) 

a (pu) = -SA 
TU 

(46.17) 

where the derivative is expanded into a Taylor series and 
only the first term linear in Ax is retained. The remaining 
terms can be disregarded since we will assume that Ax is an 
infinitesimal. After cancelling out SAx from both sides of 
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Eq. (46.17), we obtain the following equation: 

Op , O(pu) 
ôt ôx 

=a) (46.18) 

which is called the continuity equation. 
The force acting on a mass in the volume under 

consideration is due to the difference in pressure p on 
different walls of the cylinder. Consequently, the Newton 

equation has the form 

pSAxéu/ét = Sp (x, t) — Sp (x + Ax, t)= — SAxép/éx (46.19) 

or 

6 a 
p = ee (46.20) 

ôx 

The changes in density and pressure can be considered to 
be small: 

P=Po tP, P=Po tP, (46.21) 

where pọ and pọ are the density and pressure in the 
medium, which are constant in the absence of a wave; p' and 
p' are the changes in density and pressure introduced by the 
wave. These changes are quite small. All subsequent 
calculations are made retaining the first-order terms in p' and 

Substituting (46.21) into Eqs. (46.18) and (46.20), and 
retaining only the linear terms in p’ and p', we get 

Op Qu ĉu Op! 
"ép t Pax =0, Po E ioe 0. (46.22) 

These two equations are insufficient for determining three 
unknowns p', p', and u. One more equation containing these 
quantities is required. This is the equation of state, 
connecting pressure and density: 

P=p(p). (46.23) 

Taking this equation into account, we obtain from (46.21) 

7 OP (Po) ; 46.24 op (46.24) Pot P =P(Po) +P 

l.e. 

- pv, (46.25) 
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where 

BE (46.26) 
ap 

It will be shown later that v is the velocity of propagation 
of waves. 

Using Eq. (46.25), we can eliminate p' from Eqs. (46.22). As 
a result, these equations become 

op’ Gu ou op’ S na yf Gh ag. 46.27 
a ay Peck TU ER mee? 

Differentiating the first of these equations with respect to 
t and the second with respect to x, and subtracting the first 
equation from the second one, we obtain 

p 4 Oy 
= ee =0. 46.28 

ex? w at ( ) 

Similarly, differentiating the first of Eqs. (46.27) with 
respect to x and the second with respect to t, and subtracting 
them termwise, we get 

^u 1 ĝu oo aro (46.29) 

Equations (46.28) and (46.29) describe a wave propagating 
along the X-axis with the velocity v. This is directly seen 
from the fact that any function f(t — x/v) is a solution of this 
equation. Therefore, the wavefront f=const is given by the 
condition 

t — x/v = const, (46.30) 

from which it follows that 

(dx/dt) = v, (46.31) 

i.e. v is indeed the velocity of propagation of the wavefront. 
We shall seek the solution of Eqs. (46.28) and (46.29) in the 

following form: 

p = po exp [i (œt — kx)], u= uo exp [i (ot — kx)]. (46.32) 

Substituting (46.32) into (46.27), we obtain the algebraic 

equations for determining pg and ug: 

— iopg -- ikpgug — 0, ikv? pg — icopgug — O. (46.33) 
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In order that this homogeneous system have nontrivial 
(nonzero) solutions for pg and ug, it is necessary that the 
determinant composed of the coefficients of these equations 
be equal to zero: 

io ikpo _ 2 2.2 

ikv! — iopo| Bro AM M, [roy 

whence 

@= +ok. (46.35) 

This relation connects the wave frequency @ =2n/T with 
the wave number k — 21/A, where T and X are the period of 

oscillations and the wavelength, and is called the dispersion 
relation. In the case under consideration, it has a simple 
form. However, in other cases it can be more complicated. 

This relation makes it possible to determine the oscillation 
frequencies, and hence the energies of the corresponding 
modes from the known wave numbers. 
CALCULATION OF THE NUMBER OF MODES. Standing 

waves appear in a body of finite dimensions. The boundaries 
of the body freely oscillate and no stress appears on them. 
Suppose that we have a body in the form of a cube with 
volume I? and the origin of coordinates at one of its vertices. 
Let us consider plane standing waves along the X-axis. We 
denote by € the deviation of an oscillating point from the 
equilibrium position. Since the surface of the cube is free, no 
stress appears on it during oscillations, i.e. the boundary 
condition has the form 

5 
due = 0. (46.36) 

x=0 
x-L 

The solution of Eq. (46.29) satisfying this condition has the 
form 

& — exp (iot) (A sin kx + B cos kx), (46.37) 

where c and k are related through (46.35). In order to satisfy 
condition (46.36), we must put A4 — 0 in (46.37), and impose 
the following condition on k: 

kL — nx (n — 1,2,...). 

This condition determines the discrete set of wave numbers 
for which standing waves can exist. Similar relations can be 
obtained for other coordinate axes. Consequently, we get the 
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following sets of the wave numbers, each of which 
corresponds to a standing wave constituting a mode of 
oscillations: 

k, — nn,/L k, — nn, /L k, — nn, /L 

(46.38) 

(n, =1,2,...), (n,=1,2,...), (@, =1,2,...). 

The numbers n,, n,, and n, run independently through all 
possible values. The calculation of the number of modes is 
reduced to the determination of the number of different 
triplets of numbers (n,,n,,n,) or, in other words, to the 

calculation of the number of points with Cartesian 
coordinates (n,,n,, n, . 

The number of these points in a volume with side lengths 
An,, An,, and An, is equal to An, An, An,. Consequently, the 
number of modes corresponding to these numbers is 

L? 

dN = An, An, An, = —,- dk, dk, dk,, (46.39) 
n 

where An, — (L/n) dk,, etc., as it follows directly from (46.38). 

The right-hand side of (46.39) contains the differentials dk,, 

dk,, dk, since L is much larger than the wavelength. 
For calculating dN, it is more convenient to go over to 

spherical coordinates (Fig. 120), taking into account that k,, 

k,, and k, assume only positive values. This means that in 
(46.39) we must put dk, dk, dk, = (41/8) k? dk. As a result we 
obtain from (46.39) the following expression for the number 
of modes corresponding to the wave numbers lying in the 
interval from k to k+dk: 

4n L? 
dN — Qn k? dk, (46.40) 

where we retain the factor 4r instead of cancelling it by the 
expression (2x) in the denominator in order to emphasize 
the transition to spherical coordinates. 

Further, we use the relation (46.35) from which it follows 
that 

k? dk — (1/v? ) o? do, (46.41) 

and hence the number of modes with oscillation frequency 
lying between o and o - do is equal to 

4nL3 



366 5. Solids 

MODE DENSITY. The number of modes divided by the fre- 
quency interval is called the mode density: 

p (o) 2 dN/do. (46.43) 

Hence it follows from (46.42) that 

(je RE p (46.44) o) 2 ——— 0. i PST gis 

Similar calculations can be made for each of the transverse 
modes. In the isotropic case, the velocities of the two 
transverse waves are equal. Denoting the velocities of the 
transverse and longitudinal modes by ving and v, and taking 
into account that the density of all the modes is equal to the 
sum of the densities of individual modes, we can write 

3 

a = Pa + =) wo, (46.45) zx 3 
(2n)? Piong Pir 

To avoid complex notations in (46.45), the total mode 

density is denoted by the same letter as in (46.44) for the 
mode density of one of the polarizations. 

The above calculations imply that formula (46.45) is not 
valid for very short waves since we have ignored the atomic 
structure of a solid and performed calculations as if the mass 
of the solid were continuously distributed: over its volume. 
Formula (46.45) is valid for waves whose wavelength 
considerably exceeds the mean distance between the atoms, 
and displacements of atoms from their equilibrium positions 
are not very large. It is just this case that is important for 
considering heat capacity at low temperatures. 

On the other hand, since the values of temperature and kT 
are very small, expression (46.45) is valid up to the fre- 
quencies for which h@>>kT. In this region, the exponential 
exp [hw@/(kT)| appearing in the denominator of (46.16) is 
large, and hence the average number of modes with very high 
frequencies is exponentially small. This means that their 
contribution to the total energy is very small. Therefore, in 
spite of the fact that expression (46.45) does not hold for high 
frequencies, it can be used up to infinitely high frequencies 
since the exponential term will nullify the contribution from 
these frequencies to the quantities being calculated. 
HEAT CAPACITY AT LOW TEMPERATURES. The total 

energy of all modes of oscillations associated with thermal 
energy is equal to 
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U- IE (Q)» p (o) ho do 

_ 4nL*h 1 d 2 wo? dw 

— Quy Voh, 02) J exp [ho/(kT)] —1 
0 

9D 

) (kT)* | S di (46.46) 
e-—1' 

4nL? 1 " 2 

(2nh)° 2 3 
Ulong Vir 

The integral contained in this expression can be evaluated 
by the methods of complex variable functions. It is given by 

E dE nt 
e—1 15' 

0 

Formula (46.46) can be used for calculating the heat 
capacity 

oU 
-[-—— Te: 46.4 Cy ( T ), oc (46.47) 

Such a temperature dependence of heat capacity in the 
vicinity of 0 K is confirmed by experiments. 
DEBYE TEMPERATURE. Strictly speaking, all the above 

calculations and, in particular, the derivation of the 

dispersion relation, are valid only for waves with sufficiently 
large wavelengths. Consequently, formula (46.45) obtained on 
the basis of the dispersion relation is also valid only for such 
waves, i.e. for not very high frequencies. However, the 
remarks about the contribution of short waves to heat 
capacity, made above in connection with formula (46.45), 
imply that we shall not make a serious mistake if we apply 
this formula to high frequencies also, up to the maximum fre- 
quency Omas defined in such a way that the total number of 
modes in this case is equal to the actually available number 
3Na of modes. Therefore we have 

Omax 

3Na= [ p(e)do. (46.48) 
0 

The maximum frequency @,,,, depends on the elastic 
properties of the material. Generally, this frequency can be 
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different for different directions of polarization. For the sake 
of simplicity, however, a certain average maximum frequency 
is used in formula (46.48). Substituting (46.45) into (46.48) and 
integrating, we obtain 

3NA 
ES 13 46.49 

where <v> is the mean velocity of sound determined by the 
relation 

1/ting + 2/03 = 3NF. (46.50) 
The maximum frequency determined in accordance with 

condition (46.48) is usually expressed in terms of the Debye 
temperature Op obtained from the relation 

kOp= he (46.51) 

Normally, the Debye temperature lies between 100 and 

1000 K. For example, it is about 340 K for copper, while for 
diamond it is about 2000 K. 

HEAT CAPACITY AT AN ARBITRARY TEMPERATURE. 

While calculating the energy U in (46.46), we did not take 
into account the presence of the maximum frequency @,,,, 
defined by formula (46.48). Taking this frequency into 
consideration, we must bound the integral by the frequency 
O4," Then instead of formula (46.46), we get 

E 12r Omax odo 

TKP (COA $ exp[ho/(kT)]—1" 
(46.52) 

where (v5 is defined by relation (46.50). Going over to the 
dimensionless quantity 

& = ho/(kT) (46.53) 

upon integration and taking into account (46.49) and (46.51), 
we obtain 

@p/T 
E T 3 E*d& 

Differentiating this equation with respect to T, we can find 
the heat capacity Cy. For T«x@p the upper integration limit 
can be extended to oo which gives (46.47). 

For T>Q@p the upper integration limit is close to zero. 
Hence € in the integrand is a very small quantity and we can 
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Fig. 121. The universal curve for 
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assume that exp ë = 1 +ë. Hence formula (46.54) becomes 

3 p/T 3g 
U= wars f S d$ — 3NAkT- 3RT. (46.55) 

D 0 

Consequently, the heat capacity in this case is given by 

Cy- (CU/OT)y — 3R, (46.56) 

ie. it obeys the Dulong and Petit law, as expected. 
For T~@p, the integral in (46.54) cannot be taken 

analytically and we must use numerical methods. The Debye 
temperature Op takes into account the properties of various 
materials. Therefore, the curve describing the heat capacity as 
a function of the ratio T/@p is universal. It is shown in 
Fig. 121 and is in excellent agreement with the experimental 
results shown qualitatively in the form of the curve in 
Fig. 118. 
DERIVATION OF THE FORMULA FOR HEAT CAPACITY 

ON THE BASIS OF THE PHONON CONCEPTS. In order to 

get acquainted with the concept of quasiparticles, it is useful 
to derive the formula for the heat capacity of a solid on the 
basis of the phonon concept. 

As was remarked in connection with formula (46.13), the 

vibrational mode corresponding to the energy hw can be 
considered a quasiparticle. With this approach, the thermal 
vibrations of a lattice are reduced to an aggregate of phonons 
treated as an ideal gas. 

According to (46.13), the phonon energy is equal to 

e= ho, (46.57) 

and its momentum p is connected with the wave number 
k through the conventional relation for free particles: 

p=hk. (46.58) 

The energy and momentum of a phonon are connected 
through relation (46.35) which, taking into account (46.57) 
and (46.58), can be written in the form 

€ — (Dp, (46.59) 

where several phonon polarizations are taken into 
consideration, and their average velocity is represented in 
accordance with (46.50). 

The density of states for a gas consisting of phonons as 
quasiparticles is given by formula (8.4) in the form 

dr = p (e)de = 3V4np?dp/Qmnhy . (46.60) 
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The factor 3 takes into account the three possible 
polarizations of phonons. Using (46.58), we obtain the 
following expression from (46.60): 

ABE l e 46.61 

"Qn KO = p (£) 

In further calculations, it is convenient to express p (e) not 
through the velocity <v> of sound but in terms of the Debye 
temperature by using the condition that the total number of 
phonons must be equal to 

kOp 
3NA-— f p(e)de. (46.62) 

0 

Then 

p(s) = 9N £^ (kOpy^. (46.63) 

Phonons are particles obeying the Bose-Einstein statistics, 
and hence the average number <n> of phonons having the 
energy € is given by formula (28.2) which has the following 
form in the case under consideration: 

<n (£) = (exp [g/KkT)] — 1) ̂! . (46.64) 

Thus, we obtain the following expression for the total 
energy of phonons in a body: 

kOp 
rid i 

e = Ed .S$ d$ U= j spe) ente de = 9N kT ) o exp&—1’ Op 

(46.65) 
which, as should be expected, coincides with formula (46.54). 

The above derivation shows that the concept of 
quasiparticles (phonons in our case) makes it possible to use 
the concepts and mathematical methods elaborated for real 
particles. However, this does not imply that quasiparticles 
exist in the same sense as real particles do. For example, in 
the derivation of the formula for the heat capacity presented 
above, we treat a phonon in the same way as a photon while 
deriving the formula for black-body radiation in Sec. 28. 
Nevertheless, a phonon cannot be called an elementary 
particle in the same sense as a photon which is one of the 
basic elementary particles in physics. 
HEAT CAPACITY OF METALS. In this case, the heat 

capacity due to thermal lattice vibrations is supplemented 
with the heat capacity of free electrons in a metal (see 
(27.21). At normal temperatures, it constitutes a negligible 
part of the lattice heat capacity and need not be taken into 
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account. As the temperature decreases, however, the lattice 
heat capacity decreases in proportion to T°, while the 
electron heat capacity decreases in proportion to T. There- 
fore, the role of the electron heat capacity increases, and 
dominates over the lattice heat capacity at a sufficiently low 
temperature. 

Example 46.1. Using the classical law of equipartition of 
energy, calculate the specific heat capacities for KCl and 
NaCl. 

Since the mean kinetic energy of vibrations of an oscillator 
is equal to the mean potential energy, the mean energy per 
vibrating molecule is <¢> = 3kT. The number of moles in 1 kg 
of mass is equal to 1/M, where M is the molar mass. 
Consequently, 1 kg of mass contains n — NA/M molecules, 
and the specific heat capacity is equal to 

c - Q(6kTNA/M)/OT— 6kNA/M — 6R/M. 

Since Mga = 0.07456 kg/mole, and My"; — 0.05845 kg/mole, 
we find 

ckci — 6:8.31/0.7456 J/(kg- K); 
Cnacl = 6-8.31/0.05845 J/(kg: K). 

Example 46.2. Investigate the heat capacity of solids under 
the assumption that phonons are fermions and consequently 
obey the Fermi-Dirac rather than the Bose-Einstein statistics. 
Assume that in all other respects their properties remain the 
same. 

Obviously, all the calculations that led to formula (46.65) 
remain unchanged, and only expression (46.64) for the 
average number of particles must be replaced by an 
expression corresponding to the Fermi-Dirac statistics. In 
other words, the minus sign in the denominator must be 
replaced by plus. As a result, we obtain the following 
expression for the total energy instead of formula (46.65): 

T 3 9p/T EdE 
U 2 9NAkTI| —— = 46.66 

5 (az) f expe + 1 ( ) 

The difference in the behaviour of heat capacity (see 
(46.66) in comparison with (46.65) boils down to the 
following. At a very high temperature, the upper limit is low, 
and we can put exp §~1+6 in the integrand. In this case 
the heat capacity in (46.65) is constant. The heat capacity at 
high temperatures calculated from formula (46.66) tends to 
zero for fermions. As regards the heat capacity at low 
temperatures, it varies in proportion to T°. 
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Sec. 47. CRYSTALLIZATION AND MELTING 

The physical processes of melt- 
ing, crystallization, and subli- 
mation are considered. Ano- 
malous substances are defined. 
General comparative characte- 
ristics of the first- and second- 
order phase transitions are 
given. 

DEFINITION. Experience shows that as the temperature is 
lowered at a sufficiently low pressure, all substances except 
liquid helium become solids, i.e. crystallize. At a pressure 
below 3 MPa, liquid He II remains liquid down to the 
temperature of 0 K. Only under a pressure above 3 MPa can 
it be solidified at a sufficiently low temperature. Such 
a behaviour of liquid helium is due to quantum-mechanical 
effects. 

Under high pressures, a decrease in temperature for most 
of substances also leads to solidification. Exception to this 
rule is a number of anomalous substances that remain liquid 
at very high pressures down to the temperature 0 K. 
Anomalous substances are those whose density decreases 
during a transition from liquid to solid state, provided that 
this property is preserved up to very high pressures and low 
temperatures. The melting point of these substances decreases 
with increasing pressure. For example, water is an anomalous 
substance at about O0^C and under nearly atmospheric 
pressure, since the density of ice is lower than that of water. 
However, as the pressure increases, ice is converted into other 

modifications for which anomaly does not exist. Therefore, 

under very high pressure and at a corresponding temperature 
water exists in the solid state in the form of ice. Anomalous 
substances that remain liquids under a sufficiently high 
pressure down to very low temperatures include, for example, 
bismuth and antimony. 

A transition from liquid to solid state occurs at certain 
temperature and pressure. This process is called 
crystallization. The reverse process is called melting (fusion). 
During melting, heat must be supplied to a substance to 
convert it from solid to liquid state at a constant 
temperature. This amount of heat is called the latent heat of 
fusion. During crystallization, heat of crystallization is 
liberated. The situation in this case is quite similar to that 
considered in Sec. 30 in the analysis of phase transition 
between gaseous and liquid states. Just like the transitions 
considered there, crystallization and melting are first-order 
phase transitions. 

The latent heat of fusion divided by. the mass of 
a substance is known as the specific latent heat of fusion 
(Table 6). The specific latent heat of fusion is the amount of 
heat required to convert 1 kg of a substance from solid to 
liquid state at the melting temperature, this temperature 
being constant. 
CRYSTALLIZATION AND SUBLIMATION. Under suf- 
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Table 6 
Melting Point and Specific Latent Heat of Fusion for Some 
Substances 

Substance Lo e l, kJ/kg 

Aluminium 660.1 397.1 
Benzene 5.53 128.1 
Copper 1083 205 
Glycerol 18.4 201.1 
Gold 1063 65.7 
Hydrogen — 259.2 58.6 
Iron (pure) 1535 2114 
Mercury — 38.87 11.8 
Silver 960.8 104.5 
Water 0.0 333.7 
Zinc 419.5 111 

ficiently low pressures, a transition to the solid state occurs 
directly from the gaseous state by-passing the liquid phase, 
and vice versa, when solid is heated under a certain pressure, 
it does not melt passing to the liquid state but directly goes 
over to the gaseous state, or sublimates. Crystallization from 

the gaseous state and sublimation also occur at a certain 
temperature and pressure and are accompanied by the 
absorption or liberation of the latent heat. Consequently, 
they are also first-order phase transitions. 

PHASE DIAGRAMS. The relation between pressure and 
temperature for a first-order phase transition is given by the 
Clausius-Clapeyron formula (31.4): 

dp | L 

dT T(W-WVW) 

In the case of liquid-solid and gas-solid transitions, Lis the 

latent heat of crystallization (from the liquid or gaseous 
state), V, is the specific volume of a substance in the solid 

state, and V, is the specific volume of the substance in the 

liquid state for the liquid-solid transition or in the gaseous 
state for the gas-solid transition. 

For most of substances, the specific volume decreases upon 

a transition to the solid state, i.e. the density increases. 
Therefore V, > V, for these substances, and hence dp/dT> 0, 

i.e. the pressure p under which a phase transition occurs 
increases with temperature. 

Thus, the gas-liquid phase diagram (see Fig. 70) can now 
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P be supplemented by  liquid-solid and  gas-solid phase 
Ba diagrams. As a result, we get the gas-liquid-solid phase 

diagram (Fig. 122). 
Point A is a triple point: it corresponds to the equilibrium 

p, between three phases, viz. gas, liquid, and solid. This is in 

complete agreement with the phase rule (see Sec. 41). The 
pressure and temperature corresponding to the triple point 

T, Tr are denoted by py and Tr. The curve OA is the sublimation 
curve: under appropriate pressure and temperature, the 

Fig. 122. Gas-liquid-solid ^ phase — gas-solid transition occurs without passing through the liquid 
diagram for a normal substance state. Above the triple point pr but below the critical pressure 

Pa a transition from the gaseous to the solid state may occur 
only through the liquid phase. 

The curve AC corresponds to the liquid-gas transitions. It 
starts at the triple point A and terminates at the point 
C denoting the critical state. Above the critical temperature, 
the difference between the liquid and the gas disappears. 

The curve AB characterizes the liquid-solid transition. It 
does not have a terminal point but continues upwards to 
infinity (see Fig. 122, arrow in the upper part of the curve). 
This is due to the fact that the liquid state differs from the 
crystalline state in structure, and in no case the crystalline 

Fig. 23. Gas-liquid-solid phase Structure may become structureless by definition. And it just 
diagram for an anomalous substance Means that the curve corresponding to the liquid-solid 

-transition does not have a terminal point. 
The pressure and temperature corresponding to the triple 

point for water are respectively equal to p; — 6 Pa and Tr = 
=0.01°C. Consequently, under normal conditions and 
atmospheric pressure the sublimation and equilibrium of all 
phases for water cannot be observed at the triple point. For 
carbon dioxide, pp = 5.16 x 10° Pa and 7; = — 56.65°C, and 
hence normal conditions are below the pressure 
corresponding to the triple point. This means that solid 
carbon dioxide sublimates to. the gaseous state under 

! atmospheric pressure, by-passing the liquid phase. This 
makes it a convenient coolant (“dry ice”). 
ANOMALOUS SUBSTANCES. For these substances V, > Vj, 

0 T 

Crystallization from the gase- 
ous state and sublimation are 
also first-order phase and hence dp/dT « 0. Their typical phase diagram has the 
transitions. They occur at form shown in Fig. 123. The AB curve corresponding to the 
a pressure below the triple liquid-solid transition in this case is directed as shown in the 
point. figure. This means that the melting point for such materials 

decreases with increasing pressure, and hence under 
substances decreases upon a sufficiently high pressure they can remain liquid down to 

a transition to the solid very low temperatures. 
state. Melting point for such PHASE SURFACES IN THE p, V, T COORDINATES. Each 
substances decreases with substance in the gaseous, liquid and solid states is 
increasing pressure. characterized by a certain relation between the pressure p, 

The density of anomalous 



Fig. 124. The typical form of phase 
surfaces of normal substances in the 
p, V, T coordinates 

Fig. 125. The typical form of phase 
surfaces of anomalous substances in 
the p, V, T coordinates 

A second-order phase 
transition occurs simultane- 
ously in the entire volume 
which does not change. 
Latent heat of transition in 
this case is absent. There is 
no spatial phase separation 
and phases do not coexist in 
equilibrium. 
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volume V, and temperature T. If we fix one of these 

parameters, the relation between the other two can be 

depicted as a curve. This method of analyzing the 
dependences between the parameters was used for 
investigating different states of aggregation of a substance. In 
the general case, the equation of state of a substance has the 

form 

Q (p, V, T) —- 0, (47.1) 

the function ® depending on the material and being, 
generally speaking, a complex function. If we plot along the 
axes of the three-dimensional Cartesian coordinates the 
values of p, V, and T, Eq. (47.1) will be depicted by a certain 
surface in space. Therefore we can say that the equation of 
state of a substance is represented by a surface in the p, V, 
T space. 

Although the shape of this surface depends on the 
properties of a specific substance, the general typical features 
of these surfaces for different classes of materials are the 
same. Figure 124 shows the typical shape of surfaces for 
materials whose specific volume decreases upon solidification, 

while Fig. 125 represents the shape of surfaces for anomalous 
substances for which the specific volume increases upon 
solidification. The letters G, L, and S denote the regions of 

the surfaces corresponding to the gaseous, liquid, and solid 
state, while the regions S-G, L-G, and S-L of the surfaces 

correspond to two-phase states solid-gas, liquid-gas, and 
solid-liquid respectively. The lines on a surface separate the 
regions corresponding to different phases. 

The isotherms, isobars, and isochores are obtained as the 

points of intersection of the pV T-surface with the planes T— 
= const, p = const, and V= const respectively. For example, 

the points of the region L-G (Fig. 124) are depicted by 
the points on the horizontal lines (see Fig. 66). 

Phase diagrams can be obtained by projecting the 
interfaces onto the coordinate planes. For example, by 
projecting the interfaces between the phases of the surface 
(Fig. 124) onto the coordinate plane p, T, we obtain the 
phase diagram shown in Fig. 122. The line OA in Fig. 122 
corresponds to the projection of the S-G surface onto the 
coordinate plane p, T. The AC line in Fig. 122 is obtained as 
a result of projecting the L-G surface onto the coordinate 
plane p, T. Finally, the AB line is the projection of the S-L 
surface onto the same coordinate plane. Phase diagrams in 
other variables are obtained similarly. 

Thus, the pV surfaces contain the most complete 
information about the states of a substance and about 
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Fig. 126. Phase diagram of helium 
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Fig. 127. Temperature dependence 
of the heat capacity in the vicinity of 
the A-transition 
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possible ways of transition. from one state to another. 
However, they are not convenient to use because of purely 
technical difficulties of constructing — three-dimensional 
surfaces on two-dimensional diagrams. Two-dimensional 
diagrams, in which the most important dependences for 
a phenomenon under investigation are retained, are simpler 
and more convenient to use. This approach was adopted for 
analyzing most of the problems in this book. In order to 
employ a pV T-surface directly, it is expedient to construct its 
three-dimensional model. This is precisely what is done 
in scientific investigations of states of aggregation of mat- 
ter. 

LIQUID HELIUM. Helium occupies a special place among 
other substances since it remains in the liquid state under 
a pressure below 3 MPa at a temperature infinitely close 
to OK. The phase diagram of helium is shown in 
Fig. 126. 

The temperature corresponding to the triple point A lies 
near 2 K, and the pressure is very low. At a temperature 
below the triple point, He I does not go over to the solid 
state as it should be expected. Instead, the phase transition 
known as the A-transition takes place. This transition occurs 
along the AB line. In this transition, helium remains liquid 
and latent heat is absent. Consequently, it is not a first-order 
phase transition. It is called À-transition due to the behaviour 
of the heat capacity, since the curve describing the heat 
capacity in the vicinity of the temperature T, resemble the 
Greek letter 4 (Fig. 127). At the temperature corresponding to 
the A-transition, the heat capacity tends to infinity. 

He II is a colourless transparent liquid that does not differ 
from He I in appearance. The densities of these liquids are 
equal but they differ significantly in their properties. 
When vapour is pumped from the volume occupied by 

liquid helium, He I intensely boils over the entire volume as 
the boiling point is attained, while He II does not form 
bubbles in the liquid, and vaporization of liquid occurs at the 
interface between the liquid and its vapour. This is 
a consequence of superthermoconductivity of He II, owing to 
which the bubbles of superheated vapour are not formed 
inside the liquid as in an ordinary case. 

The most important property of He II is its superfluidity, 
i.e. its ability to flow through narrow holes without friction. 
Figure 128 schematically illustrates the physical meaning of 
this phenomenon. For ordinary liquids, the pressure 
registered by manometer 2 is lower than the one measured by 
manometer J since in the direction of the liquid flow the 
pressure drops due to friction between the layers of liquid 



Fig. 128. Helium II flows through 
capillaries without friction 
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and between the liquid and the vessel walls. In He II this 
friction is absent completely, and the readings of the 
manometers / and 2 are identical (provided that the 
cross-sectional areas of the pipes and the velocity v of the 
liquid in the regions of measurements are the same). 

Such a simple picture of the flow of He II is incomplete 
and hence not quite correct. Let us move a certain body in 
He II with a velocity v. Helium II exerts a resistive force Fj, 
on the moving body (Fig. 129), which is in contradiction to 
the conclusion drawn from the previous experiment about the 
absence of forces of friction between a moving liquid and the 
vessel walls. This discrepancy can be explained as follows. 
Liquid helium consists of two components, normal and 
superfluid, which penetrate one another. In a flow through 
a capillary (see Fig. 128), the normal component is at rest 
with respect to the vessel walls, while the superfluid 
component moves without friction relative to the walls and 
to the normal component. In the second experiment 
(Fig. 129), the body moves relative to the normal as well as 

superfluid components. The force of friction directed opposite 
to the velocity appears due to the motion relative to the 
normal component. Thus, a two-liquid model of He II 
completely explains both experiments which at first sight are 
in contradiction. 

The total density of the liquid is equal to the sum of the 
densities of the normal and superfluid components: 

P= Pa + Po (47.2) 

The total density is virtually independent of temperature, 
but its distribution between the normal and superfluid 
components strongly depends on temperature. As a result, 
only the superfluid component exists at 0 K and only the 
normal component at the temperature of the A-transition. 

Superfluidity of He II is manifested only at sufficiently low 
velocities of flow. There always exists a certain critical 
velocity of flow above which superfluidity disappears. 

The temperature dependence of the ratio of the densities of 



Fig. 129. Helium If exerts resis- 
tance to a body moving in it 

(a) 

Fig. 130. The fountain effect in 
Hell (a); superfluid gyroscope (b) 
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the normal and superfluid components introduces an 
interesting effect often called the fountain effect. Two vessels 
(Fig. 130a) are connected by a capillary tube filled with 
a porous material through which the normal component of 
He II does not penetrate and the superfluid component does. 
If we raise the temperature in one of the arms, the level of 
liquid in it will rise. If the vessels are thermally insulated 
from one another in a proper way, the equilibrium state with 
different levels of liquid and different temperatures is 
maintained for a sufficiently long time. A situation resembling 
osmosis arises, when the pressure of one of the components is 
balanced through a semipermeable membrane, while the 
pressure of the component that does not penetrate the 
membrane is balanced by the membrane itself. It should be 
noted that the superfluid component ceases to be super- 
thermoconductive if the normal component cannot move. 

Another important effect associated with the superfluidity 
of Hell is the superfluid gyroscope. A ring-shaped vessel 
(Fig. 130b) is filled with liquid Hell and rotated about its 
axis. Then the rotating fluid is cooled to below the lambda 
point, as a result of which the vessel becomes filled with Hell 

rotating with it. After this the rotation is discontinued. 
However, the superfluid component of Hell continues to 
move. This motion is manifested as a gyroscopic effect. It is 
undamped and may last indefinitely long. The angular 
momentum Locp,<v>, where <v> is the average velocity of 
the superfluid component rotating inside the vessel. 
Experiments show that L varies with temperature, this 
dependence being the same as the temperature dependence of 
p, This means that it is not the angular momentum of the 
rotating superfluid component which is conserved but rather 
its velocity. This cannot be explained simply by the absence 
of friction. 

Helium II is a wetting liquid for all other materials. This is 
due to the fact that the forces of interaction between helium 
atoms are weaker than the forces of interaction between he- 
lium atoms and any other atoms. For this reason, the level of 
helium rises near the vessel walls, and helium flows out of the 
vessel. 

The peculiar behaviour of Hell is theoretically explained 
by considering the condensation of an ideal gas obeying the 
Bose-Einstein statistics. However, we shall not describe the 
details of this explanation in this book. 
POLYMORPHISM. Solid materials may generally have 

various crystalline modifications differing in the structure of 
the crystal lattice. For example, carbon may exist in the form 
of graphite or in the form of diamond. Several modifications 
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of ice are known to exist. Sulphur has two modifications, and 
so on. This phenomenon is called polymorphism. A transition 
of a solid from one crystallline modification to another is 
called a polymorphic transformation. In this case, the crystal 
lattice undergoes reconstruction. 

Each modification exists in a stable form in a certain 
region of temperature and pressure. The simultaneous 
existence of two modifications (see Sec. 41) is possible only 
for a certain relation between the temperature and pressure, 
i.e. modifications are separated by the lines on the p-T phase 
diagram. 

The phase rule implies that three modifications can be in 
equilibrium only at a single point (p, T), viz. at the triple 
point. This means that only three lines separating different 
modifications can meet at one point on the p-T phase 
diagram. 

Figure 131a shows the phase diagram for sulphur. Sulphur 
has two modifications in the solid state, viz. monoclinic and 

rhombic, Figure 131b represents the phase diagram for 
carbon that has two equally stable modifications: graphite 
(II) at pressures below 1.5 GPa and diamond (I) at higher 
pressures. However, diamond may also exist at a not very 
high pressure. In this case its state is metastable. This is a 
highly stable state. Diamond can exist in it for a sufficiently 
long time, and is transformed into graphite only when heated 
to 1000 K. 

Similarly, when the temperature and pressure of graphite 
are raised to the values corresponding to a stable state for 
diamond, it remains as graphite and “is in no hurry” to be 
converted into diamond. Its state is also metastable and is 
sufficiently stable. Conversion of graphite into diamond 
required considerable efforts on the part of scientists and 
engineers and is at present widely used in industry for the 
production of artificial diamonds. 

Polymorphic transformations are phase transitions. They 
are accompanied by the liberation or absorption of the latent 
heat of transition, which is associated with a reconstruction 
of the crystal lattice. 

FIRST- AND SECOND-ORDER PHASE TRANSITIONS. The 

transitions between the liquid and gaseous states (see Sec. 30) 
were termed first-order phase transitions. The liquid-solid 
transition considered above is also a first-order phase 
transition. 

The equation connecting the pressure and temperature at 
which a first-order phase transition occurs was derived in 
Sec. 31. 

While considering helium, we came across another type of 
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phase transition, viz. the lambda transition or the 
second-order phase transition, as it is more frequently called. 

The distinctive feature of first-order phase transitions is an 
abrupt change in the specific internal energy and related 
quantities at the transition point, and hence the existence of 
a latent heat. The transition occurs at a certain temperature 
and pressure, and the two phases coexist in the volume and 

are spatially separated during the transition. 
Second-order phase transitions occur simultaneously in the 

entire volume and are always associated with a change in the 
system symmetry. The temperature at which such a transition 
occurs is called the Curie point. Since the transition occurs in 
the entire volume at once, there is no separation of phases in 
space, and they are not in equilibrium with each other. 
Therefore, there is no abrupt change in the internal energy, 
since otherwise the phase transition in the entire volume 
simultaneously would be simply impossiblé due to the law of 
conservation of energy. 

This means that a second-order phase transition is not 
accompanied by a liberation or absorption of the heat of 
phase transition. In such transitions the volume does not 
change, but the heat capacity changes due to a change 
in the system symmetry. This means that the derivative 
6C,/éT changes abruptly, as well as the coefficient of 
volume expansion (1/V)(6V/éT), although, as was mentioned 
above, the volume itself is constant. 
When we speak about a change in the system symmetry, 

we do not necessarily mean the crystal symmetry. For 
example, a transition from the ferromagnetic to the 
paramagnetic state is not accompanied by a transformation 
of the crystal structure but is associated with the 
reorientation of elementary magnetic moments in a body. 
Transitions of metals to the superconducting state as well as 
the transition of He I into He II are also second-order phase 
transitions. 

At the present time the theory of second-order phase 
transitions is being intensely developed. However, there are 
many questions that require further investigations. 

Example 47.1. The molar change in entropy during fusion 
is known. Find the change in the melting point upon a 
change Ap in the external pressure. Specific volumes of liquid 
and solid phases are known, but the specific heat of fusion is 
not given. 

From the Clausius-Clapeyron equation, we find 

AT-— ApT(V, — Vj/L, 
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where Lis connected with the change AS in entropy through 
the relation AS — L/T (all quantities correspond to a mole). 
Then we have 

AT- Ap(V, — V9/AS. 

Sec. 48. ALLOYS AND SOLID SOLUTIONS 

The definitions of alloys and 
solid solutions are given. Spe- 
cific features of crystallization 
of liquid solutions having a 
eutectic and noneutectic com- 
positions are compared. Classi- 
fication of solid solutions is 
described. 

DEFINITION. Ás a liquid solution is cooled to a certain 
temperature, crystallization begins. The properties of the solid 
phase being formed depend on the composition of the 
solution and may be different. Let us consider 
two-component substances. 

It may happen that a solid phase formed as a result of 
crystallization consists of a mixture of the crystals of the 
substance components. Such a phase is called an alloy. 
Sometimes , a solid phase formed as a result of 

crystallization consists of crystals of atoms of both the 
components. Such a phase is called a solid solution. 

ALLOYS. Crystallization in alloys depends on the 
percentage of the components in a liquid solution. Generally, 
at a certain temperature the crystallization of one of the 
components begins. The components crystallize simultane- 
ously only for a quite definite composition of the solution. 
Such a composition of the liquid solution is called eutectic, 
and the alloy formed as a result of crystallization is called the 
eutectic alloy, or simply eutectic. 

The phase diagram for such an alloy has the form shown 
in Fig. 132. The eutectic composition is characterized by the 
abscissa of the point E. When a liquid solution of such 
a composition is cooled, the crystals of the two components 
simultaneously precipitate from the solution at a temperature 
T, and the entire process of crystallization is completed at the 
same temperature. The eutectic alloy formed is a mixture of 
crystals of the two components. When such an alloy is 
melted, all the processes occur in the reverse direction. 

If the composition of a liquid solution differs from the 
eutectic, crystallization occurs in a different way. For example 
if (Fig. 132) a liquid solution is enriched in component 
B compared to the eutectic composition, and if its 
composition corresponds to the point C, crystallization starts 
at a temperature 7,, but only the crystals of substance 
B precipitate from the solution. As a result, the liquid 
solution changes its composition and becomes enriched in 
substance A. This means that its composition becomes closer 
to eutectic, and the crystallization temperature .decreases. 
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a binary alloy 
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This leads to a change in the crystallization conditions along 
the CE line. As the point E is reached crystallization occurs 
at the constant temperature 7, like the crystallization of the 
eutectic liquid solution. Thus, in liquid solutions having 
a noneutectic composition, crystallization occurs not at 
a constant temperature but over a certain temperature 
interval. The solid phase formed as a result of crystallization 
consists of large crystals of the component whose content in 
the solution was higher in comparison with the eutectic 
composition. The crystals of the other component are smaller 
and are impregnated between large crystals of the first 
component. There is no need to repeat this reasoning for the 
case when the initial solution is enriched in component 
A instead of component B. In this case the process is similar, 
the only difference being that the components exchange their 
roles during crystallization. 

Four separate regions are shown in the phase diagram. The 
TEF line separates the liquid state lying above from the 
two-phase state when both liquid and solid phases are 
present. There is a region of two-phase states below the TE 
line (liquid solution and solid phase) corresponding to the 
case when the content of the component B is higher than in 
the eutectic solution, while the states below the EF line 

correspond to a predominance of component A in the system. 
The horizontal line 7,G separates two-phase states from solid 
states lying below this line. 

By way of an example of thoroughly investigated alloys we 
can consider lead-antimony alloy. The melting points for 
these metals are 605 and 903 K respectively. The eutectic 
composition corresponds to 867; lead and 147; antimony, the 
eutectic melting point being 513 K. 

SOLID SOLUTIONS. Solid solutions are divided into 
substitutional, interstitial, and subtractive. In substitutional 
solid solutions a part of atoms in the crystal lattice of one of 
the components is substituted by atoms of the other 
component. In interstitial solid solutions, atoms of one of the 
components are implanted between the lattice sites of the 
other component. Subtractive solid solutions involve the 
implantation or substitution of atoms of one component by 
the other component atoms. In addition the lattice of this 
other component is retained, although with empty lattice 
sites. 

In the simplest case, the phase diagram of solid solutions 
(Fig. 133) is similar to the phase diagram of liquid solutions 
(see Fig. 95), the only difference being that the liquid phase 
(Fig. 133) replaces the gaseous phase (see Fig. 95), while the 
solid phase (Fig. 133) replaces the liquid phase (see Fig. 95). 



Sec. 49. POLYMERS 

General properties of macro- 
molecules and crystalline struc- 
tures of polymers are described. 
The shape of macromolecular 
crystals and their defects are 

discussed. 
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All that was said in Sec. 38 in connection with Fig. 95 could 
be repeated if we replaced a gas by a liquid, a liquid by 
a solid, and boiling by melting. There is no need to do this 
here. We recommend the reader to analyze the processes of 
formation of solid solutions on the phase diagram in Fig. 133 
as an exercise. 

As in the case of liquid solutions, more complex situations 

arise for solid solutions like that shown in Fig. 96. Their 
analysis is rather cumbersome and does not add anything 
new in principle. Hence, as in the case of liquid solutions, we 
shall not consider all such possible situations here. 

INTRODUCTION. In everyday life, solid materials considered 
in this chapter constitute only a fraction of solid bodies. For 
example, plant and animal tissues (wood, leather, wool, linen, 
cotton, etc.), cellulose, glass fibre, rubber, commercial plastics, 
and many other materials used in everyday life do not belong 
to the group of solids considered above. These materials also 
do not include proteins and nucleic acids which play 
a decisive role in the formation and functioning of living 
organisms. They constitute a large and important class of 
substances called polymers. For a long time, polymers were 
and remain a subject of physical chemistry, investigations in 
this field are carried out mainly by chemists since the basic 
practical problem is the production of new polymeric 
materials with required properties, realized by chemical 
methods. These investigations are continuously broadened, 

and the role of polymeric materials is becoming more and 
more important. The number of physicists engaged in 
polymer studies is continuously on the rise. A large number 
of monographs are devoted to this subject and polymer 
physics is becoming a subject not only of chemistry but also 
physics at the universities. For this reason, some attention 
will be paid in this book to polymers. 
MACROMOLECULES. The molecules of materials con- 

ventionally studied in physics consist of a small number of 
atoms, and their relative molecular mass is usually equal to 
several tens or at the most a few hundred. For example, 

a molecule of common salt NaCl consists of only two atoms, 
and its relative molecular mass is equal to 58. Its crystal 
lattice with sodium and chlorine atoms at the sites is 
extremely simple. 

However, many molecules have a more complicated 
composition. The number of atoms constituting a molecule 
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can be equal to several thousand, and the molecular mass 
can amount to tens and hundreds of thousands. Such 
molecules are called macromolecules. The transition from 
ordinary molecules to macromolecules is continuous, so we 
must stipulate as to which molecules will be called 
macromolecules. Usually, it is assumed that a macromolecule 
must have a relative molecular mass not less than 10000, and 

the number of atoms in it must be not less than 1000. Under 
these conditions, the addition of extra repeating links to 

a molecule usually does not lead to a considerable change in 
the physical properties of the material. As an example of one 
of the simplest protein molecules, we can mention the 
ribonuclease molecule. It consists of 124 repeating links 
formed by 17 different aminoacids. Its chemical formula is 
C545H991}0;93N17;51;2 and the relative molecular mass is 
equal to 13682. A polyethylene molecule whose relative 
molecular mass is 280000 has considerably larger dimensions. 
It consists of 20000 links of CH, groups. Polymers are 
substances formed by macromolecules. They constitute the 
last class of materials that can be characterized on molecular 
level. In the limit, a particle of a solid can be formed by one 
molecule, and the division of the substance into molecules 
loses its meaning in this case. 

The existence of macromolecules was unknown for a long 
time. Colloids were known to exist long ago. A colloid is an 
adhesive of gelatin type, having a low diffusion rate and 
incapable of penetrating through membranes. Other 
substances, like common salt, have a high diffusion rate in 
solutions and readily pass through membranes. These 
substances can be obtained as well-shaped crystals. This 
explains the term crystalloids applied to such materials. It 
was later found however, that under certain conditions 

crystalloids can also be transformed into the “colloidal state” 
if their molecules are made to combine as aggregates. There- 
fore the colloidal state can be treated as the result of ag- 
gregation of molecules with a low relative molecular 
mass. 

Solutions of all substances consisting of macromolecules 
possess colloidal properties. For this reason it was 
erroneously considered for a long time that these substances 
are formed by molecules with a small number of atoms, and 
the difference between macromolecular colloids and the 
colloids formed by low-molecular substances was not 
revealed. This difference was established only in 1920's. The 
aggregation of crystalloid molecules leading to the 
appearance of colloidal properties is usually a manifestation 
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of secondary valency, while the atoms in macromolecules are 
linked through covalent bonds. 
CLASSIFICATION OF MACROMOLECULES. A 

macromolecule is formed as a result of multiple repetitions of 
one or several groups of molecules. In the simplest case, these 
repeating groups form a line. Such macromolecules are called 
linear. These lines, however, may have diverse shapes, 
“coiling” of the structure may take place in the motion along 
this line, and so on. Thus, there is a variety of linear 
molecules. 

However, the macromolecules become even more diverse if 

we take into account the fact that besides linear 
macromolecules there also exist branched, ladder, parquet, 

and three-dimensional molecules. All of them consist of 
repeating groups of molecules, and their structure is clearly 
characterized by their names. A repeating group of molecules 
is called the monomer. Usually, a polymer is termed after its 
monomer with the prefix “poly”, like polyethylene. If the 
repeating links. are of the same type, we get homopolymers. 
Different types of links form copolymers. 
FORMATION OF MACROMOLECULES. There is a large 

variety of reactions leading to the formation of 
macromolecules. In the long run, all of them require the 
conditions under which the appropriate groups of atoms are 
formed and are eventually linked into a macromolecule. 
Naturally, this process does not necessarily mean that groups 
of atoms are formed at first and then connected into 
a molecule, it is not necessary that the entire molecule be 
formed simultaneously, etc. For example, when linear high- 
molecular polymers are formed, the most important reactions 
are addition polymerization and step polycondensation. In 
the first case, a molecule as if continuously grows due to the 

addition of new atoms of the required type in an appropriate 
sequence. The molecular growth can be terminated as a result 
of violation of the sequence of addition of atoms: if, for 
example, an atom of different type occupies a certain position 
by chance, it can block the entire process of further growth of 
the molecule. 

In the second case, the process as if occurs stepwise. The 
macromolecule is formed as a result of combination of its 
parts that can be very large themselves and are formed from 
smaller fragments as a result of a similar process. The length 
of a macromolecule formed as a result of such a process is 
a random quantity. The distribution of molecules with 
respect to length depends on the equilibrium constant. The 
shape of molecules, which will be discussed in detail later, is 
also diverse. 
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Macromolecules formed as a result of processes described 
above differ in size, shape, and other properties. They are 
incorporated into one class depending on the common 
monomer forming their basis. However, there is another 
polymerization process leading to the formation of absolutely 
identical macromolecules. This process takes place in 
biosynthesis of macromolecules. The reaction mechanism 
consists in that monomers are attached to a matrix 
containing the complete information about the macro- 
molecular structure, thus constituting the appropriate bonds. 
This leads to the formation of a macromolecule. After this 
the macromolecule is separated from the matrix, and the 
matrix is capable of repeating the polymerization cycle. 
Macromolecules formed as a result of this process are 
identical since the separation of molecules with lower 
molecular mass from the matrix, i.e. before the cycle is 
completed, becomes impossible. 
MACROMOLECULAR CONFORMATION. In physics, the 

shape of macromolecules is called its conformation. In the 
first approximation it is assumed that the shape is the result 
of a random process of addition of consecutive links. The 
problem of determining the shape is reduced to the problem 
of random wandering considered in Sec. 13 in connection 
with the Brownian movement. The only difference is that in 
the case of a macromolecule the spacing is constant and 
equal to the length of the valence bond between consecutive 
links of the macromolecule. In this approximation, the 
macromolecule resembles a broken line (see Fig. 22) with all 
the links of equal lengths. The square of the distance between 
the start and the end is given by formula (3.3) which in the 
present case has the form 

<r2> = ah, (49.1) 

where <r?» is the mean square distance between the start and 
the end of a linear macromolecule containing n links and a? 
is the square of the length of the valence bond between 
consecutive links. Formula (49.1) shows that the linear 
dimensions of a macromolecule increase in proportion to the 
square root of the number of links constituting it. Naturally, 
the random wandering itself occurs in the three-dimensional 
space. 

However, the model of random wandering does not take 
into account some essential features of the addition of 
consecutive links in the formation of a macromolecule. First 
of all, the direction of the bond between atoms is not 

arbitrary. The direction of a bond is characterized by the 
valence angle that has practically a definite magnitude. 
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Consequently, the angles between the directions of 
consecutive links in the model of random wandering are not 
arbitrary. Secondly, the rotation about the direction of 
a bond is hampered, and hence the angle of rotation is also 

not arbitrary. 
These two limitations change formula (49.1). It is clear 

without calculation that when they are taken into account, 

the square of the distance between the ends of 
a macromolecule will increase, i.e. the mean dimension of the 
macromolecule will be greater. 
We must take into consideration one more limitation of 

the model of random wandering. This model implies that 
a wandering point may, in principle, return any number of 
times to the place occupied by it earlier. In the case of 
a macromolecule, an atom cannot occupy the same place 
twice. Hence the volumes occupied by the atoms in the 
process of formation of molecule within the framework of the 
random wandering model must be excluded from 
consideration in the following steps. This problem is very 
complicated from the mathematical point of view. One of the 
ways of its solution is to reduce all possible conformations to 
“rotational” isomeric conformations by means of a transition 
from continuous retarded rotation about the bonds to 
discrete angles of rotation about these bonds. For example, 
a polyethylene molecule whose relative molecular mass is 
280 000 consists of 20000 CH; groups separated by the valence 
bonds between them equal in length to 1.54 x 10^ !? m. 
Thus, the total length along the contour of the molecule is 
3.08 x 10^ * m. This molecule has three possible rotational 
isomeric positions of the atoms. In one of the possible cases, 

the elongated molecule has a plane zigzag conformation with 
constant valence angles between the bonds. The distance 
between the ends of such a molecule is equal to 2.53 x 
x 107° m. It can be seen that macromolecules are indeed very 
large and are several times longer than, for example, the 
wavelength of visible light. Since a polyethylene molecule has 
three possible isomeric positions of its atoms, and since the 
number of links in it is 20000, the total number of rotational 

isomers for such a molecule is 379999, This number is 
extremely large, and hence all possible rotational isomers 
cannot be realized in a molecule. 

There are some other possible ways of isomer formation. 
For example, the same monomer links can be connected in 
different ways resulting in different isomeric conformations 
called position or structural isomers. Thus, homopolymers 
have a large variety of isomeric forms. Their number 
increases even further in the case of copolymers, since in this 
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? 

. What is the structure of linear 
macromolecules? Which factors 
determine the diversity of 
linear macromolecules? 

. Which main types of 
macromolecules, besides linear, 
do you know? What are the 
basic features of their struc- 
ture? 

. What is the basis of 
nomenclature of polymers? 

. What do you know about the 
mechanisms of polymerization 
and step polycondensation? 

. What is normal crystal struc- 
ture for a macromolecule (the 
deviation from which is 
considered a defect)? 

. What are the sources of 
defects in macromolecular 
crystals? Enumerate the most 
important of them. 

5. Solids 

case the links of several types participate in the creation of 
isomeric conformations. Isomers have absolutely different 
properties. 

Therefore, a variety of isomeric forms leads to a variety of 
physical properties of polymers. 
CRYSTALLINE STRUCTURE OF POLYMERS. As in the 

case of ordinary molecules, the system of macromolecules 

constituting a polymer tends to stable equilibrium 
corresponding to the minimum of the free energy 
(see (23.36)). 

The minimum free energy is attained for a certain mutual 
arrangement of atoms constituting the macromolecules. In 
other words, this requirement determines the shape as well as 
the mutual arrangement of macromolecules. Naturally, the 
local conditions ensuring the free energy minimization must 
be repeated. This means that the polymer structure must be 
periodic. Thus the crystalline structure of solid polymers is 
necessitated by the same physical factors as the appearance of 
the crystal lattice in low-molecular solids. 

It follows from theoretical calculations and experimental 
results that the dependence of the free energy of a polymer 
on the shape of macromolecules constituting it is much 
stronger than the dependence on the mutual arrangement of 
macromolecules. The formation of covalent bonds makes the 
major contribution to the potential energy of macromolecular 
crystals. The contribution from the rotation about the bonds 
(rotational isomerism) is smaller. The smallest contribution is 
made by the density of packing. For this reason, it is 
expedient to carry out the analysis of the crystalline structure 
of polymers in two stages. Firstly, we must analyze the stable 
conformation of a macromolecule corresponding to the 
minimum of its free energy, and then consider the mutual 
arrangement of these molecules. In this case, the same tech- 

nique is used as in the analysis of crystalline structures formed 
by ordinary molecules interacting through metallic, ionic, 
and dispersive forces. It should be recalled that since 
metallic, ionic, and dispersive forces do not have a definite 
direction, the calculation of the most stable crystalline struc- 
ture at a sufficiently low temperature is carried out on the 
basis of the principle of the most dense packing of interacting 
particles. The simplest analysis in this case is that of packing 
identical balls, followed by the analysis of packing two types 
of balls with different radii, and so on. The conformations of 

macromolecules whose most dense packing must be 
investigated are much more diverse and complicated. 

One of the possible conformations of a macromolecule is 
an elongated helix. This conformation can be approximated 
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by a straight cylinder with circular cross section. The most 
dense packing of the cylinders corresponds to a spatial struc- 
ture whose cross section coincides with that for the most 
dense packing of identical balls. Another frequently 
encountered macromolecular conformation is a spiral. It can 
be approximated by a screw with a certain thread. In the 
analysis of the most dense packing of screws, we must take 
into account the direction of thread, the nature of 
entanglement between the screws, and other factors. As 
a result, we obtain a crystalline structure with a certain 

symmetry and periodicity. It is important to note that 
generally the unit cell of a structure is not formed by one 
macromolecule. Therefore, the size of a unit cell does not 

coincide with the size of macromolecules, and the same 
macromolecule extends over many unit cells. 
FOLDING OF CHAINS. This is the most important feature 

of the formation of crystals of linear macromolecules. Only in 
extremely rare cases the molecules as a result of 
crystallization have an elongated shape in the crystal. But 
even in these cases they usually acquire this elongated shape 
only in the last stage of crystallization. In the initial stage, 
macromolecular chains are folded. This rule is valid for all 
flexible linear macromolecules crystallizing from the initially 
chaotic state. The folding mode and macroconformation of 
complex chains depend not only on the type of 
macromolecules but also on the crystallization conditions. 
For example, macromolecules may crystallize from solutions 

l with different substances as solvents. In this case, the 
E crystallization temperature is different for different solvents. 
The size of a unit cell does The folding mode considerably depends on the crystallization 
not coincide with the size of temperature, pressure, and a number of other similar fac- 
a macromolecule. A single tors. 

macromolecule may pass Experiments showed that chains mostly fold in such a way 
through many unit cells. that the start and end of a molecular chain are close to one« 
However, there are such 3 

another in the crystal cell. In rare cases the start and end of 
tals wh it cell i ; : 

RIEN by e vclit un a molecular chain belong to different crystal cells. 
usu ed THE SHAPE OF MACROMOLECULAR CRYSTALS. The 

symmetry of a crystalline structure manifests itself in 
The shape of most of a regular shape of the crystals and in the symmetry of their 
macromolecular crystals is far — faces, This is also valid for macromolecular crystals, although 
from perfect. Perfect it is much more difficult to grow sufficiently large and perfect 
macromolecular crystals were crystals of macromolecules in comparison with low-molecular 
obtained only in rare cases. Be p : 
Tiendore in mosi cases compounds. Here, it is important to determine the behaviour 
polymers are partially of long macromolecular chains on the surface of crystals. 
crystalline bodies, i.e. they There are many different kinds of the shape of 

consist of small crystals and macromolecular crystals and the structure of their sur- 
amorphous regions. faces. 
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However, for most of macromolecular crystals their shape 
is far from perfect. Perfect macromolecular crystals could be 
obtained only in a comparatively small number of cases. For 
this reason, polymers are considered to be partially 
crystalline, i.e. they consist of small crystals and amorphous 
regions. 
DEFECTS OF MACROMOLECULAR CRYSTALS. Since the 

shape of most macromolecular crystals is far from perfect, we 
cannot take as a norm an ideal crystalline structure the 
deviation from which is called a defect. Therefore it is 
assumed that the norm is a partially crystalline structure 
characterized by the crystal order parameter. A deviation 
from the normal value of this parameter characterizes the 
defects in a crystal. Further, it is assumed that the small 
crystals contamed in partially crystalline structure must be 
ideal in the norm. Their departure from the ideal shape is 
a defect in the same sense as in the case of low-molecular 
crystals. Finally, the third source of defects in 
a macromolecular crystal is its amorphous part. It is assumed 
that the structure of an ideal melt is the norm of amorphous 
parts, and a deviation from this norm is the defect. Taking 
into account the chain structure of macromolecules, it is 
assumed that the normal structure of the melt corresponds to 
a parallel packing of the chains. Sharp bends of chains are 
treated as defects. 

Calculate the specific heat capacity of Au, Mg, Na, Cu,O, and CaO 
by using the classical law of equipartition of energy. Compare the 
results with experimental values obtained at 20°C: 129.6 J/(kg- K), 
102 kI/(kg.K), 1.2 kJ/(kg-K), 439 J/(kg-K), and 769 J/(kg-K). 
The volume of 1 kmole of iron changes upon melting by 1.03 x 
x 10 7? m?, Find the change in the melting point of iron upon 

a change in its pressure by 105 Pa. 
The entropy of ice changes by 388 J/(K mole) upon melting. Find 
the change in the melting point of ice if the external pressure 
increases by 10° Pa. 
Find the forces that must be applied to the ends of a steel rod of 
1 cm? cross section in order to prevent it from elongating upon 
heating from 0 to 10°C. 
Upon extension of a copper wire with cross-sectional area of 1 mm? 
the residual deformation appears at a load of 29.43 N. Find the 
elastic limit for copper. 
The shear modulus of a material of which a wire is made is 
29.43 GPa, its length is 10 cm, and the radius is 0.1 mm. Find the 
moment of a pair of forces that must be applied to twist the wire by 
10. 



ANSWERS 

8.7. 

5.8. 
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Determine the energy spent for twisting a wire 10cm long and 
having radius of 1 mm through 10’, if the shear modulus of the 
material is 100 GPa. 
The Poisson ratio for copper is 0.34, and the Young modulus is 
22 x 10!! Pa. Find the relative change in the density of a cylindrical 
rod upon its compression under 107 Pa. 

5.1. 125 J/(kg-K); 1.02 kJ/(kg-K); 1.08 kJ/(kg-K); 522 J/(kg- K); 
890 J/(kg-K). 5.2. AT =0.012 K, 5.3. AT =0.009 K. 5.4. 2.35 kN. 
5.5. 294 MPa. 5.6. 136N-m. 5.7. 1.32.1071? J. 5.8. Ap/p= 
- 28-1075. 





Chapter 6 

Transport Processes 

The driving force of transport processes is the tendency of 
a system to attain the equilibrium state. The basic 
characteristic of the process rate is the relaxation time. 

Sec. 50. THE TYPES OF TRANSPORT PROCESSES 

The characteristics of the basic 
types of transport processes 
are given and the concept of 
the relaxation time is intro- 

duced. 

RELAXATION TIME. Earlier in this book we have considered 
systems in equilibrium state. If a system is in a nonequilib- 
rium state, it will gradually go over to the equilibrium state if 
left alone. The time during which the system attains the 
equilibrium state is called the relaxation time. The relaxation 
time is different for different parameters in which the system 
may deviate from the Maxwell equilibrium distribution. The 
time during which the distribution becomes Maxwellian is 
called the time of relaxation to the Maxwell distribution, or 
the thermalization time. 

If we have a mixture of two species of molecules whose 
distribution differs from the Maxwell distribution, both types 
of molecules will attain the Maxwell velocity distribution 
after being left alone although in different intervals of time, 
i.e. their relaxation times are different. If the density 
distribution over the space for a gas is nonuniform, it will 
tend to become uniform. The time during which a uniform 
density is attained is characterized by the relaxation time. 
Naturally, it is not equal to the time of relaxation to the 
Maxwell distribution. Thus, a system deviated from the 
equilibrium position attains equilibrium with different 
relaxation times for different parameters. It is very important 
to estimate the relative values of relaxation times, since the 

processes with the shortest relaxation times bring the system 
to equilibrium with respect to corresponding parameters very 
rapidly, and the analysis can be considerably simplified as the 
system approaches the equilibrium state with respect to the 
remaining parameters. 



394 6. Transport Processes 

THERMAL CONDUCTIVITY. In the equilibrium state, the 
temperature T is the same at all points of a system. If in 
a certain region the temperature deviates from the equilib- 
rium value, heat is transported in the system in such a way as 
to make the temperature of all parts of the system identical. 
The transfer of heat associated with this transport is called 
thermal conductivity. 

DIFFUSION. In an equilibrium state, the density of each of 
the components is the same at all points of the phase. If in 
a certain region the density deviates from the equilibrium 
value, the motion of the components of the substance occurs 

in such a way as to make the density of each of the 
component uniform over the entire volume of the system. 
The mass transport of the components constituting a phase, 
associated with this motion, is called diffusion. 

VISCOSITY. In the equilibrium state, different parts of 
a phase are at rest with respect to each other. During their 
relative motion, factors tending to decrease the relative 
velocity, i.e. drag forces, or viscosity, come into play. In 
gases, the mechanism of these forces is reduced to the ex- 
change of the momentum of ordered motion between 
different gas layers, i.e. to the transfer of the momentum of 
ordered motion. Hence the drag forces in gases and liquids 
are also due to a transport process, viz. the transfer of the 
momentum of the ordered motion of molecules. These three 
processes will be considered in greater detail in the following 
sections. In order to be able to analyze these processes 
quantitatively, we must give quantitative definitions for the 
basic characteristics of molecular motion. 

Sec. 51. KINEMATIC CHARACTERISTICS 
OF MOLECULAR MOTION 

The cross section, collision fre- 
quency, and mean free path 
are considered. The expe- 
rimental determination of the 

collision cross section is 
discussed. 

COLLISION CROSS SECTION. A molecule moving in a gas 
undergoes collisions as a result of which it changes the 
direction of its motion. Collisions may also have other 
consequences. For example, a collision may result in 
ionization. If, for example, we consider the motion of 
a neutron in the space occupied by uranium nuclei, 
a collision between the neutron and a uranium nucleus may 
lead to the capture of the neutron and subsequent fission of 
the uranium nucleus, accompanied by the liberation of 
energy. In a concrete situation, all these possible results of 
collisions can be predicted only with some probability. The 
probability of a collision leading to a concrete result is 
described by using the concept of cross section. 

An incident particle is assumed to be a point particle, while 
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the target particles with which it may collide have such 
spatial dimensions that the maximum area of their cross 
section by a plane normal to the direction of motion of the 
impinging particle is equal to c. This is an imaginary and not 
a geometrical area. It is chosen in such a way that the 
probability of the result of collision under consideration 1s 
equal to the probability that the impinging particle, moving 
in a straight line without interaction, strikes the area o. 

Suppose that an incident particle arrives at the area S of 
the volume occupied by the target particles with 
concentration ng (Fig. 134). In a layer of thickness dx there 

Fig. 134. To the determination of. — are ng S dx target particles, and the sum of their cross sections 
the cross-sectional area which covers a part of the area S is equal to dS — onjSdx. 

Hence it follows that the probability of the incident particle 
striking one of the target particles in the layer dx is 

d? = dS/S = on, dx, (51.1) 

where we use the definition (2.3) of the probability. 
This is the definition of the cross section o of the process 

under consideration. The probability d.) can normally be 
either calculated by taking into account concrete regularities 
of the process or measured experimentally, and the cross 
section is obtained from formula (51.1). 

For example, collisions lead to a process in which an 
incident particle changes the direction of its motion and no 
longer moves in the given direction. In the case of a neutron 
moving in a space containing uranium nuclei, the process 
consists in capturing the neutron by one of the nuclei. In 
both cases, the quantity being calculated or measured is the 
probability of the event during the passage of the particle 
over the distance dx. The quantity calculated by using these 
data is the cross section o which, naturally, can be used in 
further calculations as an initially given quantity. 

MEAN FREE PATH. Obviously, the quantities © and nọ do 
not depend on x. For this reason, the probability of the event 
increases in proportion to the distance covered by an incident 
particle. The length of the path <l> for which this probability 
is equal to unity is called the mean free path. In order to 
determine its value, we obtain from (51.1) the equation 
on <l> =1, which gives 

<I> = 1f(ong). (51.2) 

This is the distance covered on the average by an incident 
particle before the collision. 
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Fig. 135. To the experimental 
determination of the collision cross 
section 

6. Transport Processes 

EXPERIMENTAL DETERMINATION OF THE COLLISION 

CROSS SECTION. Suppose that an incident beam of particles 
propagates along the X-axis (Fig. 135). Particles of the beam 
collide with other particles, change the direction of their 
motion and escape from the beam. Consequently, the density 
I(x) of particles in the beam decreases as it propagates 
through a substance, i.e. with increasing x. Obviously, the 
decrease di in the density of the particle flux upon the 
passage of the layer dx is equal to the number of collisions of 
particles in the beam with the target particles. Since the 
probability of collision of each of the particles is given by 
(51.1), the decrease in the flux density is 1d#. Consequently, 
we obtain the following equation for the density of the 
particle flux in the incident beam: 

dI(x) = —I(x)ongdx. (51.3) 

The minus sign indicates that the density of the particle 
flux decreases with increasing x, i.e. as the beam propagates 
through the substance. Solving (51.3), we find 

I(x) 2 I(0)exp( — onox). (51.4) 

By measuring somehow the flux density of incident 
particles at two distances, for example, for x 20 and for 

some other value of x, we can calculate the cross section: 

| 1 ie I(0) 

uni I(x)” 
(51.5) 

The cross sections of other events can be determined 
experimentally in a similar way. We must only be able to 
calculate the number of events, measure the flux densities of 
interacting particles and the paths covered by the particles in 
the process. Of course, the apparent simplicity of the 
principle of measurements must not produce an illusion that 



Fig. 136. To the calculation of the 
colision cross section for rigid 
spheres 
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physical measurements are very simple. In actual practice, the 
measurement of cross sections is an extremely difficult 
scientific and technical problem. 

COLLISION FREQUENCY. An incident particle moves at 
an average velocity (v» and hence covers the mean free path 
during the time t — (D / (v5. Therefore the average collision 
frequency (the average number of collisions per second) is 
equal to 

v = 1/t = <v> = Sng <V). (51.6) 

COLLISION CROSS SECTION IN THE RIGID SPHERE 

MODEL. While considering collisions between identical 
molecules in gases, the molecules are most frequently treated 
as rigid spheres of a certain radius ry when the cross section 
and quantities related to it can be easily calculated. 

Suppose that target molecules are fixed and an incident 
molecule moves at a velocity <v> (Fig. 136). Obviously, at 
a distance x the incident molecule will collide with all the 
target molecules whose centres lie within a circular cylinder 
with the base of radius 2r, and height x. The mean free path 
is equal to the height of the cylinder containing one target 
molecule on the average. Hence we obtain the following 
equation for determining the mean free path: 

n (2rgY. <D ng = 1, 

from which it follows that 

X» 2 1/(Anring). (51.7) 

According to (51.6) the frequency of collisions between 
molecules is 

Vv = 4nrany <u>. (51.8) 

Actually, the target molecules move in the gas, and 
incident molecules have different velocities, the velocities of 

the target molecules as well as of incident molecules being 
determined by the Maxwell distribution. In order to take into 
account these velocities, we may retain the above reasoning, 
but treat the velocity <v> in (51.8) as the average relative 
velocity of incident molecules. The relative velocity of two 
molecules moving with velocities v, and v, respectively is 

Viel = Y1 — Va- 
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Vrel 

Fig. 137. To the calculation of the 
mean relative velocity 

M 
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Hence, we obtain the following expression for the magnitude 
of the relative velocity: 

ta 7 V1 — V2)? = 1} + v? — 2v.v; cos0, (51.9) 

where 0 is the angle between the velocity vectors V, and V, 
(Fig. 137). 

The average value of the relative velocity must be 
calculated by taking into account the Maxwell distribution 
(8.16). By directing the Z-axis of the spherical system of 
coordinates along the vector V,, we obtain 

2n n © 

Com? = Gop [do J sin dO ff dv, Vave f VDSV) 

= 2 <v) » l/16RT/aM), (51.10) 

where the factor 1/(4n) takes into account the averaging of 
the relative velocity over all possible mutual directions of 
velocities, i.e. over the total solid angle 4m, and <v> is the 
average velocity of molecular motion in the Maxwell 
distribution, given by formula (8.18). 

Thus, taking into account the Maxwell distribution for the 
velocities of colliding molecules, we obtain the following for- 

mulas for the average collision frequency and the mean free 
path: 

V = 4/2 nrno v» — 16rdno / &RT/M , (51.112) 

<I> = 1/(4|/2 nràny). (51.11b) 

Under normal conditions in air, ngjc 107? m ?, rox 
c 1071? m and (v5 ~ 500 m/s, and hence the mean free path 
and collision frequency are (I» 2 1075 m and v/ «10? s^! 
respectively. 

Formula (51.11b) shows that for a fixed temperature, 
<PDocl/p, since the pressure is p — ngkT. This allows us to 
easily obtain the order-of-magnitude estimates of mean free 
paths for different pressures. For example, if the air pressure 
is 133 Pa, the mean free path of molecules is of the order of 
107? cm, while for 1.33 Pa it is of the order of 1 cm. 
Thie collision frequency between the particles contained in 

1 m? is 

Viotai = MoV /2 = 8rgng V nRT/M . 
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If we have two types of particles with molar masses M, 
and M,, we obtain in a similar way the expression for the 
relative velocity Qv,55: 

SRT/ 1 1 ps 

e» UT ar e) i 
The effective radius of collision cross section for molecules 

having different radii is obviously equal to (79, +792)/2, i.e. 
the half-sum of the effective radii of colliding particles. 
Denoting by vi; the frequency of collisions between particle 

1 and particles 2, we obtain 

i 2 
Viz =T (Foi + Fo2) 95 C012? 

nRT/ i 1 1/2 

zl 2 ( * ) (roi + roz} noz- (51.11c) 
M, M, 

The collision frequency for molecules contained in 1 m? is 

1 
[viz iia? = | sve M, 

The frequency of collisions between particle 2 and 
particles 1 is 

RRT/( | | a0 Vj : 
Vago d 24M, tM, (roi t Toz) o 

7 (noi / o3) V15. 

1 12 

S p] (ro: +702)" NosNor- 
2 

(51.12) 

THE MEAN FREE PATH OF MOLECULES IN A GIVEN 

DIRECTION AFTER THE LAST COLLISION. Suppose we 

have an area element dS (Fig. 138) impinged by molecules 
coming from all possible directions and crossing it in the 
direction of negative values of the Z-axis. At what average 
distance along the Z-axis have the molecules crossing the 
area element dS at the origin experienced the last collison? 

The number of molecules in volume dV is ngdV. During 
the time dt, v'dt nydV molecules from the given volume are 
scattered isotropically as a result of collisions in all possible 
directions, including the direction towards the area element 
dS which is seen from the volume element dV at an angle 9. 
The number of molecules crossing the area element dS, which 
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Fig. 138. To the calculation of the 
mean free path of molecules in 
a given direction after the last 
collision 
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have not experienced a single subsequent collision on their 
path from the volume element dV is equal to 

dS cos 0 dN = v/ngdVdt exp (— r/ I»), (51.13) 
Tr 

where in accordance with formulas (51.4) and (51.2) the 
factor exp (—r/4D») takes into account the escape of 
molecules from the beam due to collisions with other 
molecules. The flux of particles crossing the surface is given 

by 
dN Mug To, we 

= fdo f cds stub d. ( deskpl— £41) 
0 0 velme ai 

1 1 
—4 Y (ns o qno G5, (51.14) 

where v'(D — v» in accordance with formula (51.6). For- 
mula (51.14) coincides with (8.33). 

Let us now calculate the mean distance along the Z-axis, 
covered by the molecules crossing the area element dS after 
the last collision. Clearly, this distance is equal to 

E fzdN 
<z> = jay (51.15) 

where dN is given by formula (51.13). Let us calculate (51.15): 

— 16v' no (Id dSdt 2 

i.e. the mean distance covered by molecules along the Z-axis 
after the last collision before crossing the area element dS is 
not equal to the mean free path but amounts only to 2/3 of 
it. 
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Example 51.1. The effective gaskinetic radius rg, — 1.37 x 
x107!?m for hydrogen and rj9,-—1.87x 10 !?m for 
nitrogen molecule, while the molar masses of hydrogen and 
nitrogen are equal to M, — 0.00202 kg/mole and M,= 
— 0.02802 kg/mole. The gas mixture occupies the volume 
100 1, and the partial pressures of hydrogen and nitrogen are 
Pu, = 0.75 po and pn, = 0.25 po (Po = 0.98 x 10? Pa). Find the 
number of collisions between molecules in the vessel during 
1 s and the mean free path between collisions for particles of 
different types. 

Taking into account the Dalton law 

P= (Mo. +02) kKT= nokT, 

where ny = 2.7 x 10?5 m~ is the Loschmidt number, for the 
normal conditions we find 

Nog 55 035m 5 0:675 10? a9 ngr =0.75ng 

520.109 m-*. 

The collision frequency for molecules in 1 m? is found with 
the help of formula (51.12). Then the collision frequency in 
the entire volume V — 1001 is 

v' 2 Vvk) 715-1022 s^! , 

The mean free path for a hydrogen molecule between 
collisions with nitrogen molecules (see (51.11c)) is 

— <v> a(t T M, 

ha 
-1/2 

cd 
; M ) (ro  ro3) ^no; 

Vi2 2 

— 043.1075 m, 

where 4v,» ^ [SR T/ (nM,)] 7. Similarly, the mean free path 
for a nitrogen molecule between collisions with hydrogen 
molecules is 

Li = v) / Yz = n (04 M/M, !? (ro, + 792) ̂ ngi 

— 39.107? m. 

Example 51.2. Find the probability that a molecule (atom) 
of helium covers the distance 0.5 mm without collisions. Hel- 
ium temperature is 0°C under the pressure 100 Pa. Its 
gaskinetic radius is 1.9 x 10719 m. 

Using (51.4) and (51.2) we find that the probability of 
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covering a certain distance without collisions is 

$9 (x) 2 exp( — x/«D5). 

The mean free path (see (51.11b)) is given by 

X» — 1/4V/2 -nriny) — 0.059 mm 

and hence the required probability is 

(51.17) 

49 (0.5.107? m) — exp(— 0.5/0.059) = 2.1 - 1074. 

Sec. 52. TRANSPORT PROCESSES IN GASES 

The general transport equation 
is derived and is used for 
analyzing thermal conduc- 
tivity, viscosity, and diffusion 
in gases. Thermal diffusion is 
considered, and the Gibbs 

paradox is discussed. 

GENERAL TRANSPORT EQUATION. Let G characterize 
a certain molecular property referred to one molecule. This 
can be energy, momentum, concentration, or electric charge. 
In the equilibrium state the quantity G has a uniform value 
in the entire volume while in the presence of the gradient of 
G it varies in the direction towards the minimum value. 

Let the X-axis be directed along the gradient of G. The 
mean distance covered by the molecules crossing the area 
element dS (Fig. 139) after the last collision is, according to 
(51.16), equal to 2<1ẹ/3. In most cases, this quantity is 
sufficiently small and the variation of G over the distance 
24D /3 from the area element dS can be represented in the 
form 

o E o(s £jo)- GG) E (52.1) 
if we confine ourselves to the is term in the Taylor series 
expansion at the point x. 

The molecular density flux in the direction of the X-axis is 
equal to ng <v> /4. Consequently, the flux of G through the 
area element d$ towards negative values on the X-axis is 

ij ee T" > GIE zu een (522) 

the corresponding expression for the flux towards positive 
values on the X-axis being 

(52.3) 
2 

Ie) = pms {Gls 3-440 &) 2 

Consequently, the total flux along the X-axis at the point 
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Fig. 139. To the derivation of the 
general transport equation 
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x will be 

Fg = IGP +15) = — Ang cop <ty 2. (52.4) 

This equation is the basic transport equation for the 
quantity G 
THERMAL CONDUCTIVITY. In this case, G is the mean 

energy of thermal motion per molecule. This quantity varies 
with temperature. Here, I; will be the thermal flux which we 
denote by I, According to the law of equipartition of energy, 
we have 

i kNA4 i R Cy i 
= —kT=— T= —— T= — T. 22,5 

? 2 2 Na 2 Na Na (aa) 

Then the transport equation (52.4) becomes 

(52.6) 

=L n0) Ou = =P <o ley (52.7) 

is the thermal conductivity, p — ngm and cy — Cy/(N 4m) are 
the density and specific heat capacity of a gas at constant 
volume. Equation (52.6) is called the Fourier equation for 
thermal conductivity, or Fourier's law. 

The thermal conductivity doctrine was developed in the 
second half of the 18th century and was completed in the 
works by J.B. Fourier (1768-1830) who published his 
monograph "Théorie analytique de la chaleur" in 1822. 

Thermal conductivity can be measured by different 
methods. Assuming the rigid sphere model for a molecule, we 
can express <l> in formula (52.7) in terms of the radius r, of 

the molecule. The remaining quantities in formula (52.7) can 
be measured experimentally, while <v> for a given 
temperature is calculated from the Maxwell distribution. 
Hence this formula can be used for determining the radius of 
a molecule. The molecular radius calculated in this way is 
^ 107 !? m, the molecular radius of hydrogen being smaller 
than the molecular radius of oxygen by a factor of 1.5. 



Fig. 140. Mechanism of viscosity 
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Since the radii of all molecules are approximately the same, 
the values of Cy for different gases differ only slightly. The 
main cause of variation of thermal conductivity for a fixed 
value of concentration ng is the difference in the mean 
velocity <v. For this reason, light gases have a considerably 
higher thermal conductivity than heavy gases. This is 
confirmed in experiments. Under normal conditions, for 
example, the thermal conductivity is 0.024 W/(m-K) for 
oxygen and 0.176 W/(m-K) for hydrogen. The thermal 
conductivity of other gases also varies with the mass of their 
molecules or, which is the same, with their mean velocity <v). 

Since no<Ď = 1/o does not depend on pressure, and 

(v5 oc yT is also independent of pressure, we may conclude 
that the thermal conductivity does not depend on pressure, 
which is in good agreement with experiments, and increases 
approximately as the square root of the temperature. We said 
"approximately" since with increasing temperature the cross 
section o slightly decreases. Consequently, the term ny </> in 
(52.7) slightly increases with temperature according to 
a rather complex law determined by the nature of interaction 
between molecules. For polyatomic gases, we must also take 
into account a certain increase in Cy with temperature. The 
fact that the thermal conductivity does not depend on 
temperature is confirmed by experimental results. 

VISCOSITY. Viscosity, or the internal friction in gases, is 
caused by the transport of molecular momentum across the 
direction of motion of the gas layers having different 
velocities. Figure 140 shows the velocity vectors u of the 
layers, directed perpendicularly to the X-axis. An arbitrarily 
chosen layer moves slower than the layer to the right and 
faster than the layer to the left of it. The division into layers 
is conventional; Ax is the separation between the layers 
whose velocities differ by Au. 

As a result of thermal motion, the molecules go over from 
one layer to another, transferring their momentum mu of the 
ordered motion from one layer to another. As a result of the 
exchange of molecules between the layers moving with 
different velocities, the momentum of the ordered motion of 
a faster moving layer decreases, while that of a slower 
moving layer increases. This means that the layer moving 
faster is decelerated, and that moving slower is accelerated. 

This is the essence of the mechanism of appearance of the 
internal friction force between the gas layers moving with 
different velocities. The force of friction t divided by the area 
of friction surfaces is obviously equal to the momentum flux 
of the ordered motion in a direction perpendicular to the 
velocity. In the case under consideration, 
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G = mu, (52.8) 

and hence Eq. (52.4) becomes 

bo T noo) (mt. ca E (52.9) 

where 

n = no C? CD» m/3 — pv» (5/3 (52.10) 

is the dynamic viscosity and p = nym is the gas density. The 
sign of t indicates that the force of friction acting on faster 
moving layers is directed against the velocity. Expression 
(52.10) was obtained for the first time in 1860 by J. Maxwell. 

Since n, (I5 — 1/o, while <v> œ |/ T, we may conclude that 
the dynamic viscosity does not depend on pressure and 
increases almost in proportion to the square root of the 
temperature (if we ignore the small increase associated with 
a decrease in the cross section with increasing temperature). 

The fact that the dynamic viscosity, i.e. the force of 
friction, is independent of pressure (and hence of the gas 
density), is incomprehensible at first sight. This can be 
explained as follows. The mean free path varies in inverse 
proportion to pressure, while the molecular concentration is 
directly proportional to it. The momentum of ordered motion 
transferred by each molecule is proportional to the mean free 
path, i.e. is inversely proportional to pressure. Since the 
concentration of molecules transporting the momentum is 
directly proportional to pressure, it turns out that the total 
momentum transferred by molecules, divided by the interval 
of time and volume, does not depend on pressure. This 
conclusion is in good agreement with experimental results. 

Dynamic viscosity is measured in Pa.s: 

| Pa.s— 1 N:s/m? — 1 kg/(m-.s). 

The dynamic viscosity of gases at 20°C under atmospheric 
pressure (101.3 k Pa) has the order of magnitude of 
1075 Pa.s. For example, the viscosities of air, helium, oxygen, 
and hydrogen are equal to 1.82 x 10~ 5, 1.96 x 107 4, 2.02 x 
x 1075, and 0.88 x 1075 Pa.s respectively. 
Along with the dynamic viscosity, the kinematic viscosity 

v is also used. It is defined as dynamic viscosity per unit 
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In the long run, transport 
phenomena are due to the 
tendency of a system to 
attain the equilibrium state. 

A weak dependence of heat 
capacity of gases on 
temperature is due to 
a slight decrease in the 
collision cross section with 
increasing temperature. 

Dynamic viscosity is inde- 
pendent of the pressure and 
increases almost in 
proportion to the square 
root of the temperature. 
A small contribution to the 
temperature dependence of 
the dynamic viscosity comes 
from a decrease in the 
collision cross section with 
increasing temperature. 

6. Transport Processes 

density: 

Kinematic viscosity is measured in m?/s. 
SELF-DIFFUSION. Suppose that molecules uniformly fill 

a certain volume. We assume that all the molecules are 
identical in their mechanical and dynamic parameters, but 
may differ in a certain property which affects neither the 
interaction between them nor their motion. Thus, the 
property being transported in this case is simply the identity 
of molecules, i.e. the feature of their individual identification. 
Let us conventionally call this property the “colour” and 
assume that we have white and black molecules. Suppose 
that the concentration of white and black molecules in space 
is not the same. Obviously, in equilibrium the “white” as well 
as “black” molecules must uniformly fill the entire volume. 
Therefore, in the case of a nonuniform distribution, the 
concentrations will level out as a result of collisions between 
molecules. The transported quantity in this case is the 
concentration of the molecular species under consideration. 
Let the concentration of molecules of the first type be n, (x). 
Considering that G in Eq. (524) is a characteristic of the 
quantity being transported per molecule, we have 

G-n;/ng, (52.11) 

where ng is the equilibrium concentration. Equation (524) 
then assumes the form 

(52.12) 

where 

D = <v> <3 

is the diffusion coefficient. Expression (52.12) is called Fick’s 

law. 
For a fixed temperature, <v> is constant, while loc l/p. 

Consequently, D oc 1/p at a fixed temperature. On the other 

hand, ! oc T and <v) œ j^ at a fixed pressure. Consequently, 
D oc T??? at constant pressure. These results were thoroughly 
verified in experiments. The relation D oc 1/p, which is more 
conveniently represented as Dp —const, is valid for fairly 

(52.13) 
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rarefied gases over a quite wide interval of pressures to 
within several tens of percent. The value of D increases with 
temperature somewhat faster than in proportion to T?’?. This 
can be explained by the fact that with increasing T, the cross 
section somewhat decreases, which leads to an additional 
increase in the mean free path. 

The diffusion coefficient for atmospheric oxygen and 
nitrogen under normal conditions has the order of 
10 ^? m?/s, as it directly follows from (52.13) if we take into 
account that <b~107~%m and <v>~500 m/s for these 
gases. 
THE RELATIONSHIP BETWEEN THE COEFFICIENTS 

CHARACTERIZING THE TRANSPORT EQUATION, It follows 

from (52.7), (52.10), and (52.13) that 

à 2 nCy/(mN 4) ^ ncv, (52.14) 

D — n/p — X/ (cv p), (52.15) 

where cy is the specific heat capacity at constant volume and 
p is the density of a substance. This relationship between the 
coefficients of transport processes is due to a similar physical 
nature of transport processes and the fact that they are all 
described by identical equations of the form (52.4). 
MUTUAL DIFFUSION IN A GAS CONSISTING OF 

DIFFERENT MOLECULES. If there are two types of 
molecules differing in dynamic properties and in the nature of 
interaction, the diffusion process becomes much more 
complicated. For the sake of definiteness, suppose that we 
have heavy and light molecules. We denote their 
concentrations by n, and n,. The condition of constancy of 
pressure and temperature over the entire volume, following 
from Dalton’s law, has the form 

n, +n,=const, T=const. (52.16) 

If n, and n, separately are not constant over the entire 
space, the diffusion process must lead to a levelling out of the 
concentrations. However, the formulas characterizing the 
diffusion coefficients in this case are not as simple as (52.13). 

First of all, it follows from the procedure for deriving (52.4) 
that this equation is applicable for each of the components of 
the gas, but the mean free path </> must be calculated by 
taking into account the collisions not only with the molecules 
of the same species but also of the other. Consequently, in 
analogy with (52.12), we can write the following equations for 
the diffusion fluxes [,, and I, of the molecules of each type: 

In = —D,0n, /éx, 1,, = — DjOn;/óx, (52.17) n2 
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where 

D, - 3» 55/5, D; 2 G2» (55/5, (52.18) 
and the values of (l,5» and <l,» are determined by the 

collisions with both types of molecules. 
Obviously, in the general case D, #D,, and hence the 

diffusion fluxes 1,, and 7„, do not compensate each other, due 
to which the constancy of pressure over the entire volume 
will be violated. Therefore, in addition to the diffusion fluxes, 
the hydrodynamic flux must appear, i.e. the gas must move 
as a whole in such a way that the pressure would be 
maintained constant. Denoting by v the hydrodynamic 
velocity of the gas flow as a whole, we can write the 
condition of invariability of pressure in the following form: 

In +n tmn ++n)v=0, (52.19) 

whence 

1 
———————(L +1 

ni +n, s E a) 

1 én, on, 

ny tn, ( 1 Bx ? Qx ) 

M On, 
z———— (D, — D)——, 52.20) n, +n (D, 2) Be ( 

where we took. into account the equality dn, /éx = — dn, /édx 
obtained by differentiating (52.16). Therefore, the total flux F, 
of the first component, which is the sum of diffusion and 
hydrodynamic fluxes of this component, is 

Dyn, + Dan, On, 2 
I,=1, tnyv=—- 

È ni + n, 

-21 
where P 

Di; = (Din + Dan (n; + n3). (52.22) 

Similarly, we obtain the expression for the total flux of the 
second component: 

(52.23) 
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where 

Dj, — (Djn, * D,n;yin; + n) (52.24) 

is the mutual diffusion coefficient (D,, — D; ). 
Thus, the problem involves cumbersome calculations of 

mean free paths. Maxwell and Stefan proposed the following 
formulas for calculating these quantities by using the model 
of rigid and perfectly elastic spheres: 

1 1 
(Il; 5 9 ———————— — Sd CLD ES, 

' V 1 +m; /m, 4nn, R? : V 1 4 m; /m, 4nn, R? 

(52.25) 

where m, and m; are molecular masses, R — (r, - r;)/2, and 
rı and r, are the radii of molecules. With the help of these 
formulas, expression (52.22) can be represented in the form 

D= V m, <v> * y mivi» 

7 12n (n, - n; Rp m, t m, 

o 1 JKT 7 1 i 1 (5226) 

X 6n(n, - nj) R? n \m, m, J : 

where the velocities (v,» and <v,> are replaced by their 
expressions in terms of the temperature, given by (8.18). 
Later, a large number of other calculations of the coefficient 
D were made, in particular, those where the Lenard-Jones 
potential (29.4) was used. However, the results obtained in 

this case are very cumbersome and not easy to visualize. 
They are usually. discussed in specialized literature on 
diffusion. Calculations and measurements show that the 
coefficient of mutual diffusion of gases is of the order of 
107? m?/s under normal conditions. 
THERMAL DIFFUSION. If a temperature gradient is 

created in a volume V occupied bv a gas, the uniform 
distribution of the gas over the volume is violated. In most 
cases, the Concentration of the light component increases in 
more heated regions, while the concentration of the heavy 
component increases in less heated regions, although it is not 
always the case. This phenomenon is called thermal diffu- 
sion. 
A steady-state distribution of temperature leads to the 

establishment of a steady-state distribution of concentrations. 
However, thermal diffusion takes place in this case. The point 
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In the mutual diffusion in 
a gas of different molecules, 
hydrodynamic fluxes existing 
along with diffusion fluxes 
play an important role. They 
appear in order to 
compensate the nonunifor- 
mity of pressure arising 
from different diffusion rates 
of the gas components, 

Thermal diffusion is caused 
not by molecular collisions 
but by the dependence of the 
collision frequency on the 
velocity of molecules. 

6. Transport Processes 

is that the presence of the temperature gradient creates 
conventional diffusion of molecules, and hence the steady 
state is ensured by diffusion caused by the temperature 
gradient (thermal diffusion), that takes place simultaneously 
in opposite direction. 

Thermal diffusion differs in its nature from the transport 
processes considered above, caused by the collisions between 
molecules. Thermal diffusion is caused not by the molecular 
collisions but by the dependence of the frequency of collisions 
between molecules on their velocity. If the repulsive forces 
acting between molecules are represented in the form 
Focl/r", calculations show that thermal diffusion is absent 
when m — 5. For m» $, thermal diffusion proceeds in such 

a way that more heated regions are enriched in the lighter 
component, while for m<5, the heavier component 

dominates. 
The complete theory of diffusion is very complicated. We 

will limit ourselves to only main points of this problem. In 
a steady state and for a low temperature gradient, 
hydrodynamic fluxes are absent, the pressure is constant, and 
the gas mixture is homogeneous. This means that the 
following conditions are satisfied: 

p=nkT=const, n,/n =const, n,/n = const, (52.27) 

where n, and n, are the concentrations of particles of the gas 

components, and n =n; +n, is the total concentration of 

particles in the gas. 
Let us direct the X-axis of the coordinate system along the 

temperature gradient. This allows us to assume that all 
quantities depend only on the coordinate x. Taking the 
logarithm of both sides of the first equality in (52.27) and 
differentiating with respect to x, we find 

Óln n/óx = — Oln T/Ox. (52.28) 

On the other hand, it follows from the second and third 
equalities in (52.27) that 

élnn,/ax = ln n/x, ln nj/x = ôln n/ôx . (52.29) 

A comparison of (5229) with (52.28) shows that the 
following relation is valid for each of the components: 

Olnn; ôln T 

ôx ôx" 

Let us now use the Maxwell distribution (8.16). We denote 
by Ni;(v) the concentration of ith type molecules whose 
velocities are close to v, Then from (8.16) we obtain 

(52.30) 
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N,(v;) 7 dn;/dv; — nf; (vj), (52.31) 

where n; is the total concentration of molecules, and f,(v;) is 
given by formula (8.16). In the presence of a temperature 
gradient, n; explicitly depends on coordinates, while f,(v;) 
depends on coordinates through the temperature since the 
temperature gradient is maintained. Then, taking logarithms 
of both sides of (52.31) and differentiating with respect to x, 
we obtain 

Oln N;(v) _ ôlnn, " Olnfi(v) _ élnn; E ôln f (w) ôT 

ôx Ox Ox Ox OT ôx 

(my? 5\ anT (52.32 

 i2kT 2j bx.’ a2) 

where we used (52.30) and took into account the relation 
(1/T) (OT/0x) — 0 1n T/Ox. This means that in the direction of 
increasing temperature, the concentration of fast molecules, 
for which mv?/(2kT) > 5/2, increases, while the concentration 
of slow molecules, for which mv?/(2kT)< 5/2, decreases. 

This conclusion is valid for molecules whose velocities are 
close to v;. The derivation of formula (52.12) implied that the 
motion of molecules was traced within the limits of one mean 
free path. The velocity of a molecule is constant over this 
distance. Therefore, formula (52.12) can be written for the flux 
of molecules with the velocity v, in the form 

oN; (v) 

ax ^ 
(52.33) 

1 
Lg z all) 

where l(v;) is the mean free path for a molecule having the 

velocity v, 
This gives the following formula for the total flux of 

molecules of the ith type: 

ôN; (v; L= -X lano ae) dv (52.34) 

Considering that ON;(v)/Ox — N;(vj)) [Cln N;(v)/Ox] and 
taking into account the equality (52.32), we write the 
expression for the flux in the form 

n 1 | my 5 ôln T Là 2m sl), Tas -$ Jae | =. 6235 
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Thus, the relation between the direction of the molecular 
flux and the direction in which the temperature increases 
depends on the sign of the expression in the brackets. The 
mean free path /(v,) is connected with the collision frequency 
v (v) through formula (51.6) Taking this formula into 
consideration, we can write (52.35) as follows: 

1 u? mo? 5 éln T 
ae a P NA UR : ] 2.36 

fi | 3 I e BT 2 Jes] ax = 

Obviously, the sign of the integral is determined by the 
form of the dependence of the collision frequency v'(vj) on 
the velocity of molecules. The integrand changes sign at 
m,v?/2 = 5kT/2. Therefore, if at low velocities the collision fre- 
quency is small and increases sufficiently rapidly with 
velocity, the integral has a negative value. In this case, the 
flux is directed towards increasing temperature, and the gas 
component under consideration is concentrated in the region 
with higher temperature. On the other hand, if the collision 
frequency at low velocities is small, and then decreases 
sufficiently rapidly with increasing velocity, the integral is 
positive, and the flux is directed against the increasing 
temperature. Consequently, the given component is con- 
centrated in the less heated region. Obviously, there is an 
intermediate case when the integral is equal to zero, and 
hence the flux is absent and no thermal diffusion is observed. 
This takes place exactly when m — 5 in the formula Foc1/r" 
for the repulsive force. 

Thermal diffusion has some important applications, for 
one, in the isotope separation. Since the masses of isotopes 
are close, the enrichment of the mixture by one of the 
component is insignificant for reasonable temperature 
gradients. For a more complete isotope separation, multistep 
processes are used and the mixture enriched in the previous 
stage is used as the initial mixture in the next stage. As 
a result, the required separation of isotopes can be attained. 

GIBBS’ PARADOX. According to the second law of 
thermodynamics, the mutual diffusion of two gases leads to 
an increase in the entropy of the system. This increase can be 
calculated by using the method described in Sec. 22 for 
levelling out pressures and temperatures in a gas. 

Initially, the two gases were separated by a partititon, and 
occupied the volumes V, and V, at the same temperature and 
pressure. After the partition is removed and diffusion is 
completed, the gases are mixed and occupy a volume V; + V, 
the temperature and pressure of the mixture remaining 
unchanged. 
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Suppose that we have v, moles of the first gas and v, 
moles of the second gas. Then the initially occupied volumes 
can be found from the condition 

p, — p; or v«,RTJV, — v,RTJV,. (52.37) 

On the basis of formula (19.6) written for v moles of a gas, 
the change in the entropy for each of the components in the 
process of mutual diffusion is 

WV, Vi+V, V 
AS, = "Ur E AS; =v,R aa (52.38) 

and hence the total change in the entropy of the system is 

V, + V; V +F., 
AS = AS, + AS; =v,Rin——— t v Rin, (52.39) 

1 2 

The expressions under the logarithms are greater than 
unity, and hence the entropy of the irreversible process of 
mutual diffusion increases, as it should be expected. 

Suppose now that we have the same gas on both sides of 
the partition. When the partition is removed, self-diffusion 
begins. On the one hand, it is clear that the removal of the 
partition does not in any way affect the state of the gas 
whose two parts are combined into a single system. 
Consequently, the entropy must not change after the removal 
of the partition. But, on the other hand, if we use formula 
(52.39) for calculating the change in the entropy as a result of 
self-diffusion, it will turn out that the entropy must increase. 
This contradictory conclusion is called the Gibbs paradox. 

The explanation of the Gibbs paradox involves the 
elimination of an incorrect physical assumption implicitly 
used in the reasoning. Considering self-diffusion, we have 
introduced the concept of the difference between similar 
molecules, and have thus returned to the concept of different 
molecules, although this difference can be symbolically 
expressed by the concept of “colour” of molecules. Hence, let 
“black” molecules be on one side of the partition and “white” 
molecules on the other, the molecules being identical in all 
other respects. Upon mixing of molecules of different colours, 
the entropy of the system must increase in accordance with 
formula (52.39), as in the case of mixing of different 

molecules. However, if all the molecules were of the same 
colour, the entropy should remain constant upon mixing, 
since its increase would be in contradiction with its basic 
property, viz. additivity. Thus, the Gibbs paradox is reduced 
to the following question: What will happen to the entropy 
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? 

. Which properties associated 
with molecular motion are 
transported in the processes of 
thermal conductivity, diffusion, 
and viscosity? 

. Why does the collision cross 
section somewhat decrease 
with increasing temperature? 

. What is the nature of the 
hydrodynamic flux appearing 
in mutual diffusion? 

. Which property of molecular 
collisions gives rise to thermal 
diffusion? 

. What is the essence of the 
Gibbs paradox? Which 
circumstances must be taken 
into account in its analysis? 

6. Transport Processes 

of the system containing two types of molecules if the black 
molecules start bleaching and in the long run become white, 
and as a result the system attains the state with identical 
molecules? It is clear that bleaching of molecules must not 
lead to a change in the enrtopy of the system until the 
bleached molecules are distinguishable from white ones. 
However, if we imagine a certain stage of bleaching as 
a result of which the difference between the bleached and 
white molecules has vanished, the entropy must change 
during this period since the number of microscopic states 
accessible to the system abruptly changes. A continuous 
transition to identical molecules is impossible without chang- 
ing the number of microscopic states and entropy. Thus, the 
Gibbs paradox is eliminated. The molecules may be either 
identical or different in nature. There is no continuous 
transition between them. Consequently, the increase in 
entropy described by formula (52.39) does not contradict the 
invariability of entropy upon mixing identical molecules. 

It was noted by many authors that the Gibbs paradox 
reflects the relation between macroscopic laws of 
thermodynamics and the discrete nature of the microworld. 
Without denying the validity of this remark, we shall 
consider some other aspects associated with the Gibbs 
paradox. 

It can be easily seen that the transition from the molecules 
having different colours to the molecules with the same 
colour must be accompanied by a decrease in the entropy. 
According to the second law of thermodynamics, this means 
that this transition cannot occur spontaneously in an isolated 
system. Consequently, the difference between molecules can 
be removed only by the action of certain external factors that 
completely determine the change in the entropy of the 
system. 

Until the difference between the molecules is removed, the 
entropy of the system decreases to a value corresponding to 
identical molecules and the Gibbs paradox does not appear. 

Example 52.1. Two vessels having the same volume V are 
connected by a long pipe of length | with a small 
cross-sectional area S. At the initial moment, the first vessel 
contains a mixture of gases with concentrations n? and nt, 
while the second vessel contains only the gas of the second 
type with concentration nP. The pressure and temperature 
are the same in both vessels. Find the change in the 
concentration nV? (r) of the first gas in the first vessel with 
time. The diffusion coefficients of the gases are the same and 
equal to D. 
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The flux of the first gas to the second vessel is described by 
the equation 

1, 2 - D(n?? — nD)Sjl, (52.40) 

where n7? is the concentration of molecules of the first type 
appearing in the second vessel as a result of diffusion. The 
condition of conservation of particles of the first type gives 

Vdn/dt — —1I, — — 2DSn/l 4- DSn, yl, (5241) 

where nio =n (0) and n? - n?) 2 n? (0) 2 n,,. 
The solution of (52.41) under the initial condition n{!)(0) = 

—n,g has the form 

nV? (t) 5 (19/2) [1 + exp(— at], « — 2DSÁVI). (5242) 

Ás t— oo, the gas of the first type which initially occupied 
only the first vessel will be equally distributed between the 
two vessels. The change in the concentration of the second 
gas in the first vessel is determined by the requirement that 
the pressure in the vessel must be constant, i.e. the sum of 
concentrations of the first and second gases has a constant 
value. The change in the concentration in the second vessel 
with time is determined similarly from the conservation 
condition. 

Sec. 53. RELAXATION TIME 

Time-dependent transport 
equations are considered, and 
the relaxation time for diffe- 
rent processes is analyzed. Ti- 
me-dependent and time-inde- 
pendent problems of thermal 
conductivity and diffusion are 
discussed. 

FORMULATION OF THE PROBLEM. As a result of transport 
phenomena, temperatures and concentrations level out, i.e. 
the temperature and concentration vary with time. If 
a system is left alone, the temperature and concentration 
must become the same over the entire gas volume. The time 
during which this occurs is called the relaxation time of the 
system. To analyze the variation of quantities with time, we 
need time-dependent equations for thermal conductivity and 
diffusion. 
TIME-DEPENDENT DIFFUSION EQUATION. Let us 

consider a self-diffusion whose flux is given by Eq. (52.12). 
We isolate the volume AV in the form of a cylinder whose base 
area is AS (Fig. 141) and the height along the X-axis is equal 
to Ax. According to the definition of the flux, the change in 
the number of particles in the volume of the cylinder during 
a time interval At is equal to 

AN, = [L,, (x 4- Ax/2) — I, (x — Ax/2)] ASAt. (53.1) 



X-Ax/2 x+Ax/2 

Fig. 14t. To the derivation of 
time-dependent transport equations 
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Expanding /,, into a Taylor series and confining ourselves 
to the term linear in Ax, we obtain 

I (22 jon a T TB. (53.2) 

Hence, expression (53.1) becomes 

AN,= — Ls, AxASAt. (53.3) 
ox 

Then 

AN ôn n de a ae ae hae n 
At >Q 

where AV= ASAx is the volume under consideration. Since 
D does not depend on coordinates, we can write instead of 
(53.4) 

(53.5) 

This is the time-dependent self-diffusion equation. If the 
direction of diffusion does not coincide with the X-axis, but 
has an arbitrary direction, AN, in formula (53.1) is 

represented as the sum of contributions from each of the 
coordinate axes, and instead of (53.5) we obtain 

(53.6) 

where 

V? « 0*/üx? -- 0?/0y? + 67/627 

is the Laplace operator, also denoted by A — V?. 
With the help of Eq. (53.6), we can study the change in the 

concentration n, of molecules at all points of the volume if 
we know the concentration distribution at the initial moment 
of time (initial conditions) and under certain conditions at the 
boundary of the volume (boundary conditions). This is 
a mathematical problem and it is analyzed in detail in 
mathematical physics. 

(53.7) 
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It should be noted that if mutual diffusion is considered, 
Eq. (52.2) must be replaced by Eq. (52.21) with the diffusion 
coefficient D,, determined by (52.22). Then, as a result of 
similar calculations for each of the components, we obtain an 
equation of the form (53.4) with the diffusion coefficient D,,. 
However, this coefficient depends on coordinates, and we 
cannot go over to the equation of the type (53.5). In this case, 
we must solve the system of two nonlinear equations. 
TIME-DEPENDENT THERMAL CONDUCTIVITY EQUA- 

TION. In this case, the line of reasoning is similar to 
that in the previous case and the same diagram (Fig. 141) is 
used, but instead of the particle flux J, from (52.12) we must 

take the heat flux from (52.6). Then instead of (53.4) we 
obtain 

lim A QE EST oT 2a oT 518 
=i — = a —ÀÓ ES eee a 

AVAt AVAt S Ox ôx 939) 
AV-0 
At 50 

where AQ = cyAmAT is the change in the quantity of heat in 
the volume AV during the time At, cy is the specific heat 
capacity at constant volume, and p - Am/AV is the gas 
density. The thermal conductivity A is given by formula 
(52.7). Taking into account (52.15), the equation (53.8) for the 
thermal conductivity assumes the form identical to Eq. (53.5): 

(53.9) 

with the same diffusion coefficient D — (1/3) (v5 «I». The form 
of this equation in the case when the heat flux does not coincide 
with the X-axis is determined in the same way as it was done 
in connection with Eq. (53.5). 
RELAXATION TIME. When a certain quantity deviates 

from its equilibrium value, there appear the factors tending to 
return it to this value. The rate at which the equilibrium 
value is approached is assumed to be proportional to the 
degree of deviation of the quantity from the equilibrium 
value. The quantity reciprocal to the proportionality factor is 
the relaxation time. 

Let us consider a quantity q whose equilibrium value is qe. 
Then the above definition can be written in the following 
form: 

dq/dt — (qs — qy/1. (53.10) 
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Left alone, a system strives 
to attain the equilibrium 
state. The rate of this 
process is quantitatively 
characterized by the 
relaxation time. Relaxation 
times for different parameters 
are different. 

Time-dependent diffusion and 
thermal conductivity 
equations do not take into 
account the fact that the 
velocity of propagation of 
these processes is finite. 

6. Transport Processes 

The solution of this equation has the form 

(q — 49) 7 (8 — 49-96 ^ ^, (53.11) 

where (q — q9),- 9 is the deviation from the equilibrium value 
at the initial instant of time t — 0. In accordance with the 
general condition of exponentially varying quantities, t has 
the meaning of the time during which the quantity q attains 
its equilibrium value, i.e. the relaxation time. 
RELAXATION TIME FOR CONCENTRATION. Suppose 

that the concentration or the temperature in a certain volume 
whose linear dimensions have the order L(the volume is of 
the order I?) differ from that of surrounding medium. Then 
either a heat flux or a particle flux will pass through the 
surface of this volume in order to equalize the concentration 
and temperature with their values in the surrounding 
medium. Let us investigate the law governing the levelling 
out of these quantities by taking the particle concentration as 
an example. Clearly, the law of levelling of the temperature 
will be similar since Eqs. (53.9) and (53.5) are identical. 

If (An) is the mean deviation of the particle concentration 
from the equilibrium value in the volume V, then KAn) is 
the excess number of particles in the volume in comparison 
with the number of particles corresponding to the equilib- 
rium density. The particle flux through the surface confining 
the volume is positive if there is an excess of particles inside 
the volume, and negative if there is a deficiency of particles. 
Consequently, the change in the number of particles inside 
the volume during the time dt is 

d(VCAn») 2 — L»Sdt, (53.12) 

where S is the area of the surface confining the volume, and 
XI,» is the mean particle flux through the surface. If the 
linear dimensions of the volume are L, then ón/Óx oc An/L, 

and it follows from Eq. (52.12) that 

(L5 — DQAn»KL), (53.13) 

where (L5 is the mean linear dimension of the volume V, 
which is determined in such a way that Eq. (53.13) gives the 
correct value of the average flux 41,» through the surface. 
The plus sign on the right-hand side of the equation indicates 
that the flux <J,> must be positive for a positive value of 
<An>. Substituting (53.13) into (53.12), we get 

d (An) /dt 2 [ - SD/(VCLy)] «An» . (53.14) 



The relaxation time for the 
concentration rapidly 
increases with the dimensions 
of the region and decreases 
in inverse proportion to the 
diffusion coefficient. 

The temperature relaxation 
ume rapidly increases with 
the dimensions of the region 
and decreases in inverse 
proportion to the thermal 
conductivity. 
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The solution of this equation is similar to (53.10) and has 
the form 

<An> = (CAn>), e7'*, t= VEL /(SD), (53.15) 

where <L> does not depend on time. If we take into account 
the time dependence of <L), the solution of Eq. (53.14) 
assumes the form 

<An> = (<An>)o exp (- 5p as). (53.16) 
0 

The quantity 

7, — VL» /(SD) (53.17) 

is the time of relaxation to the equilibrium distribution of 
concentrations. Formula (53.17) makes it possible to analyze 
the dependence of the relaxation time on different factors. 
Since Voc L?, and S oc L?, we conclude that t oc L7/D. This 
means that the relaxation time rapidly increases with 
increasing geometrical dimensions of the region. It is 
inversely proportional to the diffusion coefficient through 
which it is related with the gas pressure and tempera- 
ture. 
RELAXATION TIME FOR TEMPERATURE. In this case the 

calculations are similar, but instead of Eq. (52.13) for the 

particle flux we must use Eq. (52.6) for the heat flux. As 
a result, we obtain formula (53.15) in which D must be 
replaced by the thermal conductivity A given by (52.7), i.e. 
put D 2 A/(pcy). Consequently, the order of the temperature 
relaxation time is 

tr= peyVCL) / (AS). (53.18) 

TIME-INDEPENDENT AND TIME-DEPENDENT PROB- 

LEMS ON THERMAL CONDUCTIVITY AND DIFFUSION. In 

order to solve the diffusion equation (53.6) and the 
corresponding equation for the thermal conductivity, we must 
set the initial and the bounary conditions. If they are 
determined and the diffusion coefficient D is known, we have 

a purely mathematical problem whose solution is considered 
in detail in appropriate branches of mathematical physics. 
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Sec. 54. PHYSICAL PHENOMENA IN RAREFIED GASES 

Basic features of transport proc- 
esses in vacuum are analyzed. 
The exchange of molecules 
through a porous membrane 
in rarefied gases and the inter- 
action of molecules with the 
surface of a solid are consid- 
ered. 

VACUUM. The mean free path increases with decreasing 
pressure. When it becomes equal to the linear geometrical 
dimensions of an object, the molecules collide only with the 
vessel walls (if the volume is confined by the walls) and 
practically do not collide with each other. Such a situation 1s 
called a vacuum. This concept is relative. The larger the 
linear dimensions of the region, the smaller the pressure at 
which vacuum is attained. Under normal atmospheric 
conditions, </> ~ 107° cm, i.e. the conditions of vacuum are 
satisfied only for very small volumes with linear dimensions 
— 107 cm. Since </> x 1/p, for the pressure p 10^? Pa, 
(D -10?cm-— 1 m, ie. the conditions of vacuum are 
satisfied for sufficiently large volumes. 
HEAT TRANSFER UNDER LOW PRESSURE. Since 

molecular collisions are practically absent in vacuum, the 
analysis of transport phenomena considered in Sec. 52 is not 
valid. The molecules move between the walls along the 
straight lines. Colliding with the walls, they exchange energy 
with them. Thus, the molecules are the carriers of energy 
from more heated walls to less heated ones. For this reason, 

it would be more correct to speak about heat transfer by 
a gas rather than about its thermal conductivity, since there 
is no temperature gradient in the volume of the vessel. 
Rarefied gases have a different pressure dependence of the 
heat transfer than the pressure dependence for the thermal 
conductivity at higher pressure. At high pressures, the 
thermal conductivity is independent of pressure, while the 
heat transfer at low pressures increases with pressure, since 
the number of collisions of molecules with the vessel walls 
increases. Conversely, the heat transfer decreases with 
pressure to infinitely small values. An example of the 
practical application of this phenomenon is the Dewar flask. 
Vacuum created between the flask walls ensures sufficiently 
small heat transfer. 
DIFFUSION AT LOW PRESSURES. Since the collisions 

between molecules are practically absent, the transport of 
molecular properties occurs with the velocity of molecular 
motion, i.e. very rapidly. The time of levelling of the 
concentration is very small even in very large volumes. This 
time depends on the shape of the volume. 
FRICTION AT LOW PRESSURES. If there are two solid 

surfaces moving with respect to each other, and if there is 
a gas at low pressure between them, the forces of friction 
appearing between the surfaces try to decelerate the faster 
moving surface and accelerate the slower one. This 



Fig. 142. Equilibrium conditions 
for gases separated by a porous plug: 

PVT, =p,/VT, 
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phenomenon resembles the appearance of similar forces 
between moving surfaces under a high air pressure, but the 
mechanism of this phenomenon is quite different. In vacuum, 

there are no gas layers moving with respect to each other 
between friction surfaces. This results in the emergence of 
forces of internal friction which are transferred from layer to 
layer. A molecule colliding with the moving surface acquires 
the corresponding momentum of ordered motion. Having 
passed the distance separating the surfaces without collision, 
it exchanges the momentum of its ordered motion with 
another surface. The momentum transferred to the surface 
per second is numerically equal to the force of friction. Thus, 
under vacuum conditions there is no internal friction in the 
gas in the same sense as under higher pressures, but there is 
friction between the surfaces moving relative to one another. 

VESSELS CONNECTED THROUGH A POROUS PLUG. The 

pore size in a plug can be so small that the vacuum 
conditions are satisfied for pores even under normal 
atmospheric pressure. As a result, a number of interesting 
phenomena appears. 

If the same gas is on both sides of a diaphragm, and 
different temperatures are maintained, an equilibrium state 

sets in, in which the pressures on different sides of the 
partition are different (Fig. 142). Let us denote by subscripts 
1 and 2 the quantities corresponding to the different sides of 
the porous partition. In equilibrium, the number of molecules 
passing from one half of the volume to the other through the 
plug is equal to the number of molecules moving in the 
oppossite direction. Since the molecules pass through the 
pores themselves without collisions, this condition, on the 
basis of (8.32), can be written as follows: 

N11 <01> Sere/4 = Nor (02> Sere/4, (54.1) 

where Serr is the total effective “area” of pores in the plug. 

Considering that no = p(kT) and <v> = const |/ T, it 
follows from (54.1) that 

p I V T, — pl V T. (542) 
i.e. the pressure is higher in the part where the temperature is 
higher. Such a situation would be impossible under normal 
conditions, since the hydrodynamic flux generated by the 
difference in pressure would rapidly equalize the pressure. 
This formula was experimentally verified by Reynolds (1879). 
EXCHANGE OF MOLECULES OF DIFFERENT SPECIES 

THROUGH A POROUS PLUG. Suppose that at a certain 
moment of time the volumes on the different sides of the 
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Fig. 143. Time dependence of 
pressure on different sides of the 
porous plug for the case of different 
gases at the same temperature 

Fig. 144. Reflection of molecules at 
the surface of a solid 
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porous plug (Fig. 142) are filled by two different gases at the 
same temperature and pressure. This 1s not an equilibrium 
state. The density of molecules on both sides is the same, but 
the mean velocities of their motion are different: lighter 
molecules move faster. Consequently, according to formula 
(8.32), the frequency of collisions of lighter molecules against 
the porous plug is higher than for heavier molecules, and 
hence the number of lighter molecules entering the half of the 
vessel occupied by heavier molecules per unit time is larger 
than the number of heavier molecules entering the half 
occupied by lighter molecules. As a result, the pressure in the 
part initially occupied by heavier molecules increases, while 
the pressure in the other part decreases. As the molecules are 
mixed, the increase in pressure first slows down and then 
ceases. At this moment, the number of molecules passing 
through the plug per unit time in both directions becomes 
the same. However, the concentrations of molecules of each 
species on different sides of the plug are not equal. The 
density of molecules in the half containing mostly heavier 
molecules is higher than in the other half. After this, the 
number of molecules passing per unit time through the 
porous plug from the part of the vessel initially occupied by 
heavier molecules becomes larger than the number of 
molecules passing through the plug in the opposite direction. 
The pressure in the first part of the vessel starts to decrease 
and in the second, increase. Simultaneously with the levelling 
of the pressure, the concentrations of molecules of each 
species on both sides of the plug equalize. Figure 143 shows 
the time dependence of pressure p on different sides of the 
porous plug in arbitrary units (see Example 54.1). 
INTERACTION BETWEEN MOLECULES AND THE 

SURFACE OF A SOLID. A molecule impinging on a surface 
interacts only with a small number of atoms and molecules 
near the surface, exchanges the momentum, and is reflected. 
In this interaction the angle of incidence is generally not 
equal to the angle of reflection which depends on specific 
conditions of interaction between molecules and the surface. 
Thus, the surface is “coarse”. On the average, the angle of 
reflection B for molecules impinging on the surface in a given 
direction is smaller than the angle of incidence « (Fig. 144). 
As a result, in addition to the force of pressure, the surface 
experiences a tangential force in the direction. of the 
tangential component of the velocity of molecules impinging 
on the surface. If the molecular fluxes to the surface from 
different directions are equal, the tangential forces mutually 

compensate each other, leaving only the pressure on the 
surface. 
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Fig. 145. Emergence of radiometric 

forces 

F ^ dT/dx>0 

Fig. 146. Emergence of the thermal 
slip 
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The energy of molecules reflected at a surface generally 
changes. If the temperature of the fluxes of molecules 
impinging on the surface is equal to the temperature of the 
surface, the temperature of reflected fluxes will be equal to 
the temperature of incident fluxes. Otherwise, the flux 
temperature changes as a result of interaction with the 
surface and becomes equal to the surface temperature. 

Let us consider the interaction between molecules and 
a surface under a high vacuum. In this case, the molecular 

flux is isotropic and has the same temperature in all 
directions. If the surface temperature is constant, no 
tangential forces appear and the pressure is the same at all 
points of the surface. If, however, the surface temperature 
changes from point to point, tangential forces are absent as 
before since the incident molecular flux is isotropic, but the 
pressure will be different at different points of the surface. In 
the regions with a higher temperature the pressure is higher, 
since upon reflection of molecules the normal component of 
their momentum not only reverses its direction, but also 
increases in magnitude. As a result, the forces acting on the 

surface of a body with varying surface temperature in 
vacuum set its centre of mass in motion and create a moment 
of rotation about the axis passing through the centre of mass 
(Fig. 145). These forces are called radiometric. 

In the conditions of not very high vacuum the situation is 
different. The nature of interaction of individual molecules 
with the surface is the same as in the case considered above 
(see Fig. 144). However, the surface temperature now affects 
the gas temperature in a certain layer near the surface, in 
which collisions between molecules occur. This leads to 
a change in the properties of the incident molecular flux. If 
the surface is heated uniformly, then, as before the tangential 

forces do not appear, while the pressure is the same at all 
points of the surface. On the other hand, if the temperature 

at different points of the surface is different, the situation 
changes. For the sake of definiteness, let the surface 
temperature increase in the positive direction of the X-axis 
(Fig. 146). Then the molecules striking a certain region have, 
on the average, a tangential component, which is larger in the 
negative direction of the X-axis than in the positive direction, 
since the first molecules arrive from the side of more heated 
near-surface layers. Consequently, the resultant of the 
tangential forces of interaction is directed towards negative 
values of the X-axis. This force is applied to the surface. 
According to Newtons third law, the change in the 
momentum of the molecules having interacted with the 
surface must be directed oppositely, i.e. towards positive 
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In molecular physics, vacuum 
is a relative concept and is 
determined by the relation 
between the mean free path 
and the linear dimensions of 
the vessel containing a gas. 

Molecules practically do not 
interact with each other in 
vacuum. For this reason, the 

transport of molecular 
properties via collisions does 
not take place in vacuum. 
Instead, molecular properties 
are transferred as a result of 
consecutive collisions of 
molecules with the surfaces 
of material bodies. 

6. Transport Processes 

values of the X-axis. This means that in the surface layer 
there appears a flux along the surface from less heated 
regions to more heated regions. This phenomenon is called 
the thermal slip. It follows from what has been said above 
that it takes place at a not very high vacuum. On the other 
hand, thermal slip terminates for a certain increase in 
pressure. The action of forces emerging during thermal slip 
on the regions of the surface with different temperatures is 
obvious. They must be added to the forces of pressure shown 
in Fig. 145. 

As the pressure between the regions with different pressures 
increases, hydrodynamic fluxes appear and equalize the 
pressure. As a result of an increase in temperature near more 
heated regions of the surface, the gas pressure in these 
regions increases and the gas fluxes thus created are directed 
from more heated regions to less heated regions. These fluxes 
compensate the thermal slip and equalize the pressure on 
different regions of the surface. Consequently, radiometric 
forces, as well as the forces caused by the thermal slip, 
disappear. 

Example 54.1. A vessel is separated into two equal parts 
by a thin partition with a small hole of area S in it. The 
volume of the parts are V. Initially, each part of the vessel 
contains the same number of different molecules at the same 
temperature. The gases are highly rarefied. The numbers of 
molecules of types a and b are n, and n, (n, 2 n,). The mean 
velocities of molecules at the given temperature are v, and v. 
The parts of the vessel exchange molecules through the hole. 
Find the law of time variation. of molecular concentra- 
tions. 

We denote by na (t) and n, (t) the numbers of molecules 
of type a in the first and the second parts at an instant t. The 
initial conditions are n,, (0) 2 n,, n,,(0) 20, n, naz = na = 
— n. The corresponding conditions for the molecules of type 
b have the form n,, (0) 2 0, n, (00) 2 n,, n,, - ny; —n. 

Taking into account (8.33, we may conclude that the 
number of particles of type a passing per second through the 
hole S from the first part of the vessel to the second is equal 
to (n,, /V)v,S/4, and the number of particles passing in the 
opposite direction is (n,,/V)v,S/4. Consequently, the 
equation describing the change in the number of molecules in 
the first part has the form 

| Sv, dn, — li 
ub py Va d | 4V 

(54.3) = na) 
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or, taking into account that na + na: = n = const, 

dna Sv n 
SS SSS (ne I 54.4 

dt 2V ( vi 3 e 
A similar equation can be written for n,,. 
Solving this equation under the initial condition n,, (0) — n, 

we obtain 

na (t) = (n/2) {1 + exp [ — Sv,t/(2V)]}. (54.5) 

The corresponding expression for n,, (t) is 

naz =n — na = (n/2) {1 — exp [ — Sv,t/(2V)]}. (54.6) 

Similar expressions can be obtained for n,, and n,,. The 
total number of particles in each part varies with time 
according to the law 

B,Q— Day i 

= (n/2) {2 + exp [ ~ Sv,t/(2V)] — exp [ — Su,t/(2V)]}, 
(54.7) 

na = a2 t "pa 

= (n/2) {2 — exp [ — Sv,t (2V)] + exp [ — Sv,t/(2V)]}. 

(54.8) 

The pressures in the parts of the vessel are p, =(n,/V)kT 
and p, =(n,/V)kT. Thus, at the initial instant of time the 

pressures are equal [po = (n/V) kT], but then their equality is 
violated. In the long run, as t— oo, the pressures equalize 
again. The behaviour of the pressures in the process is 
determined by the mean velocities v, and v,: at the initial 
moment the pressure increases in the part of the vessel 
containing the gas with a smaller mean velocity of molecules 
and decreases in the part where this velocity is higher. 

SEC. 5. TRANSPORT PHENOMENA IN SOLIDS 

The mechanisms of diffusion 
and thermal conduction in sol- 
ids are discussed. The mean- 

ing of the activation energy 
of diffusion is clarified. External 
thermal conductivity is consid- 
ered. 

DIFFUSION. Transport phenomena occur in liquids and 
solids as well, but the mechanisms of these phenomena differ 

from those in gases. This is due to the fact that, firstly, the 
concept of the mean free path loses its meaning here, and 
secondly, the forces of interaction between the molecules are 
very large and continuously affect their motion. 

Solids exhibit both self-diffusion and mutual diffusion. This 
is demonstrated in the most visual form by mutual 
penetration of the substance of two bodies that have been in 
contact for a sufficiently long time. 
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Self-diffusion is mainly realized through the following three 
mechanisms. 

|. If there is a vacancy in a crystal lattice site, one of the 
neighbouring atoms may go over from its site to the vacant 
site (see Fig. 108). This transition is equivalent to the motion 
of the vacancy. For the process of self-diffusion to take place 
due to motion of vacancies, it is necessary that the vacancies 
be distributed nonuniformly over the lattice, i.e. that the 
density gradient be created in the lattice. In creating 
vacancies, a significant role is played by dislocations. 

In order to realize diffusion due to motion of vacancies, 
two conditions must be observed simultaneously: the 
presence of vacancies and a sufficiently high vibrational 
energy of neighbouring atoms for one of them to be able to 
leave its site. 

2. If the vibrational energy of an atom in the crystal lattice 
site has become sufficiently high, the atom can leave its site. 

If there is no vacancy in the neighbourhood, it becomes an 
interstitial atom (see Fig. 110) moving in the interstitial 
space. 

3. Neighbouring lattice sites may exchange atoms. This 
diffusion mechanism is not associated with the motion of 
lattice defects. 

Diffusion in solids is described by Fick's law (52.12), but 
the diffusion coefficient D is determined by other factors. The 
motion of vacancies plays a leading role in diffusion. Let us 
denote by t the average time of “sedentary” life of the atom 
at a lattice site and by <d> the displacement of the atom 
during a jump. Obviously, «d» is approximately equal to the 
main lattice period. The mean velocity of atoms during jumps 
is <v> =<d>/<t. Further arguments are similar to those 
used while deriving Eq. (52.4) and, subsequently, Eq. (52.12). 
An atom can make a jump by <d> in six different directions 
with equal probability. Consequently, 

D — Qv» Xd5/6 — (d>) / (65>). (55.1) 

In order that a jump be realized, there must be a vacancy 
and the neighbouring atom must have sufficient energy for 
accomplishing a jump to the vacancy. 

Let us denote by s, the energy after acquiring which the 
atom necessarily leaves its site. As a result, a vacancy is 
formed. In accordance with the Gibbs distribution (7.5), the 

probability of a vacancy emergence is 

g, — A,exp[— &,/ (kT)]. (55.2) 

On the other hand, if we denote by e; the energy that an 

atom must have in order to accomplish the jump to the 
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. What is the principal difference 
between the transport mecha- 
nisms in solids and liquids and 
the transport mechanism for 
gases? 

. Name three ways of realization 
of diffusion in solids. What is 
the order of magnitude of the 
diffusion coefficient in solids? 

. Which quantities constitute the 
activation energy of diffusion? 

. How can you explain a very 
high value of the thermal 
conductivity of solids in com- 
parison with the thermal con- 
ductivity of gases by using the 
concept of phonons? 
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available vacancy, we can write the following expression for 
the probability of the jump in the presence of a vacancy: 

2^; (jump/vacancy) — A, exp [ — &; /(kT)], (55.3) 

where we use the concept of conditional probability (2.9). 
Hence the probability that the vacancy exists and the jump 
to this vacancy is made can be expressed, in accordance with 
(2.11), as follows: 

P= PP = Aexp[ (e * s)/(T)] — A exp [ - W/(T)], 
(55.4) 

where A=4A,A,; is a constant and W =g, +g; is the 
activation energy of diffusion determined by the properties of 
the substance. 

Obviously, the jump frequency is proportional to the 
probability of a jump, ie. 1/(t =#. Substituting this 
expression for <t> into formula (55.1), we find 

D = Doexp[— WAkT)], 

where D, =(1/6)(<d>)? A is a constant defined by the 

properties of the substance. 
The diffusion coefficient for solids is very small 

(immeasurably smaller than for gases). For example, it is 
about 10 ̂ ?5 m7/s for gold while for atmospheric oxygen it is 
approximately equal to 10 ̂ ? m?/s. 
THERMAL CONDUCTION. This process is realized 

through the interaction between molecules rather than 
through their motion inside a solid. As a result of this 
interaction, thermal motion acquires a cooperative nature, 
and hence the thermal motion of molecules in a solid is 
described as an ideal phonon gas (see Sec. 46). 

In order to describe the thermal conductivity, we may 
repeat the arguments of Sec. 52, bearing in mind that instead 
of molecular motion we consider the motion of phonons. We 
obtain the formula similar to (52.6) or heat fluxes, while for 

the thermal conductivity we can write, in accordance with 

(52.7), the following expression: 

À = pr, Clos? cy/3, 

where v, is the velocity of sound in a solid, and <la> is the 

mean free path of phonons, whose calculation is a difficult 

(55.5) 

(55.6) 
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problem. This expression shows that (l,» —const/T. The 
constant is determined by the properties of the material. 

Thermal conductivity of solids is many times higher than 
that of gases. The thermal conductivity of gases under normal 
conditions has the order of ! mW/(m- K), while for solids it 
is sometimes of the order of 1 kW/(m- K), i.e. 105-108 times 
higher. 

In addition to the lattice conductivity, in metals we must 
take into account thermal conductivity due to the transport 
of heat by free electrons. In order to estimate its role, we 
must take into consideration the properties of the electron 
gas (see Sec. 27). 

At a high temperature, the electron thermal conductivity is 
significant. It is this component that determines high thermal 
conductivity of metals in comparison with nonmetals. The 
lattice thermal conductivity begins to dominate at a lower 
temperature, while at extremely low temperature, when the 
lattice thermal conductivity is very small, the electron 
thermal conductivity predominates again. 
EXTERNAL THERMAL CONDUCTIVITY. If a solid is sur- 

rounded by a medium with a different temperature, the 
thermal flux propagates through the surface of the solid. At 
the surface of the solid, the temperature undergoes a jump 
from the temperature T of the solid to the temperature To of 
the medium. Experiments show that for small differences 
T — Tg, the normal component of the heat flux is 
proportional to this difference: 

Ia =2(T-— T9), (55.7) 

where « is the external thermal conductivity. This expression 
was obtained for the first time in 1701 by I. Newton. The 
value of the coefficient € is determined experimentally. 

Example 55.1. Find the temperature distribution in 
a spherical layer of a body whose inner surface of a certain 
radius r, is maintained at a temperature T}, while the outer 
surface of radius r,, at a temperature T,. 

The problem is spherically-symmetric, and the thermal 
flux is directed along the radius. In a steady state, the ther- 
mal flux through the spherical surface of any radius between 
ri and r, is constant. Consequently, from (52.6) we have 

À (d T/dr) 4nr? — const. (55.8) 

The general solution of this equation is 

T — Ajr 4- B, (55.9) 



Sec. 56. TRANSPORT 

Specific features of diffusion, 
thermal conduction, and visco- 
sity in liquids are considered. 
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where A and B are the integration constants. They are 
determined by the initial conditions 

T, — Aflr, - B, T;- Afr, * B, 

whence A —(T;, — T5) rirjf(r - ri). B- T, — (T1 — Ta)ro/ 
Kr; ri, and the solution (55.9) can be written in the 
form 

T (r - (T, — T3)rir;/ [r2 rr] - (T2705 7 Tir)/60; 7n). 

(55.10) 

PHENOMENA IN LIQUIDS 

DIFFUSION. The mechanism of diffusion in liquids is similar 
to the diffusion mechanism in solids (see Sec. 55). A molecule 
changes its surroundings jumpwise and passes to another 
point. If the mean time of “sedentary” life of a molecule 
between the jumps is denoted by <t>, we can repeat the 
arguments of the preceding section and obtain the following 
expression for the diffusion coefficients instead of (55.1): 

D — (A»Y/(6 €»), (56.1) 

where <A> is the mean distance by which the molecule jumps 
while changing its surroundings. Recall that in (55.1) <d> 
denotes the mean distance between neighbouring lattice sites. 

The time <t> for liquid is also determined in terms of the 
probability of a jump. While determining the jump 
probability, we must take into consideration the required 
energy and the probability that a molecule has this energy, as 
well as the probability that there are conditions for a jump in 
molecular surroundings. Obviously, these two probabilities 

are given by the formulas of the type (55.2) and (55.3). As 
a result, we obtain for the diffusion coefficient the formula, 
which is identical to (55.5): 

D 2 Dgexp[— W/(kT)]. (56.2) 

The activation energy W of a molecule, just as Dg, is 
determined by the properties of liquid. 

The diffusion coefficient for liquids is much smaller than 
for gases but much larger than for solids. Its typical order of 
magnitude is 107? m?/s. 
THERMAL CONDUCTION. Thermal conduction in liquids, 

just as in solids, is realized by the transfer of thermal motion 
of some molecules to others as a result of interaction. 
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However, in the case of liquids there is no simple pattern in 
the form of phonon motion, and the entire theory becomes 
very complicated and cumbersome if, we try to obtain 
quantitative results. For this reason, we shall limit ourselves 

to qualitative remarks and note that the thermal conductivity 
of liquids is several times higher than that for gases under 
normal conditions, but it is tens and hundreds of times lower 
than the thermal conductivity of solids. The only exception is 
liquid metals whose thermal conductivity is close to that of 
metallic solids. This is explained by the presence of the 
electron thermal conductivity in them. 

VISCOSITY. The mechanism of viscosity in liquids cannot 
be represented in a simple form as it was done for rarefied 
gases in which it is reduced to the transport of the moment 
of the ordered motion of gas layers upon a transition of 
molecules from one layer to another as a result of molecular 
motion. If we adopt this mechanism and take into account 
the jumpwise transition of a molecule from a “sedentary” 
state in one layer to a “sedentary” state in another layer, as it 
was done while deriving (55.5), the temperature dependence 
of the dynamic viscosity n obtained in this way is in 
contradiction with the experiment, namely, the theoretical 
dependence is n oc exp( — b/T), while the experiments reveal 
that n oc exp (b/T). 

The mechanism of “jumps” of a molecule from one 
“sedentary” state to another retained within certain limits, 

but these jumps must be considered in the direction of action 
of the force, i.e. perpendicularly to the velocity gradient. In 
this case, the process turns out to depend on specific features 
of intermolecular forces. The molecule has to escape from its 
surroundings in order to move in the direction of the force. 
The bonds between the molecules that must be overcome in 
this case are similar to those during evaporation. The 
calculation of the process is extremely difficult. It reveals that 
the dynamic viscosity generally depends on the external force, 
although this dependence is not always significant. In 
particular, this dependence is unimportant for ordinary 
liquids at not very high values of the external force. 

The dynamic viscosity can be described sufficiently 
accurately by the formula 

n x Ac", (56.3) 
where A and b are determined by the properties of the liquid. 
The most important result of this formula is the nature of the 
temperature dependence of dynamic viscosity: with increasing 
temperature, the dynamic viscosity abruptly decreases. Such 
a behaviour of the dynamic viscosity of liquids is opposite to 
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that observed in gases whose dynamic viscosity increases with 
temperature. 

The dynamic viscosity of conventional, not very viscous 
liquids is of the order of 1 mPa-s. However, the dynamic 
viscosity of viscous liquids is thousands of times higher. For 
example, the dynamic viscosity of water at 20°C is 1.002 x 
x 1073 Pa-s, 0648x1073 for petrol, 1.2 107? for 
alcohol, and 1480 Pa-s for glycerine. Recall that the viscosity 
of gases at the same temperature under atmospheric pressure 
is of the order of 10^? Pa.s. 

Sec. 57. BASIC CONCEPTS OF THERMODYNAMICS 

OF IRREVERSIBLE PROCESSES 

The problems of thermodyna- 
mics of irreversible processes 
are considered and its basic 
concepts are described. The 
general theory is applied for 
the analysis of the Seebeck, 
Peltier, and Thomson effects. 

THE OBJECTIVES OF THERMODYNAMICS OF IRRE- 

VERSIBLE PROCESSES. The transport processes are 

irreversible. They have been analyzed on the basis of their 
mechanisms, but general equations of the form (52.12) for 
their description are of phenomenological nature. 
A mechanism of transfer must be considered only for 
calculating the corresponding transfer coefficient. 
Thermodynamics of irreversible processes aims at the study 
of phenomenological laws of irreversible processes, in which 
the internal mechanisms of these processes are not taken into 
consideration. 

FLUXES AND FORCES. The phenomenological equations 
describing the transport phenomena discussed above have the 
form 

ôT 
ped 3 57.1 

e pod (57.2) 
ex 

a La (57.3) 
ôx 

It is expedient to supplement these equations with Ohm's 
law in the differential form, which will be useful for further 
applications: 

8 decet. (57.4) 
Ox 

where j is the current density, y the electrical conductivity, 
@ the electric field potential, and d@/éx the electric field 
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intensity. Thus, Ohm's law (57.4) is also the transport 
equation for the electric charge. 

All these equations are written for one flux component 
along the X-axis. Similar equations can be written for other 
two coordinate axes, since fluxes are vector quantities. 

The common feature of these equations is that they 
describe the flux of a certain quantity on the left-hand side of 
the equation, that appears due to a corresponding driving 
"force" on the right-hand side of the equation. This force is 
the gradient of a certain quantity. All the equations for the 
flux have the form 

I=LX, 

where I is the flux of a quantity, X the generalized force 
creating the flux, and L the proportionality factor. 
COUPLED FLUXES. In the cases considered above, each 

flux was only due to one driving force. However, even the 

diffusion flux of molecules is caused by two driving forces, 
viz. the density gradient and the temperature gradient. 
Therefore, in the general case the expression for the flux I; 
has the form 

I= Ly Xp + LyX, +... = V LyX, (57.5) 
j 

where the index i labels the type of fluxes, while the index 

j indicates the type of the driving force. The total number of 
these equations is equal to the number of fluxes. 

Equations (57.5) are called the linear phenomenological 
equations of thermodynamics of irreversible processes, and 
the coefficients L;; are called the Onsager coefficients. The 
coefficient L, connects the flux I; with the corresponding 
driving force. The coefficients L,; for i#j connect different 
fluxes and forces. They are called the coupling coefficients. 
ONSAGER RECIPROCAL RELATIONS. It is proved in 

statistical thermodynamics that the coefficients L,, are not 
completely independent. The relations 

Lye (57.6) 

existing between them are called the Onsager reciprocal 
relations. In this book, they are admitted without proof. 
GENERATION OF ENTROPY. Another important concept 

of thermodynamics of nonequilibrium processes is the for- 
mula for entropy generation, which will also be given without 
proof: 

(dS/dt)}en = J:X I4, om Y LY, (57.7) 



Fig. 147. To the calculation of the 
entropy generation in a heat flux 
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where (dS/dt),., is the entropy generation rate per unit 
volume, i.e. the generation rate of the entropy density. Thus, 
the fluxes J, and forces X; cannot be chosen arbitrarily. They 
must be such that equality (57.7) be observed. 
THE CHOICE OF FLUXES AND DRIVING FORCES. While 

choosing the fluxes and driving forces, we must naturally 
ensure the same dimensions on both sides of Eq. (57.7), i.e. 
the following relation between the dimensionalities: 

Dn m H [X]. (57.8) 

Here [L], [t], and [S] - [U]/[T] are the dimensions of 
length, time, and entropy respectively, while [U] and [T] are 
the dimensions of energy and temperature. Hence we may 
conclude, for example, that the quantities I, and 0T/Ox in Eq. 
(57.1) cannot be taken for the flux J, and the driving force 
X,— —OT/óx, since in this case [J,][X,]= 
-[U][T]/(LT [t], which does not correspond to the 
dimension of the left-hand side of (57.8). It follows that if we 
take I, as a flux we must take X,— — (1/1?) (0T/Ox) for the 
driving force. However, we can naturally take 1 — I,/T as 
a flux, and then we must take X — — (1/T) (0T/Ox) for the 
driving force. 

Similarly, we may conclude that we cannot take the 
quantity X — — 0q/óx for the driving force in Eq. (57.4) if we 
have the electric charge density j=J as a flux, since 
U][6e/0x] - [U]/ [L]* [t]. Therefore, the driving force 
corresponding to the current density j is X = — (1/T) (0/0x). 
GENERATION OF ENTROPY IN THE THERMAL FLUX. 

On the basis of what has been said above, we may conclude 
that the entropy in the thermal flux is generated in 
accordance with the law 

ds | aT l, ôT —] eL -=> ]=-4. 9 s ). | T? x) T? ix did 

Let us verify this by direct calculation. We consider 
a cylinder with a cross-sectional area A and length L 
(Fig. 147). The lateral surface of the cylinder is insulated, and 
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its bases are kept at different temperatures T, and T;, where 
Tq. 

Under this condition, the flux 

I, = — à (T/êx) (57.10) 

or 

Law = Ty (57.11) 

moves along the cylinder. 
The entropy flux is obviously equal to 

i OF 
Is=— = —— —. 5712 
Peu T ôx 

Since ÓT/Ox — const, it is immediately seen from formula. 
(57.12) that the entropy flux density increases along the flow 
since T decreases. Consequently, the flux generates an 
entropy during its flow. The entropy generated over 
a distance dx during 1s is given by 

ds 
c) dx = A [Is(x + dx) —Is(x)] 

1 1 Q 1 
= AI, ea em (7).] = AI, Tu (+) dx. (57.1 3) 

Consequently, the generation rate for the entropy density is 

ds ie, OF IO ee ee: 57.14 
( dt j^ T? ôx ( 

which coincides with (57.9). The entropy generated in the 
entire volume per second is 

(AS), — A [I5(L) — I5(0)] ^ AI, (1/T; — 1/T, ). (57.15) 

GENERATION OF ENTROPY BY ELECTRIC CURRENT. It 

follows directly from what has been said above about the 
form of the driving force for the electric current density that 
the entropy density generation rate during the passage of 
electric current is given by 

j o 
ds i E WM (57.16) 
dt een T ox 

Let us verify this by direct calculation. By the Joule law, 
the current I flowing along a conductor (Fig. 148) produces 



Fig. 148. To the calculation of the 
entropy generation due to the 
passage of electric current through 

a conductor 
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Pi L 2 

in it during 1s the quantity of heat 

Q = PR = P} ALI (AY), (57.17) 

where R=L/(Ay) is the resistance of the conductor. 
Consequently, the density of the amount of heat liberated per 
second is 

5Q C ou . 09 z Ed cam. 57.18 
(ax), pa a ee 

where we took into account that j= — yéo/éx. Therefore, the 
entropy generation rate is 

ds 1 $ j ô D sa E nue (57.19) 
dt Jen | T \ dV dt /gen T óx 

which coincides with (57.16). 

EQUATIONS FOR THERMOELECTRIC PHENOMENA. Let 

us now consider some more complex phenomena involving 
coupled fluxes. First of all, let us analyze the densities of the 
electric current and of the quantity of heat, which are related 
to one another. In accordance with (57.5) we write the 
electron and thermal fluxes in the form 

t eT 1 do joe o4 5 pe oe. 57.20 
i ^ T? óx 7 T ax ( ) 

1 oT 1 ĉọ (5p d REI ie 5721 
J apo p TP x (rN 

For uncoupled fluxes of the thermal and electric 
conductivities, these equations assume the form 

p ôT 
I= — Ly Ao (57.22) 

1 oo 
j-—L.————. 5723 J ee T ox ( ) 

Comparing these expressions with (57.1) and (57.4), we see 
that 
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ù= Lu/T?, (57.24) 
est, dde (57.25) 

These expressions can be used for establishing the relation 
between the quantities L,, and L,, with the thermal 
conductivity and electric conductivity. 
SEEBECK EFFECT. Let us first consider the case when the 

electric current is absent (j=0). Equation (57.21) then 
becomes 

1 /ôT 1 / õp 
0= -—L,,—|—— —Le—i|c ; 57.26 eq T? (5 ie ‘ee T aie ( ). 

whence 

(0/0x);- o C Leg (57 27) 

(OT/0x);- o Ead 

Taking into account the relation 

(09/Ox) 2o — | Oo/Ox (9e 

(6T/8x)j-0 (Fe Lae )" (5728) 

we can write Eq. (57.27) in the form 

(9/0T),., — — Le, / (Ls, T). (5729) 
This means that in the absence of electric current but in 

the presence of a temperature gradient, a potential difference 
appears. In other words, the temperature gradient generates 
electric current. This effect is called the Seebeck effect. The 
quantity 

Er= = (60/0T) j= Ex Ll ee T) (57.30) 

is called the thermoelectromotive force. 
COUPLED ELECTRIC CURRENT AND HEAT FLUX. 

Expressing &q/óx for j — 0 in terms of OT/Ox in accordance 
with (57.21) and substituting the result into (57.20), we find 

| GT Lå 1 T —cLL.4 I2 OT 
I = — — —— + r — es 

1 wT Oy ^L OT? Ox TL. ôx 

(57.31) 

where L,, — L,,. The quantity 

Mp = (La Lu — L2,)/(T?L 2) (57.32) 



Fig. 149. To the explanation of the 
Peltier effect 
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Jab 

is the thermal conductivity in the system of coupled electric 
current and heat flux. 

It follows from (57.30) that 

La = ErTTL,, — Er T^y, (57.33) 

where we took into account (57.25). Using (57.24), (57.32), and 
(57.33, we can give Eqs. (57.20) and (57.21) the following 
form: 

oT ĉo 
— bp — X. 34 I; (Ar * ET Y ) ôx ErTy ex 5 (57.34) 

oT ð je -Epr o - 3 A. (57.35) 
Ox Óx 

PELTIER EFFECT. Eliminating from (57.34) d@/dx with the 
help of (57.35), we obtain the expression for the heat flux: 

eT 
I= ~ dr + Eri. (57.36) 

Let us now consider the conditions at the junction between 
two different conductors (Fig. 149) under isothermal 
conditions. 

If the conductors are at the same temperature, i.e. 
OT/Ox — 0, the current with the density j = — yóq/óx passes 
through the junction. Heat fluxes on different sides of the 
junction are different in this case. According to (57.36), they 
are equal to 

L,,— EraTj, (57.37) 

Ilẹ = EreTj. (57.38) 

Since the quantities of heat supplied to the junction and 
leaving it are different, the heat is either absorbed or 
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liberated at the junction. Thus, upon a passage of electric 
current through the junction between two different metals, 
the junction is either heated or cooled. This phenomenon is 
called the Peltier effect. Under isothermal conditions, the 
temperature of the junction is maintained constant due to 
heat exchange with the ambient. 

The thermal power liberated or absorbed at the junction is 

Tap = A (gy — Iga) = AT(Er, — Er;)j 7 Ana, (57.39a) 

where 

Ten = T(Ery — Era) (57.39b) 

is the Peltier coefficient. 
THOMSON EFFECT. Let us maintain a temperature 

gradient along a current-carrying conductor (Fig. 150). The 
energy flux Ig along the conductor is the sum of the heat flux 
I, (see (57.36)) and the energy flux qj associated with the 
motion of electric charges. Consequently, the total energy flux 
is 

Ig- I, Qj 2 — ArÓT/Ox + (ErT +9)j. (57.40) 

Let us consider a cylindrical layer of thickness dx in the 
conductor (Fig. 150). The energy liberated in this layer 
appears due to the difference in the energy fluxes through the 
surface confining this layer. Consequently, the energy 
liberated in the layer per second is 

dQ 
wa Hg(x +dx)— Ig(x)] = A 

I 
eu oi (5741) 
Ox 

where A is the cross-sectional area of the conductor. Substi- 
tuting the expression (57.40) for Ig into this equation, we 
finally obtain the following expression for the thermal power 
density liberated in the conductor upon the passage of the 
current through it: 

d à fT ðEr P 9 (m qq kst VEA 
Óx y 

P 
P Ox - Adxdt ox 

where 0@/éx = —j/y. 
The last term on the right-hand side of this equation 

describes the quantity of heat liberated in a conductor upon 
the passage of the current in accordance with Joule’s law. 



Fig. 150. To the explanation of the 
Thomson effect 
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According to the rule of signs (see Sec. 14), the minus sign 
indicates that the heat is liberated in the system. The first 
term describes the heat flow independent of the electric 
current. The presence of the middle term shows that due to 
the temperature gradient, a heat is liberated or absorbed in 
a conductor in addition to the Joule heat. This additional 
heat is called the Thomson heat. According to (57.40), the 
density of the Thomson heat power is equal to 

(57.43) 

esT (57.44) 

is the Thomson coefficient. 
Liberation or absorption of heat in addition to Joule’s 

heat, which takes place in a current-carrying conductor with 
a temperature gradient, is called the Thomson effect. 
THERMOCOUPLE. Let us consider an open circuit 

consisting of two different conductors the junctions between 
which are kept at different temperatures T, and T, 
(Fig. 151). The same temperature gradient in the conductors 
produces Seebeck effects of different magnitudes in them. In 
other words, the potential difference is created. 
A combination of two Seebeck effects in different conductors 
creates an electromotive force in the circuit. 

In accordance with (57.30), the potential difference @,, is 
given by 

T, T, Tea 
— Pa = f ErpdT + f EradT+ f Er,dT, (57.45) 

Ta T, T; 
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Fig. 151. Thermocouple (T, > T,) 

PROBLEMS 6.1. 

6.2. 

6. Transport Processes 

T, 

T 

where T,, and T,, are the temperatures of the ends of the 
conductors between which the potential difference «,, is 
measured. For T,, — T,, formula (57.45) assumes the form 

T; 

- 9.7 f [Era Ers] aT. (5746) 

For T;— T, 0 K, we have 

do, /dT — Ers5— Era 2, (T), (5747) 

where a,,(T) is the Seebeck coefficient. Using (57.39b), we 

can express a,,(T) in terms of the Peltier coefficient m,,: 

Og, = Tg, /T. (57.48) 

Formula (57.46) establishes a one-to-one correspondence 
between the temperatures T,, T'; and the potential difference 
Q,,. Therefore, if we take the known temperature T; as the 
reference point, we can reduce the measurement of other 
temperatures to the measurement of the potential difference. 
This makes thermocouples very convenient instruments for 
measuring temperature. 

A one-component gas with the relative molecular mass M, = 29 has 
the pressure p=10° Pa and temperature T= 273 K. Find the 
collision frequency in a volume of 1 1, the collision frequency for an 
individual particle, and the mean free path, assuming that the 
gaskinetic radius of the gas molecules is rj — 1.87 x 10 ^ !? m. 
The gaskinetic radius of helium atoms can be assumed equal to rp = 
= 1.09 x 10719 m. Find the total number of particles in 1 m?, 
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which during 1 s may cover the distance 0.5 cm without collisions. 
The pressure is 100 Pa, the temperature 0°C. 
Find the probability that a particle passes without collisions 
a distance equal to two-, three-, and fivefold mean free path. 
Find the pressure under which the mean free path of hydrogen 
molecules at 0°C is equal to 1 cm. 
Assuming that the gaskinetic radii of H, and CO, molecules are 
equal to ry, — 1.35 x 10^ !? m and roz = 2.3 x 10 ̂ !? m respectively, 
while their partial pressures are p, — 1.96 x 105 Pa and p, = 0.98 x 
x 105 Pa, find the mean free paths between collisions of molecules 

of different species. The temperature is 0°C. 
The dynamic viscosity of hydrogen is n = 8.6 x 107° Pa-s at T= 
= 273 K and p=1.01 x 10° Pa. Find the mean free path of hyd- 
rogen molecules and the gaskinetic radius. 
Find the dynamic viscosity of nitrogen under normal conditions if its 
diffusion coefficient is 1.42 m?/s. 
Find the gaskinetic radius of oxygen molecules if its dynamic 
viscosity at 0°C is 18.8 x 1076 Pa-s. 
Assuming that the gaskinetic radius of a gas molecule is 1.5 x 
x 10 ^ !? m, find the diffusion coefficient and the dynamic viscosity 
of the gas at p= 1.01 x 10° Pa and T = 283 K. 
Find the thermal conductivity of a gas the gaskinetic radius of 
whose molecules is 1.5x 107'!°m, temperature t=10°C, and 
pressure 0.98 x 10° Pa. 
Assuming that the gaskinetic radius of air molecules is 1.5 x 
x 10 7 !? m, find the pressure under which a vacuum is attained in 
a Dewar flask (the separation between whose walls is 0.8 cm) at the 
temperature 290 K. 
One end of an iron rod is maintained at the temperature 100°C, 
while the other is in contact with ice at 0°C. The cross-sectional 
area of the rod is 1 cm?, its length being 20 cm. Find the mass of ice 
melted during 30 min assuming that the rod is thermally insulated, 
and hence the losses through its surface can be ignored. 

6.1. v” =8.9 x 10%! s7!; v =6.8 x 10° s7!; <I> =6.7 x 1078 m. 6.2. 
1.73 x 10'4. 6.3. 0.135; 0.05; 0.006. 6.4. p= 12 Pa. 6.5. l3 =2.2 x 
x1075 m; Lh, —-9.66x10 $m. 66. 17x 1077 m; 1.1x107!? m. 

6.7. 1.78 x 10 5 Pa.s. 6.8. 1.5 x 1071? m. 6,9. 1.48 x 1075 m?/s; 
1.85 x 107? Pa.s. 6.10. 132 mW/(m-K). 6.11. p— 1226 Pa. 6.12. 

5.25 g. 



Appendix 1 

SI Units Used in Molecular Physics 

Quantity Unit 

name of quantity dimensionality basic name of unit symbol 
symbol 

Basic units 

Length L l metre m 
Mass M m kilogram kg 
Time T t second . s 
Electric current I I ampere A 
Temperature e T kelvin K 
Amount of substance N v mole mole 
Luminous intensity J I candela cd 

Derived units 

Velocity Lr vu metre per second m/s 
Acceleration p a metre per second m/s? 

per second 

Force LMT? F newton N 
Pressure LMT? p pascal Pa 
Momentum LMT”! p kilogram-metre per kg-m/s 

second 
Energy EMI? W,E  joule J 
Power EMT 3 P watt WwW 
Internal energy EMT? U joule J 
Enthalpy TENET? H joule J 
Free energy EMT- F joule J 
Gibbs' function EMT G joule J 
Quantity of heat PMT"? Q joule J 
Work EMT? A joule J 
Area D S square metre m? 
Volume E V cubic metre m? 
Molar volume BN? V, cubic metre per — m?/mole 

mole 
Specific volume PM! v cubic metre per ki- m?/kg 

logram 
Density ML? p kilogram per cubic kg/m? 

metre 

Latent heat BMT L joule J 
Heat capacity PBMT^?0^! C joule per kelvin J/K 
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Entropy 
Relative atomic mass 

Relative molecular mass 
Molar mass 

Number of structural units of substance 

Concentration 
Adiabatic exponent 
Polytropic exponent 
Efficiency 
Surface tension 
Osmotic pressure 
Chemical potential 
Compression ratio 
Linear expansion coefficient 
Volume expansion coefficient 
Temperature coefficient of pressure 
Relative elongation 
Relative shear 
Young modulus 
Normal stress 
Shear modulus 
Tangential stress 
Poisson's ratio 
Bulk modulus 
Mean free path 
Collision frequency 
Thermal conductivity 

Dynamic viscosity 
Diffusion coefficient 

BMT?0! 

dimensionless 

dimensionless 
MN^! 
dimensionless 
T 3 

dimensionless 

dimensionless 
dimensionless 
MT? 
L'MT ? 

EMT"? 
LM T? 
o =i 

OT 1 

[5 1 

dimensionless 
dimensionless 
L MT? 

L'MT^? 
EMT? 
L MT? 

dimensionless 
L MT? 
E 
T^ 1 

LMT? O`! 

LC IMT"! 
HT 

^ 

weder! Geo Qus P; ECCE sx e 

> si 

EX 

Ss 

= 

_ 
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joule per kelvin 

kilogram per mole 

metre to 

third power 

newton per metre 

pascal joule 
joule 
inverse pascal 
inverse kelvin 

inverse kelvin 
inverse kelvin 

pascal 
pascal 
pascal 
pascal 

Pascal 
metre 
inverse second 
watt per 
kelvin 

pascal-second 

minus 

metre- 

443 

(continued) 

J/K 

kg/mole 

Pa 

m 
g^ 

W/(m-K) 

Pa.s 

square metre per m?/s 
second 
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Physical Constants* 

Constant 

Velocity of light in vacuum 
Acceleration due to gravity 
Normal molar volume 
Avogadro constant 
Loschmidt's number 
Boltzmann constant 

Planck constant 

Molar gas constant 
Electric constant 
Magnetic constant 

Atomic mass unit 
Stefan’s constant 

Charge of electron 
Rest mass of electron 
Rest mass of proton 
Rest mass of neutron 
Gravitational constant 

Symbol 

a3 

^ 

a 

OFEN ES 

Numerical value 

2.99792458 x 109 m/s 

9.80665 m/s? 
2241383 m?/mole 
6.022045 x 107? mole"! 
2.686754 x 1025 m^? 

1.380662 x 107 ?? J/K 

6.626176 x 10734 

J-Hz`! 
1.0545887 x 10^?* J.s 

8.31441 J/(mole-K) 
8.85418782 x 107 !? F/m 

1.25663706144 x 1075 

H/m 
1.6605655 x 10727 kg 

5.67032 x 1078 

W/(m?  K*) 
1.6021892 x 107!* C 

9.109534 x 10^?! kg 

1.6726485 x 10727 kg 
1.6749543 x 107 ?? kg 

6.6720 x 10^ !! 

m?/(kg s?) 

* Fundamental physical constants GSSSD1-76. 



Subject Index 

Alloy(s), 381 
alloying, 355 
axis, symmetry, 341 

rotoreflection, 341 
screw, 344 

n-fold, 344 

Basis vector(s), 339 
boiling, 302ff 

of liquid solutions, 321 
boiling point, 306 
bond 

covalent, 248, 388 
ionic, 247 
valence, 386 

Brownian movement, 
rotational, 132 
translational, 132 

bubble chamber, 307 

128ff, 386 

Camphor dance, 299 
capillary phenomena, 294 
cell, primitive, 339 

Bravais, 342 
centre of symmetry, 336 
cholesteric(s), 315 
coefficient 

absorption, 260 
diffusion, 406, 417, 426 

mutual, 409 
Peltier, 440 
Seebeck, 440 
Thomson, 439 
transfer, 431 

composition of alloys 
eutectic, 381 
noneutectic, 381 

compressibility, 266 
compression ratio, 183, 185 
concentration, molecular, 410 
condition, normalization, 29, 62, 64, 

78, 92, 121 
conduction 

electron, 430 
thermal, 432 

conductivity, thermal 
electron, 428 
external, 428 
lattice, 428 

constant(s) 
Avogadro, 169, 280 
Boltzmann, 80, 100, 131, 170 
gas, specific, 267 
Planck, 45, 243 
Stefan-Boltzmann, 242 
Van der Waals, 267, 272, 276, 382 

criteria, thermodynamic 
210, 216ff 

stability, 

cross section, collision, 394 
experimental determination, 396 
in rigid-sphere model, 397 

crystal(s) 
cubic, 345 
hexagonal, 345 
macromolecular, 383 
monoclinic, 345 
rhombic, 345 
tetragonal, 345 
triclinic, 340, 345 

crystal defects, 346ff 
line (dislocations), 346 

edge, 346 
screw, 346 

point, 346 
Frenkel, 346 
interstitials, 346 
Schottky, 346 
substitution, 346 
vacancy, 346 

crystal lattice, 338 
Bravais, 340 
primitive, 338 
reduced, 340 

crystallization, 263, 372ff 
curve, inversion, 289 
cycle, 173 

Carnot, 176, 185, 189, 193 
efficiency, 177, 185, 189, 
203, 262 
reversible, 177, 194, 262 

work, 173 

193, 

Defects, lattice, 426 
in macromolecular crystals, 390 

deformation(s) 
bending, 347 
elastic stress, 350 
plastic, 354 
residual, 354 
shear, 347 
uniform 
347, 351 

degrees of freedom 
internal, 119 
number of, 119f 

density 
critical, 261 
of states, 77f, 369 

Dewar flask, 420 
diagram, 

constitution, 317 
binary, 320 

phase, 330, 373, 375 
gas-liquid, 373 
gas-liquid-solid, 374 
of solid solutions, 382 

tension (compression), 

p-v, 263 
differential forms, 143ff 
diffusion, 394, 425, 431 

in gases, 402 
at low pressure, 420 
mutual, 407, 412, 425 
self-, 425 
thermal, 410, 420 

dislocations, 355, 426 
distribution 

binomial, 59, 62, 66, 159 
Boltzmann, 91, 95, 98ff, 105, 109, 
132, 190, 360 
Bose-Einstein, 230ff 
density, 15 
of electrons 

energy, 237 
momentum, 236 
velocity, 236 

Fermi-Dirac, 227ff, 231f, 234, 240 
Gaussian, 77, 82ff 
Gibbs, 72ff, 95, 120, 159, 189 

canonical, 73, 75, 123 
Maxwell, 77, 83f, 86, 89, 91, 95, 
165, 397, 403, 410 

characteristic velocity, 81 
equilibrium, 393 
experimental verification, 87 
velocity, 77, 282 

Maxwell-Boltzmann, 229, 231 
normal, 63 
of photons, frequency, 240 
Poisson, 63 
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