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PREFACE. 

1 Pte book is intended to form a companion volume to my 

edition of the treatise of Apollonius on Conic Sections 

lately published. If it was worth while to attempt to make the 

work of “the great geometer” accessible to the mathematician 

of to-day who might not be able, in consequence of its length 

and of its form, either to read it in the original Greek or in a 

Latin translation, or, having read it, to master it and grasp the 

whole scheme of the treatise, I feel that I owe even less of an 

apology for offering to the public a reproduction, on the same 

lines, of the extant works of perhaps the greatest mathematical 

genius that the world has ever seen. 

Michel Chasles has drawn an instructive distinction between 

the predominant features of the geometry of Archimedes and 

of the geometry which we find so highly developed in Apollo- 

nius. Their works may be regarded, says Chasles, as the origin 

and basis of two great inquiries which seem to share between 

them the domain of geometry. Apollonius is concerned with 

the Geometry of Forms and Situations, while in Archimedes 

we find the Geometry of Measurements dealing with the quad- 

rature of curvilinear plane figures and with the quadrature 

and cubature of curved surfaces, investigations which “gave 

birth to the calculus of the infinite conceived and brought 

to perfection successively by Kepler, Cavalieri, Fermat, Leibniz, 

and Newton.” But whether Archimedes is viewed as the 

man who, with the limited means at his disposal, nevertheless 

succeeded in performing what are really integrations for the 

purpose of finding the area of a parabolic segment and a 
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spiral, the surface and volume of a sphere and a segment 

of a sphere, and the volume of any segments of the solids 

of revolution of the second degree, whether he is seen finding 

the centre of gravity of a parabolic segment, calculating 

arithmetical approximations to the value of 7, inventing a 

system for expressing in words any number up to that which 

we should write down with 1 followed by 80,000 billion 

ciphers, or inventing the whole science of hydrostatics and at 

the same time carrying it so far as to give a most complete 

investigation of the positions of rest and stability of a right 

segment of a paraboloid of revolution floating in a fluid, the 

intelligent reader cannot fail to be struck by the remarkable 

range of subjects and the mastery of treatment. And if these 

are such as to create genuine enthusiasm in the student of 

Archimedes, the style and method are no less irresistibly 

attractive. One feature which will probably most impress the 

mathematician accustomed to the rapidity and directness secured 

by the generality of modern methods is the deliberation with 

which Archimedes approaches the solution of any one of his 

main problems. Yet this very characteristic, with its incidental 

effects, is calculated to excite the more admiration because the 

method suggests the tactics of some great strategist who 

foresees everything, eliminates everything not immediately 

conducive to the execution of his plan, masters every position 

in its order, and then suddenly (when the very elaboration of 

the scheme has almost obscured, in the mind of the spectator, 

its ultimate object) strikes the final blow. Thus we read in 

Archimedes proposition after proposition the bearing of which is 

not immediately obvious but which we find infallibly used later 

on; and we are led on by such easy stages that the difficulty of 

the original problem, as presented at the outset, is scarcely 

appreciated. As Plutarch says, “it is not possible to find in 

geometry more difficult and troublesome questions, or more 

simple and lucid explanations.” But it is decidedly a rhetorical 

exaggeration when Plutarch goes on to say that we are deceived 
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by the easiness of the successive steps into the belief that anyone 

could have discovered them for himself. On the contrary, the 

studied simplicity and the perfect finish of the treatises involve 

at the same time an element of mystery. Though each step 

depends upon the preceding ones, we are left in the dark as to 

how they were suggested to Archimedes. There is, in fact, 

much truth in a remark of Wallis to the effect that he seems 

“as it were of set purpose to have covered up the traces of his 

investigation as if he had grudged posterity the secret of his 

method of inquiry while he wished to extort from them assent 

to his results.” Wallis adds with equal reason that not only 

Archimedes but nearly all the ancients so hid away from 

posterity their method of Analysis (though it is certain that 

they had one) that more modern mathematicians found it easier 

to invent a new Analysis than to seek out the old. This is no 

doubt the reason why Archimedes and other Greek geometers 

have received so little attention during the present century and 

why Archimedes is for the most part only vaguely remembered 

as the inventor of a screw, while even mathematicians scarcely 

know him except as the discoverer of the principle in hydro- 

statics which bears his name. It is only of recent years that 

we have had a satisfactory edition of the Greek text, that of 

Heiberg brought out in 1880-1, and I know of no complete 

translation since the German one of Nizze, published in 1824, 

which is now out of print and so rare that I had some difficulty 

in procuring a copy. 

The plan of this work is then the same as that which I 

followed in editing the Conics of Apollonius. In this case, 

however, there has been less need as well as less opportunity for 

compression, and it has been possible to retain the numbering 

of the propositions and to enunciate them in a manner more 

nearly approaching the original without thereby making the 

enunciations obscure. Moreover, the subject matter is not so 

complicated as to necessitate absolute uniformity in the notation 

used (which is the only means whereby Apollonius can be made 
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even tolerably readable), though I have tried to secure as much 

uniformity as was fairly possible. My main object has been to 

present a perfectly faithful reproduction of the treatises as they 

have come down to us, neither adding anything nor leaving out 

anything essential or important.* The notes are for the most 

part intended to throw light on particular points in the text or 

to supply proofs of propositions assumed by Archimedes as 

known; sometimes I have thought it right to insert within 

square brackets after certain propositions, and in the same type, 

notes designed to bring out the exact significance of those 

propositions, in cases where to place such notes in the Intro- 

duction or at the bottom of the page might lead to their being 

overlooked. 

Much of the Introduction is, as will be seen, historical; the 

rest 1s devoted partly to giving a more general view of certain 

methods employed by Archimedes and of their mathematical 

significance than would be possible in notes to separate propo- 

sitions, and partly to the discussion of certain questions arising 

out of the subject matter upon which we have no positive 

historical data to guide us. In these latter cases, where it is 

necessary to put forward hypotheses for the purpose of explaining 

obscure points, I have been careful to call attention to their 

speculative character, though I have given the historical evidence 

where such can be quoted in support of a particular hypothesis, 

my object being to place side by side the authentic information 

which we possess and the inferences which have been or may 

be drawn from it, in order that the reader may be in a position 

to judge for himself how far he can accept the latter as probable. 

Perhaps I may be thought to owe an apology for the length of 

one chapter on the so-called vevoecs, or inclinationes, which goes 

somewhat beyond what is necessary for the elucidation of 

Archimedes; but the subject is interesting, and I thought it 

well to make my account of it as complete as possible in 

order to round off, as it were, my studies in Apollonius and 

Archimedes. 
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I have had one disappointment in preparing this book fox 

the press. I was particularly anxious to place on or opposite 

the title-page a portrait of Archimedes, and I was encouraged 

in this idea by the fact that the title-page of Torelli’s edition 

bears a representation in medallion form on which are endorsed 

the words Archimedis effigies marmorea in veteri anaglypho 

Romae asservato. Caution was however suggested when I 

found two more portraits wholly unlike this but still claiming to 

represent Archimedes, one of them appearing at the beginning 

of Peyrard’s French translation of 1807, and the other in 

Gronovius’ Thesaurus Graecarum Antiquitatum ; and I thought 

it well to inquire further into the matter. I am now informed 

by Dr A. 8. Murray of the British Museum that there does 

not appear to be any authority for any one of the three, and 

that writers on iconography apparently do not recognise an 

Archimedes among existing portraits. I was, therefore, re- 

luctantly obliged to give up my idea. 

The proof sheets have, as on the former occasion, been read 

over by my brother, Dr R. 8S. Heath, Principal of Mason College, 

Birmingham ; and I desire to take this opportunity of thanking 

him for undertaking what might well have seemed, to any one 

less genuinely interested in Greek geometry, a thankless task. 

fied We? w BD Eo 

March, 1897. 
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INTRODUCTION. 

CHAPTER I. 

ARCHIMEDES, 

A ure of Archimedes was written by one Heracleides*, but 

this biography has not survived, and such particulars as are known 

have to be collected from many various sources}. According to 

Tzetzes {| he died at the age of 75, and, as he perished in the sack 

of Syracuse (B.c. 212), it follows that he was probably born about 

287 B.c. He was the son of Pheidias the astronomer§$, and was 

on intimate terms with, if not related to, king Hieron and his 

* Kutocius mentions this work in his commentary on Archimedes’ Measwre- 

ment of the circle, bs pnow ‘“Hpaxdetdns ev re Apxywhdovs Blw. He alludes to it 

again in his commentary on Apollonius’ Conics (ed. Heiberg, Vol. 1. p. 168), 

where, however, the name is wrongly given as ‘HpdxXevos. This Heracleides is 

perhaps the same as the Heracleides mentioned by Archimedes himself in the 

preface to his book On Spirals. 

+ An exhaustive collection of the materials is given in Heiberg’s Quaestiones 

Archimedeae (1879). The preface to Torelli’s edition also gives the main points, 

and the same work (pp. 363—870) quotes at length most of the original 

references to the mechanical inventions of Archimedes. Further, the article 

Archimedes (by Hultsch) in Pauly-Wissowa’s Real-Encyclopidie der classischen 

Altertumswissenschaften gives an entirely admirable summary of all the available 

information. See also Susemihl’s Geschichte der griechischen Litteratur in der 

Alexandrinerzeit, 1. pp. 728—733. 

+ Tzetzes, Chiliad., 11. 35, 105. 

§ Pheidias is mentioned in the Sand-reckoner of Archimedes, rv mporépwy 

doTpodoywv Hvddéov...Pevdla 5¢ rod 408 marpos (the last words being the correction 

of Blass for ro6 ’AxoUmarpos, the reading of the text). Cf. Schol. Clark. in 

Gregor. Nazianz. Or. 34, p. 355a Morel. Pedias rd pév yévos nv Dupaxdovos 

dotpordyos 6 ’Apxiyundous marnp. 
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son Gelon. It appears from a passage of Diodorus* that he spent 

a considerable time at Alexandria, where it may be inferred that 

he studied with the successors of Euclid. It may have been at 

Alexandria that he made the acquaintance of Conon of Samos 

(for whom he had the highest regard both as a mathematician 

and as a personal friend) and of ‘Eratosthenes. To the former 

he was in the habit of communicating his discoveries before their 

publication, and it is to the latter that the famous Cattle-problem 

purports to have been sent. Another friend, to whom he dedicated 

several of his works, was Dositheus of Pelusium, a pupil of Conon, 

presumably at Alexandria though at a date subsequent to Archi- 

medes’ sojourn there. 

After his return to Syracuse he lived a life entirely devoted 

to mathematical research. Incidentally he made himself famous 

by a variety of ingenious mechanical inventions. These things 

were however merely the ‘‘diversions of geometry at play t,” and 

he attached no importance to them. In the words of Plutarch, “he 

possessed so high a spirit, so profound a soul, and such treasures 

of scientific knowledge that, though these inventions had obtained 

for him the renown of more than human sagacity, he yet would 

not deign to leave behind him any written work on such subjects, 

but, regarding as ignoble and sordid the business of mechanics 

and every sort of art which is directed to use and profit, he placed 

his whole ambition in those speculations in whose beauty and 

subtlety there is no admixture of the common needs of lifet.” In 

fact he wrote only one such mechanical book, On Sphere-making§, 

to which allusion will be made later. ; 

Some of his mechanical inventions were used with great effect 

against the Romans during the siege of Syracuse. Thus he contrived 

* Diodorus yv. 37, 3, ods [rods KoxAas] ’Apxiundns 6 Tupaxdaros ebpev, dre 

mapéBadev els Alyumrov. 

+ Plutarch, Marcellus, 14. 

ae Cael A Wife 

§ Pappus vu. p. 1026 (ed. Hultsch). Kdpros dé rot pnow 6 Avtioxeds 
"Apxuuhon Tov Dupaxdorov ey podvov BiBdlov guvreTaxévar pnxavixdy 7d Kara Thy 

opaporoiav, Tov de drwy ovdev HEwKévac cuvrdgar. Kalroe mapa Tots moots emt 

unxarvixy dokacdels kal weyaodurs Tis yerduevos 6 Oavuacros éxetvos, Gore Jrametvat 

mapa macw dvOpwro.s vrepBadrdovrus duvodmevos, THY TE TponyouLévay yEewmeTpLKAs 

Kal dpOunrixfs éxouévev Oewplas Ta Bpaxt’rara doxodyra elvar crovdaiws cweypaper* 

ds galverar Tas elpnudvas émcoTiyas olrws dyamioas ws pndev whey droudvew 

avrats éreoayev. 
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catapults so ingeniously constructed as to be equally serviceable 

at long or short ramges, machines for discharging showers of 

missiles through holes made in the walls, and others consisting 

of long moveable poles projecting beyond the walls which either 

dropped heavy weights upon the enemy’s ships, or grappled the 

prows by means of an iron hand or a beak like that of a crane, 

then lifted them’ into the air and let them fall again*. Marcellus 

is said to have derided his own engineers and artificers with the 

words, ‘Shall weenot make an end of fighting against this geo- 

metrical Briareus who, sitting at ease by the sea, plays pitch and 
toss with our ships to our confusion, and by the multitude of 

missiles that he hurls at us outdoes the hundred-handed giants of 

mythology?t”;; but the exhortation had no effect, the Romans being 

in such abject, terror that “if they did but see a piece of rope 

or wood projecting above the wall, they would cry ‘there it is 

again,’ declaring that Archimedes was setting some engine in motion 

against them, and would turn their backs and run away, insomuch 

hat Marcellus desisted from all conflicts and assaults, putting all 

is hope in a long siege t.” 

If we are rightly informed, Archimedes died, as he had lived, 

‘bsorbed in mathematical contemplation. The accounts of the 

‘xact circumstances of his death differ in some details. Thus 

ivy says simply that, amid the scenes of confusion that followed 

\ he capture of Syracuse, he was found intent on some figures which 

\ e had drawn in the dust, and was killed by a soldier who did 

not know who he was§. Plutarch gives more than one version in 

the following passage. ‘‘ Marcellus was most of all afflicted at 

the death of Archimedes ; for, as fate would have it, he was intent 

on working out some problem with a diagram and, having fixed 

his mind and his eyes alike on his investigation, he never noticed 

the incursion of the Romans nor the capture of the city. And 

when a soldier came up to him suddenly and bade him follow to 

* Polybius, Hist. vi11. 7—8; Livy xx1v. 34; Plutarch, Marcellus, 15—17. 

+ Plutarch, Marcellus, 17. 

t+ ibid. 

§ Livy xxv. 31. Cum multa irae, multa auaritiae foeda exempla ederentur, 

Archimedem memoriae proditum est in tanto tumultu, quantum pauor captae 

urbis in discursu diripientium militum ciere poterat, intentum formis, quas in 

puluere descripserat, ab ignaro milite quis esset interlectum ; aegre id Marcellum 

~tulisse sepulturaeque curam habitam, et propinquis etiam inquisitis honori 

praesidioque nomen ac memoriam eius fuisse. 

H. A. b 
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Marcellus, he refused to do so until he had worked out his problem 

to a demonstration; whereat the soldier was so enraged that he 

drew his sword and slew him, Others say that the Roman ran 

up to him with a drawn sword offering to ‘kill him; and, when 

Archimedes saw him, he begged him earnestly to wait a short time 

in order that he might not leave his problem incomplete and 

unsolved, but the other took no notice and killed him. Again 

there is a third account to the effect that, as he was carrying to 

Marcellus some of his mathematical instruments, sundials, spheres, 

and angles adjusted to the apparent size of the sun tq the sight, some 

soldiers met him and, being under the impression that he carried 

gold in the vessel, slew him*.” The most picturesque version of the 

story is perhaps that which represents him as saying to a Roman 

soldier who came too close, ‘Stand away, fellow, frona my diagram,” 

whereat the man was so enraged that he killed him?. The addition 

made to this story by Zonaras, representing him ahs saying mapa 

Keparav kal pn mapa ypaypav, while it no doubt recalls the second 

version given by Plutarch, is perhaps the most far-fetched of the 

touches put to the picture by later hands. 

Archimedes is said to have requested his friends and relatives 

to place upon his tomb a representation of a cylinder cireumseribing 

a sphere within it, together with an inscription giving the ratio 

which the cylinder bears to the sphere? ; from which we may 

infer that he himself regarded the discovery of this ratio {On the 

Sphere and Cylinder, 1. 33, 34] as his greatest achievement. Civers. 

when quaestor in Sicily, found the tomb in a neglected state and 

restored it§. 

Beyond the above particulars of the lite of Archimedes, we 

have nothing left except a number of stories, which, though perhaps 

not literally accurate, yet help us to a conception of the personality 

of the most original mathematician of antiquity which we would 

not willingly have altered. Thus, in illustration of his entire 

preoccupation by his abstract studies, we are told that he would 

forget all about his food and such necessities of life, and would 

be drawing geometrical figures in the ashes of the fire, or, when 

Plutarch, Marcellus, 19. 

Tzetzes, Chil, 11. 35, 185; Zonaras rx. 5. 

Plutarch, Marcellus, 17 ad jin. 

Guero, Tusc. v. 64 sq. { 
{ 

wm tt + * 



ARCHIMEDES. X1x 

anointing himself, in the oil on his body*. Of the same kind is 

the well-known story that, when he discovered in a bath the 

solution of the question referred to him by Hieron as to whether 

a certain crown supposed to have been made of gold did not in 

reality contain a certain proportion of silver, he ran naked through 

the street to his home shouting edpyxa, ebpyxat.’ 

According to Pappus{ it was in connexion with his discovery 

of the solution of the problem Zo move a given weight by a given 

force that Archimédes uttered the famous saying, “Give me a 

place to stand on, and I can move the earth (80s pow rot od Kal 

Kw Thv yqv).” Plutarch represents him as declaring to Hieron 

that any given weight could be moved by a given force, and 

boasting, in reliance on the cogency of his demonstration, that, if 

he were given another earth, he would cross over to it and move 

this one. ‘And when Hieron was struck with amazement and asked 

him to reduce the problem to practice and to give an illustration 

of some great weight moved by a small force, he fixed upon a ship 

of burden with three masts from the king’s arsenal which had 

only been drawn up with great labour and many men ; and loading 

her with many passengers and a full freight, sitting himself the 

while far off, with no great endeavour but only holding the end 

of a compound pulley (roAveracros) quietly in his hand and pulling 

at it, he drew the ship along smoothly and safely as if she were 

moving through the sea§.” According to Proclus the ship was one 

which Hieron had had made to send to king Ptolemy, and, when all 

the Syracusans with their combined strength were unable to launch 

it, Archimedes contrived a mechanical device which enabled Hieron 

to move it by himself, insomuch that the latter declared that 

“from that day forth Archimedes was to be believed in every- 

thing that he might say |.” While however it is thus established 

that Archimedes invented some mechanical contrivance for moving 

a large ship and thus gave a practical illustration of his thesis, 

it is not certain whether the machine used was simply a compound 

* Plutarch, Marcellus, 17. 

+ Vitruvius, Architect. 1x. 3. For an explanation of the manner in which 

Archimedes probably solved this problem, see the note following On floating 

bodies, 1. 7 (p. 259 sq.). 

+ Pappus vir. p. 1060. 

§ Plutarch, Marcellus, 14. 

| Proclus, Comm. on Hucl, 1., p. 63 (ed. Friedlein). 
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pulley (wodvoracros) as stated by Plutarch; for Athenaeus*, in 

describing the same incident, says that a hela was used. This 

term must be supposed to refer to a machine similar to the xoyAtas 

described by Pappus, in which a cog-wheel with oblique teeth 

moves on a cylindrical helix turned by a handley. Pappus, how- 

ever, describes it in connexion with the BapovAkds of Heron, and, 

while he distinctly refers to Heron as his authority, he gives no 

hint that Archimedes invented either the BapovAxes or the par- 

ticular xoyAias; on the other hand, the rodvoracros is mentioned 

by Galent, and the tpicracros (triple pulley) by Oribasius§, as one 

of the inventions of Archimedes, the tpicracrtos being so called 

either from its having three wheels (Vitruvius) or three ropes 

(Oribasius). Nevertheless, it may well be that though the ship 

could easily be kept in motion, when once started, by the rpé- 

oractos or toAvoracrtos, Archimedes was obliged to use an appliance 

similar to the ckoxyAéas to give the first impulse. 

The name of yet another instrument appears in connexion with 

the phrase about moving the earth. Tzetzes’ version is, ‘“ Give 

me a place to stand on (ra Bo), and I will move the whole earth 

with a xapioriwy ||”; but, as in another passage] he uses the word 

tpiamacros, it may be assumed that the two words represented one 

and the same thing**, 

It will be convenient to mention in this place the other 

mechanical inventions of Archimedes. The best known is the 

* Athenaeus v. 207 a-b, xaracxevdoas yap €dika TO THALKODTOY oKddos els THY 

Oddaccav karnyaye’ mparos 5’ Apxiuhdns evpe Thy THs Eixos Katackeunv. To the 

same effect is the statement of Eustathius ad Jl. 11. p. 114 (ed. Stallb.) Néyerac 

dé ENE Kal Te unxavijs eldos, 5 rp&ros edpdy 6 Apxiundns vdoklunoé, Pact, de adrod. 

+ Pappus viz. pp. 1066, 1108 sq. 

+ Galen, in Hippocr. De artic., tv. 47 (=xvu. p. 747, ed. Kiihn). 

§ Oribasius, Coll. med., xurx, 22 (tv, p. 407, ed. Bussemaker), ’Amedldous 2) 

’Apxiundous rplomacrov, described in the same passage as haying been invented 

mpos Tas TOV wolwy Kaborkds. 

|| Tzetzes, Chil, 1. 180. 

«| Ibid., 11. 61, 6 yhv dvacray unxary TH TpiomdoTw Bowr' bra BW Kal carevow 

Tip x0dva. é 

** Heiberg compares Simplicius, Comm. in Aristot. Phys. (ed. Diels, p. 1110, 

1, 2), ravry dé rH dvadoyla rod Kwotvros Kal Tod Kwougévov kal Tod diacTHmaros 

To oraOmorikdy dpyavoy roy Kadovmevoy xapiotiwva cvoTncas 6 "Apyipndns ds 

méxpt mavros THs dvaoylas mpoxwpovons exdumracey éexetvo TO Ta Bw Kal KWo Tov 

ya. 
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water-screw* (also called «oyAias) which was apparently invented 

by him in Egypt, for the purpose of irrigating fields. It was 

also used for pumping water out of mines or from the hold of 

ships. F 

Another invention was that of a sphere constructed so as to 

imitate the motions of the sun, the moon, and the five planets 

in the heavens. Cicero actually saw this contrivance and gives a 

description of ity, stating that it represented the periods of the 

moon and the apparent motion of the sun with such accuracy that 

it would even (over a short period) show the eclipses of the sun 

and moon. Hultsch conjectures that it was moved by water t. 

We know, as above stated, from Pappus that Archimedes wrote 

a book on the construction of such a sphere (rept odatporoitas), 

and Pappus speaks in one place of “those who understand the 

making of spheres and produce a model of the heavens by means 

of the regular circular motion of water.” In any case it is certain 

that Archimedes was much occupied with astronomy. Livy calls 

him “unicus spectator caeli siderumque.” Hipparchus says§, 

“From these observations it is clear that the differences in the 

years are altogether small, but, as to the solstices, I almost 

think (ov dredri~w) that both I and Archimedes have erred to 

the extent of a quarter of a day both in the observation and in the 

deduction therefrom.” It appears therefore that Archimedes had 

considered the question of the length of the year, as Ammianus 

also states||. Macrobius says that he discovered the distances of 

the planets]. Archimedes himself describes in the Sand-reckoner 

the apparatus by which he measured the apparent diameter of the 

sun, or the angle subtended by it at the eye. 

The story that he set the Roman ships on fire by an arrange- 

ment of burning-glasses or concave mirrors is not found in any 

* Diodorus 1. 34, v. 87; Vitruvius x. 16 (11); Philo 11. p. 330 (ed. Pfeiffer) ; 

Strabo xv. p. 807; Athenaeus v. 208 f. 

+ Cicero, De rep., 1. 21-22; Tusc., 1.63; De nat. deor., 11. 88. Cf. Ovid, 

Fasti, v1. 277; Lactantius, Instit., u. 5, 18; Martianus Capella, mu. 212, vi. 

583 sq.; Claudian, Hpigr. 18; Sextus Empiricus, p. 416 (ed. Bekker). 

+ Zeitschrift f. Math. w. Physik (hist. litt. Abth.), xxi. (1877), 106 sq. 

§ Ptolemy, ovvraéts, I. p. 153. 

|| Ammianus Marcell., xxv1. i. 8. 

4 Macrobius, in Somn. Scip., u. 3. 
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authority earlier than Lucian*; and the so-called loculus Archi- 

medius, which was a sort of puzzle made of 14 pieces of ivory of 

different shapes cut out of a square, cannot be supposed to be his 

invention, the explanation of the name being perhaps that it was 

only a method of expressing that the puzzle was cleverly made, 

in the same way as the zpdBdAnpa “Apyysndecov came to be simply 

a proverbial expression for something very difficult f. 

* The same story is told of Proclus in Zonaras xiv. 3. For the other 

references on the subject see Heiberg’s Quaestiones Archimedeae, pp. 39-41. 

+ Cf. also Tzetzes, Chil. x11. 270, rev ’Apxiundous unxarvav xpelav exw. 



CHAPTER II. 

“ 

MANUSCRIPTS AND PRINCIPAL EDITIONS—ORDER OF 

COMPOSITION—-DIALECT—LOST WORKS. 

THE sources of the text and versions are very fully described 

by Heiberg in the Prolegomena to Vol. m1. of his edition of Archi- 

medes, where the editor supplements and to some extent amends 

what he had previously written on the same subject in his dis- 

sertation entitled Quaestiones Archimedeae (1879). It will there- 

fore suffice here to state briefly the main points of the discussion. 

The MSS. of the best class all had a common origin in a MS. 

which, so far as is known, is no longer extant. It is described 

in one of the copies made from it (to be mentioned later and dating 

from some time between a.p. 1499 and 1531) as ‘most ancient’ 

(zadavotarov), and all the evidence goes to show that it was written 

as early as the 9th or 10th century. At one time it was in the 

possession of George Valla, who taught at Venice between the 

years 1486 and 1499; and many important inferences with regard 

to its readings can be drawn from some translations of parts of 

Archimedes and Eutocius made by Valla himself and published 

in his book entitled de expetendis et fugiendis rebus (Venice, 1501). 

It appears to have been carefully copied from an original belonging 

to some one well versed in mathematics, and it contained figures 

drawn for the most part with great care and accuracy, but there 

was considerable confusion between the letters in the figures and 

those in the text. This MS., after the death of Valla in 1499, 

became the property of Albertus Pius Carpensis (Alberto Pio, 

prince of Carpi). Part of his library passed through various hands 

and ultimately reached the Vatican; but the fate of the Valla 

MS. appears to have been different, for we hear of its being in 

the possession of Cardinal Rodolphus Pius (Rodolfo Pio), a nephew 

of Albertus, in 1544, after which it seems to have disappeared. 
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The three most important MSS. extant are: 

F (=Codex Florentinus bibliothecae Laurentianae Mediceae 

plutei xxviiI. 4to.). 

B (=Codex Parisinus 2360, olim Mediceus). 

C (=Codex Parisinus 2361, Fonteblandensis). 

Of these it is certain that B was copied from the Valla MS. 

This is proved by a note on the copy itself, which states that the 

archetype formerly belonged to George Valla and afterwards to 

Albertus Pius. From this it may also be inferred that B was 

written before the death of Albertus in 1531; for, if at the date 

of B the Valla MS. had passed to Rodolphus Pius, the name of 

the latter would presumably have been mentioned. The note re- 

ferred to also gives a list of peculiar abbreviations used in the 

archetype, which list is of importance for the purpose of com- 

parison with F and other MSS. 

From a note on C it appears that that MS. was written by 

one Christophorus Auverus at Rome in 1544, at the expense of 

Georgius Armagniacus (Georges d’Armagnac), Bishop of Rodez, 

then on a mission from King Francis I. to Pope Paul ITI. Further, 

a certain Guilelmus Philander, in a letter to Francis I. published 

in an edition of Vitruvius (1552), mentions that he was allowed, 

by the kindness of Cardinal Rodolphus Pius, acting at the instance 

of Georgius Armagniacus, to see and make extracts from a volume 

of Archimedes which was destined to adorn the library founded 

by Francis at Fontainebleau. He adds that the volume had been 

the property of George Valla. We can therefore hardly doubt 

that C was the copy which Georgius Armagniacus had made in 

order to present it to the library at Fontainebleau. 

Now F, B and C all contain the same works of Archimedes 

and Eutocius, and in the same order, viz. (1) two Books de sphaera 

et cylindro, (2) de dimensione circuli, (3) de conoidibus, (4) de 

lineis spiralibus, (5) de planis aeque ponderantibus, (6) arenarius, 

(7) quadratura parabolae, and the commentaries of Eutocius on 

(1) (2) and (5). At the end of the quadratura parabolae both 

F and B give the following lines: 

edtuxoins A€ov yewmeTpa 

modXovs eis AvkdBavtas lous ToAD PidAtate povoats. 

F and C also contain menswrae from Heron and two fragments 

wept oraOyov and wepi pérpwv, the order being the same in both 
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and the contents only differing in the one respect that the last 

fragment repi érpwy is slightly longer in F than in C. 

A short preface to C states that the first page of the archetype 

was so rubbed and worn with age that not even the name of 

Archimedes could be read upon it, while there was no copy at 

Rome by means of which the defect could be made good, and 

further that the last page of Heron’s de mensuris was similarly 

obliterated. Now in F the first page was apparently left blank 

at first and afterwards written in by a different hand with many 

gaps, while in B there are similar deficiencies and a note attached | 

by the copyist is to the effect that the first page of the archetype 

was indistinct. In another place (p. 4 of Vol. 11, ed. Heiberg) 

all three MSS. have the same lacuna, and the scribe of B notes 

that one whole page or even two are missing. 

Now C could not have been copied from F because the last 

page of the fragment zepi pérpwv is perfectly distinct in F; and, 

on the other hand, the archetype of F must have been illegible 

at the end because there is no word réAos at the end of F, nor any 

other of the signs by which copyists usually marked the completion 

of their task. Again, Valla’s translations show that his MS. had 

certain readings corresponding to correct readings in B and C 

instead of incorrect readings given by F. Hence F cannot have 

been Valla’s MS. itself. 

The positive evidence about F is as follows. Valla’s trans- 

lations, with the exception of the few readings just referred to, 

agree completely with the text of F. From a letter written at 

Venice in 1491 by Angelus Politianus (Angelo Poliziano) to Lau- 

rentius Mediceus (Lorenzo de’ Medici), it appears that the former 

had found a MS. at Venice containing works by Archimedes and 

Heron and proposed to have it copied. As G. Valla then lived 

at Venice, the MS. can hardly have been any other but his, and 

no doubt F was actually copied from it in 1491 or soon after. - 

Confirmatory evidence for this origin of F is found in the fact 

that the form of most of the letters in it is older than the 15th 

century, and the abbreviations etc., while they all savour of an 

ancient archetype, agree marvellously with the description which 

the note to B above referred to gives of the abbreviations used 

in Valla’s MS. Further, it is remarkable that the corrupt passage 

corresponding to the illegible first page of the archetype just takes 

up one page of F, no more and no less. 
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The natural inference from all the evidence is that F, B and 

C all had their origin in the Valla MS.; and of the three F is 

the most trustworthy. For (1) the extreme care with which the 

copyist of F kept to the original is illustrated by a number of 

mistakes in it which correspond to Valla’s readings but are cor- 

rected in B and ©, and (2) there is no doubt that the writer of 

B was somewhat of an expert and made many alterations on his 

own authority, not always with success. 

Passing to other MSS., we know that Pope Nicholas V. had 

a MS. of Archimedes which he caused to be translated into Latin. 

The translation was made by Jacobus Cremonensis (Jacopo Cas- 

siani*), and one copy of this was written out by Joannes Regio- 

montanus (Johann Miiller of Konigsberg, near Hassfurt, in Fran- 

conia), about 1461, who not only noted in the margin a number 

of corrections of the Latin but added also in many places Greek 

readings from another MS. This copy by Regiomontanus is pre- 

served at Nurnberg and was the source of the Latin translation 

given in the editio princeps of Thomas Gechauff Venatorius (Basel, 

1544); it is called N® by Heiberg. (Another copy of the same 

translation is alluded to by Regiomontanus, and this is doubtless 

the Latin MS. 327 of 15th c¢. still extant at Venice.) From the 

fact that the translation of Jacobus Cremonensis has the same 

lacuna as that in F, B and C above referred to (Vol. 111, ed. 

Heiberg, p. 4), it seems clear that the translator had before him 

either the Valla MS. itself or (more likely) a copy of it, though 

the order of the books in the translation differs in one respect 

from that in our MSS., viz. that the arenarius comes after instead 

of before the quadratura parabolae. 

It is probable that the Greek MS. used by Regiomontanus was V 

(= Codex Venetus Marcianus cccv, of the 15th c.), which is still extant 

and contains the same books of Archimedes and Eutocius with the 

same fragment of Heron as F has, and in the same order. If the 

above conclusion that F dates from 1491 or thereabouts is correct, 

then, as V belonged to Cardinal Bessarione who died in 1472, it 

cannot have been copied from F, and the simplest way of accounting 

for its similarity to F is to suppose that it too was derived from 

Valla’s MS. 

* Tiraboschi, Storia della Letteratura Italiana, Vol. v1. Pt. 1 (p. 358 of the 

edition of 1807), Cantor (Vorlesungen tib. Gesch. d. Math., 11. p. 192) gives the 

full name and title as Jacopo da S. Cassiano Cremonese canonico regolare. 
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Regiomontanus mentions, in a note inserted later than the 

rest and in different ink, two other Greek MSS., one of which he 

calls “exemplar vetus apud magistrum Paulum.” Probably the 

monk Paulus (Albertini) of Venice is here meant, whose date was 

1430 to 1475; and it is possible that the “exemplar vetus” is 

the MS. of Valla. 

The two other inferior MSS., viz. A (=Codex Parisinus 2359, 

olim Mediceus) and D (=Cod. Parisinus 2362, Fonteblandensis), 

owe their origin to V. 

It is next necessary to consider the probabilities as to the MSS. 

used by Nicolas Tartaglia for his Latin translation of certain of 

the works of Archimedes. The portion of this translation published 

at Venice in 1543 contained the books de centris gravium vel de 

aequerepentibus I-II, tetragonismus |parabolae], dimensio circuli 

and de insidentibus aquae I; the rest, consisting of Book II de 

insidentibus aquae, was published with Book I of the same treatise, 

after Tartaglia’s death in 1557, by Troianus Curtius (Venice, 1565). 

Now the last-named treatise is not extant in any Greek MS. and, 

as Tartaglia adds it, without any hint of a separate origin, to the 

rest of the books which he says he took from a mutilated and 

almost illegible Greek MS., it might easily be inferred that the 

Greek MS. contained that treatise also, But it is established, by 

a letter written by Tartaglia himself eight years later (1551) that 

he then had no Greek text of the Books de insidentibus aquae, and 

it would be strange if it had disappeared in so short a time without 

leaving any trace. Further, Commandinus in the preface to his 

edition of the same treatise (Bologna, 1565) shows that he had 

never heard of a Greek text of it. Hence it is most natural to 

suppose that it reached Tartaglia from some other source and in the 

Latin translation only*. 

The fact that Tartaglia speaks of the old MS. which he used 
as “fracti et qui vix legi poterant libri,” at practically the same 

time as the writer of the preface to C was giving a similar de- 

scription of Valla’s MS., makes it probable that the two were 

* The Greek fragment of Book 1., mepl r&v UdaTe épiorapévwv 7 Tept Tay 

dxouuevwv, edited by A. Mai from two Vatican MSS. (Classici auct. 1. p. 426-80 ; 

Vol. 1. of Heiberg’s edition, pp. 356-8), seems to be of doubtful authenticity. 

Except for the first proposition, it contains enunciations only and no proofs. 

Heiberg is inclined to think that it represents an attempt at retranslation into 

Greek made by some mediaeval scholar, and he compares the similar attempt 

made by Rivault. 
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identical ; and this probability is confirmed by a considerable agree- 

ment between the mistakes in Tartaglia and in Valla’s versions. 

But in the case of the quadratura parabolae and the diumensio 

circuli Tartaglia adopted bodily, without alluding in any way to 

the source of it, another Latin translation published by Lucas 

Gauricus ‘Iuphanensis ex regno Neapolitano” (Luca Gaurico of 

Gifuni) in 1503, and he copied it so faithfully as to reproduce most 

obvious errors and perverse punctuation, only filling up a few 

gaps and changing some figures and letters. This translation by 

Gauricus is seen, by means of a comparison with Valla’s readings 

and with the translation of Jacobus Cremonensis, to have been 

made from the same MS. as the latter, viz. that of Pope Nicolas V. 

Even where Tartaglia used the Valla MS. he does not seem 

to have taken very great pains to decipher it when it was 

not easily legible—it may be that he was unused to deciphering 

MSS8.—and in such cases he did not hesitate to draw from other 

sources. In one place (de planor. equilib. 11. 9) he actually 

gives as the Archimedean proof a paraphrase of Eutocius some- 

what retouched and abridged, and in many other instances he 

has inserted corrections and interpolations from another Greek 

MS. which he once names. ‘This MS. appears to have been a copy 

made from F, with interpolations due to some one not unskilled 

in the subject-matter; and this interpolated copy of F was ap- 

parently also the source of the Niirnberg MS. now to be mentioned. 

N* (= Codex Norimbergensis) was written in the 16th century 

and brought from Rome to Niirnberg by Wilibald Pirckheymer. 

It contains the same works of Archimedes and Eutocius, and in 

the same order, as F, but was evidently not copied from F direct, 

while, on the other hand, it agrees so closely with Tartaglia’s 

version as to suggest a common origin. N* was used by Vena- 

torius in preparing the editio princeps, and Venatorius corrected 

many mistakes in it with his own hand by notes in the margin 

or on slips attached thereto; he also made many alterations in 

the body of it, erasing the original, and sometimes wrote on it 

directions to the printer, so that it was probably actually used 

to print from. The character of the MS. shows it to belong to 

the same class as the others; it agrees with them in the more 

important errors and in having a similar lacuna at the beginning. 

Some mistakes common to it and F alone show that its source was 

F, though at second hand, as above indicated. 
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It remains to enumerate the principal editions of the Greek 
text and the published Latin versions which are based, wholly or 

partially, upon direct collation of the MSS. These are as follows, 

in addition to Gaurico’s and Tartaglia’s translations. 

1. The editio princeps published at Basel in 1544 by Thomas 

Gechauff Venatorius under the title Archimedis opera quae quidem 

exstant omnia nunc primum graece et latine in lucem edita. Adiecta 

quoque sunt Hutocw Ascalonitae commentaria item graece et latine 

nunquam antea excusa. The Greek text and the Latin version in 

this edition were taken from different sources, that of the Greek 

text being N*, while the translation was Joannes Regiomontanus’ 

revised copy (N°) of the Latin version made by Jacobus Cremo- 

nensis from the MS. of Pope Nicolas V. The revision by 

Regiomontanus was effected by the aid of (1) another copy of 

the same translation still extant, (2) other Greek MSS., one of 

which was probably V, while another may have been Valla’s MS. 

itself. 

2. A translation by F. Commandinus (containing the following 

works, circult dimensio, de lineis sprralibus, quadratura parabolae, 

de conoidibus et sphaeroidibus, de arenae numero) appeared at 

Venice in 1558 under the title Archimedis opera nonnulla wm 

latinum conversa et commentariis illustrata. For this translation 

several MSS. were used, among which was V, but none preferable 

to those which we now possess. 

3. D. Rivault’s edition, Archimedis opera quae exstant graece 

et latine novis demonstr. et comment. illustr. (Paris, 1615), gives 

only the propositions in Greek, while the proofs are in Latin and 

somewhat retouched. Rivault followed the Basel editio princeps 

with the assistance of B. 

4, Torelli’s edition (Oxford, 1792) entitled "Apxipndovs ta ow- 

Copeva peta tov Eiroxiov “Acxadwvitov tropvnydtwv, Archimedis 

quae supersunt omnia cum Kutocii Ascalonitae commentaris ex 

recensione J. Torelli Veronensis cum nova versione latina. Acced- 

unt lectiones variantes ex codd. Mediceo et Parisiensibus. Torelli 

followed the Basel editio princeps in the main, but also collated 

V. The book was brought out after Torelli’s death by Abram 

Robertson, who added the collation of five more MSS., F, A, B, C, D, 

with the Basel edition. The collation however was not well done, 

and the edition was not properly corrected when in the press. 
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5. Last of all comes the definitive edition of Heiberg (Archi- 

medis opera omnia cum commentariis Eutocii. EH codice Ilorentino 

recensuit, Latine uertit notisque wlustrauit J. L. Heiberg. Leipzig, 

1880—1). 
The relation of all the MSS. and the above editions and trans- 

lations is well shown by Heiberg if the following scheme (with 

the omission, however, of his own edition) : 

Codex Uallae saec. 1x—x 

Cod. Nicolai V F Tartalea Vv B C 
ce. 1453 ce. 1491 a. 1543 saec. Xv c. 1500 a. 1544 

Ste ee ———— 

Cod. Tartaleae 1 Ed. Riualti 
| a. 1615 

N® saec. xvi 4 = 
| A, D Commandinus 

Ed. Basil. 1544 saec. XVI 1558 

+ Torellius 1792 

Gauricus Cremonensis ¢. 1460 
WN 

Cod. Uenet. 327 IND Se: 1461 
saec. XV 

The remaining editions which give portions of Archimedes in 

Greek, and the rest of the translations of the complete works or 

parts of them which appeared before Heiberg’s edition, were not 

based upon any fresh collation of the original sources, though some 

excellent corrections of the text were made by some of the editors, 

notably Wallis and Nizze. The following books may be mentioned. 

Joh. Chr. Sturm, Des wnvergleichlichen Archimedis Kunstbiicher, 

dibersetzt und erldutert (Nurnberg, 1670). This translation em- 

braced all the works extant in Greek and followed three years 

after the same author’s separate translation of the Sand-reckoner. 

It appears from Sturm’s preface that he principally used the edition 

of Rivault. 

Is. Barrow, Opera Archimedis, Apollonia Pergaei conicorum libri, 

Theodosii sphaerica methodo novo ilustrata et demonstrata (London, 

1675). 

Wallis, Archimedis arenarius et dimensio circulr, Eutocit in hance 

commentarw cum versione et notis (Oxford, 1678), also given 

in Wallis’ Opera, Vol. 111. pp. 509—546, = 

Karl Friedr, Hauber, Archimeds zwei Biicher wiber Kugel wnd 

Cylinder. Ebendesselben Kreismessung. Uebersetzt mit Anmerkungen 

u. s. w. begleitet (Tiibingen, 1798). 
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BF. Peyrard, Guvres @Archiméde, tradwites littéralement, avec 

un commentaire, survies dun mémoire du traducteur, sur un nouveau 

mirow ardent, et d’wn autre mémoire de M. Delambre, sur Varith- 

métique des Grecs. (Second edition, Paris, 1808.) 

Ernst Nizze, Archimedes von Syrakus vorhandene Werke, aus dem 

Griechischen tibersetzt und mit erliuternden und kritischen Anmer- 

kungen begleitet (Stralsund, 1824). 

The MSS. give the several treatises in the following order. 

1. wepi opatpas cat kvdivspov a’ B’, two Books On the Sphere 

and Cylinder. 

KUKAov pétpnois™*, Measurement of a Circle. 

Tept Kwvoedéwv Kal cpatpoeidéwv, On Conoids and Spheroids. 

mept éXikwv, On Spirals. 

érimédwv icoppomidv a’ Bt, two Books On the Equilibriam 

of Planes. 

Waupirns, The Sand-reckoner. - 

al TeTpaywvicuos TapaBorys (a name substituted later for that 

given to the treatise by Archimedes himself, which must 

undoubtedly have been rtetpaywwopos tis Tod opboywviov 

Kovov toynst), Quadrature of the Parabola. 

To these should be added 

8. epi dxovpévor §, the Greek title of the treatise On floating 

bodies, only preserved in a Latin translation. 

* Pappus alludes (1. p. 312, ed. Hultsch) to the k«dou uérpnovs in the words 

€y T@ Tepl THs TOO KUKAOU Tepipepelas. 

+ Archimedes himself twice alludes to properties proved in Book 1. as 

demonstrated év rots unxavixots (Quadrature of the Parabola, Props. 6, 10). 

Pappus (vit. p. 1034) quotes ra Apxuundous rept iooppomidv. The beginning of 

Book t. is also cited by Proclus in his Commentary on Eucl. 1., p. 181, where the 

reading should be 700 a icoppomiwy, and not ray avicoppomiwy (Hultsch). 

+ The name‘ parabola’ was first applied to the curve by Apollonius. Archi- 

medes always used the old term ‘section of a right-angled cone.’ Cf. Eutocius 

(Heiberg, vol. 111., p. 342) d€derxrar év 7@ mrepl Tijs TOD dpHoywvlov Kdvov Tomijs. 

§ This title corresponds to the references to the book in Strabo 1. p. 54 

(Apxiunins év rots mepl rav dxounévwy) and Pappus vil. p. 1024 (as ’Apyiundns 

éxoupévos). The fragment edited by Mai has a longer title, wept trav dare 

épiotapévwn 7 mepl Tav dxovpévwv, where the first part corresponds to Tartaglia’s 

version, de insidentibus aquae, and to that of Commandinus, de iis quae vehun- 

tur in aqua. But Archimedes intentionally used the more general word vypéy 

(fluid) instead of téwp; and hence the shorter title repi dxouuévwv, de tis quae 

in humido vehuntur (Torelli and Heiberg), seems the better. 
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The books were not, however, written in the above order; and 

Archimedes himself, partly through his prefatory letters and partly 

by the use in later works of properties proved in earlier treatises, 

gives indications sufficient to enable the chronological sequence 

to be stated approximately as follows: 

fl On the equilibrium of planes, I. 

2. Quadrature of the Parabola. 

3. On the equilibrium of planes, II. 

4. On the Sphere and Cylinder, I, I. 

5. On Spirals. 

6. On Conoids and Spheroids. 

7. On floating bodies, I, II. 

8. Measurement of a circle. 

9. The Sand-reckoner. 

It should however be observed that, with regard to (7), no 

more is certain than that it was written after (6), and with regard 

to (8) no more than that it was later than (4) and before (9). 

In addition to the above we have a collection of Lemmas (Liber 

Assumptorum) which has reached us through the Arabic. The 

collection was first edited by S. Foster, Miscellanea (London, 1659), 

and next by Borelli in a book published at Florence, 1661, in 

which the title is given as Liber assumptorum Archimedis interprete 

Thebit ben Kora et exponente doctore Almochtasso Abilhasan. The 

Lemmas cannot, however, have been written by Archimedes in 

their present form, because his name is quoted in them more than 

once. The probability is that they were propositions collected by 

some Greek writer* of a later date for the purpose of elucidating 

some ancient work, though it is quite likely that some of the 

propositions were of Archimedean origin, e.g. those concerning 

the geometrical figures called respectively apBydost (literally 

* It would seem that the compiler of the Liber Asswmptorum must have 

drawn, to a considerable extent, from the same sources as Pappus. The 

number of propositions appearing substantially in the same form in both 

collections is, I think, even greater than has yet been noticed. ‘Tannery (La 

Géométrie grecque, p. 162) mentions, as instances, Lemmas 1, 4, 5, 6; but it 

will be seen from the notes in this work that there are several other coin- 

cidences. 

+ Pappus gives (p. 208) what he calls an ‘ancient proposition’ (dpxala 

mporacis) about the same figure, which he describes as ywptov, 8 5) Kadodow 

dpBndrov. Cf. the note to Prop. 6 (p. 308). The meaning of the word is gathered 
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‘shoemaker’s knife’) and oadwov (probably a ‘salt-cellar’*), and 
Prop. 8 which bears on the problem of trisecting an angle. 

from the Scholia to Nicander, Theriaca, 423: dpBmdou Néyorvra ra kUKNOT Eph 

oOnpia, ols of ckurorduor Téuvovor Kal Evovor ra Sépuara. Cf. Hesychius, 

dvdpBnra, ra wh eerueva Sépmata’ ApByoe yap ra ouNla. 

* The best authorities appear to hold that in any case the name od)\uwov was 

not applied to the figure in question by Archimedes himself but by some later 

writer. Subject to this remark, I believe cdAwov to be simply a Graecised 

form of the Latin word salinwm. We know that a salt-cellar was an essential 

part of the domestic apparatus in Italy from the early days of the Roiman 

Republic. ‘‘All who were raised above poverty had one of silver which 

descended from father to son (Hor., Carm. u. 16, 13, Liv. xxv. 36), and 

was accompanied by a silver patella which was used together with the salt- 

cellar in the domestic sacrifices (Pers. ur. 24, 25). These two articles of 

silver were alone compatible with the simplicity of Roman manners in the 

early times of the Republic (Plin., H. N. xxxu. § 153, Val. Max. tv. 4, § 3). 

...In shape the salinwm was probably in most cases a round shallow bowl” 

[Dict. of Greek and Roman Antiquities, article salinum]. Further we have 

in the early chapters of Mommsen’s History of Rome abundant evidence 

of similar transferences of Latin words to the Sicilian dialect of Greek. Thus 

(Book 1., ch, xiii.) it is shown that, in consequence of Latino-Sicilian com- 

merce, certain words denoting measures of weight, libra, triens, quadrans, 

sextans, uncia, found their way into the common speech of Sicily in the third 

century of the city under the forms Mrpa, Tpids, Terps, é&ds, ovyxia, Similarly 

Latin law-terms (ch. xi.) were transferred; thus mutwwm (a form of loan) 

became potrov, carcer (a prison) cdpxapov. Lastly, the Latin word for lard, 

arvina, became in Sicilian Greek dpBlvy, and patina (a dish) tardvy. The last 

word is as close a parallel for the supposed transfer of salinwm as could be 

wished. Moreover the explanation of cd\wov as salinwm has two obvious 

advantages in that (1) it does not require any alteration in the word, and 

(2) the resemblance of the lower curve to an ordinary type of salt-cellar is 

evident. I should add, as confirmation of my hypothesis, that Dr A. S. Murray, 

of the British Museum, expresses the opinion that we cannot be far wrong in 

accepting as a salinum one of the small silver bowls in the Roman ministerlum 

H. A. 
Cc 
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Archimedes is further credited with the authorship of the 

Catile-problem enunciated in the epigram edited by Lessing in 

1773. According to the heading prefixed to the epigram it was 

communicated by Archimedes to the mathematicians at Alexandria 

in a letter to Eratosthenes*. There is also in the Scholia to Plato’s 

Charmides 165 & a reference to the problem ‘called by Archimedes 

the Cattle-problem” (ro KAyGev tr “Apxiuydovs Boexov zpdBAnpa). 

The question whether Archimedes really propounded the problem, 

or whether his name was only prefixed to it in order to mark the 

extraordinary difficulty of it, has been much debated. A complete 

account of the arguments for and against is given in an article 

by Krumbiegel in the Zeitschrift fiir Mathematik und Physik 

(Hist. litt. Abtheilwng) xxv. (1880), p. 121 sq., to which Amthor 

added (ibid. p. 153 sq.) a discussion of the problem itself. The 

general result of Krumbiegel’s investigation is to show (1) that 

at the Museum which was found at Chaourse (Aisne) in France and is of a 

section sufficiently like the curve in the Salinon. 

The other explanations of cd\wov which have been suggested are as follows, 

(1) Cantor connects it with oddos, ‘das Schwanken des hohen Meeres,” 

and would presumably translate it as wave-line. But the resemblance is 

not altogether satisfactory, and the termination -iov would need explanation. 

(2) Heiberg says the word is ‘‘sine dubio ab Arabibus deprauatum,” and 

suggests that it should be cé\wov, parsley (‘‘ex similitudine frondis apii”’). 

But, whatever may be thought of the resemblance, the theory that the word is 

corrupted is certainly not supported by the analogy of &p8ndos which is correctly 

reproduced by the Arabs, as we know from the passage of Pappus referred to in 

the last note. 

(3) Dr Gow suggests that cd\wov may be a ‘sieve,’ comparing cddaé. But 

this guess is not supported by any evidence. 

* The heading is, IIpé8Anuwa 8rep ’Apxiundns ev Emvypdupacw evpdy Trois év 

"Aretavopeia mepl raira mpayuarevouevors (nretv dméoredev év TH Tpds "Eparoobévny 

Tov Kupnvatov émisto\n. Heiberg translates this as “the problem which 

Archimedes discovered and sent in an epigram,..in a letter to Eratosthenes.” 

He admits however that the order of words is against this, as is also the use of 

the plural émiypdyuacw. It is clear that to take the two expressions éy 

émvypappaciw and év émitody as both following dméorev\ev is very awkward. In 

fact there seems to be no alternative but to translate, as Krumbiegel does, in 

accordance with the order of the words, ‘‘a problem which Archimedes found 

among (some) epigrams and sent,,.in his letter to Eratosthenes”’; and this sense 

is certainly unsatisfactory. Hultsch remarks that, though the mistake rpay- 

parovmévors for mpayyarevouévors and the composition of the heading as a whole 

betray the hand of a writer who lived some centuries after Archimedes, yet he 

must have had an earlier source of information, because he could hardly have 
invented the story of the letter to Kratosthenes. 
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the epigram can hardly have been written by Archimedes in its 

present form, but (2) that it is possible, nay probable, that the 

problem was in substance originated by Archimedes. Hultsch* has 

an ingenious suggestion as to the occasion of it. It is known that 

Apollonius in his wxvroxov had calculated a closer approximation to 

the value of 7 than that of Archimedes, and he must therefore have 

worked out more difficult multiplications than those contained in 

the Measurement of a circle. Also the other work of Apollonius 

on the multiplication of large numbers, which is partly preserved 

in Pappus, was inspired by the Sand-reckoner of Archimedes ; and, 

though we need not exactly regard the treatise of Apollonius as 

polemical, yet it did in fact constitute a criticism of the earlier 

book. Accordingly, that Archimedes should then reply with a 

problem which involved such a manipulation of immense numbers 

as would be difficult even for Apollonius is not altogether outside 

the bounds of possibility. And there is an unmistakable vein of 

satire in the opening words of the epigram “Compute the number 

of the oxen of the Sun, giving thy mind thereto, if thou hast a 

share of wisdom,” in the transition from the first part to the 

second where it is said that ability to solve the first part would 

entitle one to be regarded as “not unknowing nor unskilled in 

numbers, but still not yet to be numbered among the wise,” and 

again in the last lines. Hultsch concludes that in any case the 

problem is not much later than the time of Archimedes and dates 

from the beginning of the 2nd century B.c. at the latest. 

Of the extant books it is certain that in the 6th century a.p. 

only three were generally known, viz. On the Sphere and Cylinder, 

the Measurement of a circle, and On the equilibrium of planes. Thus 

Eutocius of Ascalon who wrote commentaries on these works only 

knew the Quadrature of the Parabola by name and had never seen 

it nor the book On Spirals. Where passages might have been 

elucidated by references to the former book, Eutocius gives ex- 

planations derived from Apollonius and other sources, and he 

speaks vaguely of the discovery of a straight line equal to the 

circumference of a given circle “by means of certain spirals,” 

; whereas, if he had known the treatise On Spirals, he would have 

quoted Prop. 18. There is reason to suppose that only the three 

treatises on which Eutocius commented were contained in the 

* Pauly-Wissowa’s Real-Encyclopddie, 11. 1, pp. 534, 5. 
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ordinary editions of the time such as that of Isidorus of Miletus, 

the teacher of Eutocius, to which the latter several times alludes. 

In these circumstances the wonder is that so many more books 

have survived to the present day. As it is, they have lost to a 

considerable extent their original form. Archimedes wrote in the 

Doric dialect*, but in the best knéwn books (On the Sphere and 

Cylinder and the Measurement of a circle) practically all traces 

of that dialect have disappeared, while a partial loss of Doric forms 

has taken place in other books, of which however the Sand- 

reckoner has suffered least. Moreover in all the books, except the 

Sand-reckoner, alterations and additions were first of all made by 

an interpolator who was acquainted with the Doric dialect, and 

then, at a date subsequent to that of Eutocius, the book On the 

Sphere and Cylinder and the Measurement of a circle were completely 

recast. 

Of the lost works of Archimedes the following can be identified. 

1. Investigations relating to polyhedra are referred to by 

Pappus who, after alluding (v. p. 352) to the five regular polyhedra, 

gives a description of thirteen others discovered by Archimedes 

which are semi-regular, being contained by polygons equilateral 

and equiangular but not similar. 

2. A book of arithmetical content, entitled apyai Principles 

and dedicated to Zeuxippus. We learn from Archimedes himself 

that the book dealt with the naming of numbers (xatovopagis tév 

apiOuev)t and expounded a system of expressing numbers higher 

* Thus Eutocius in his commentary on Prop. 4 of Book 11. On the Sphere 

and Cylinder speaks of the fragment, which he found in an old book and which 

appeared to him to be the missing supplement to the proposition referred to, 

as ‘‘preserving in part Archimedes’ favourite Doric dialect”? (év péper dé rhv 

"Apxiunder pirnv Awplda yNoooay dréowfov). From the use of the expression év 

wépe. Heiberg concludes that the Doric forms had by the time of Eutocius 

begun to disappear in the books which have come down to us no less than in 

the fragment referred to. 

+ Observing that in all the references to this work in the Sand-reckoner 

Archimedes speaks of the naming of numbers or of numbers which are named or have 

their names (apiOuol karovopacpévor, Ta dvouara ExovTes, Tay KaTovomatiay exovTes), 

Hultsch (Pauly-Wissowa’s Real-Encyclopddie, u. 1, p. 511) speaks of xcarovd- 

pasts Tov dpOuwy as the name of the work; and he explains the words ruds rév 

év dpxats <apiOuev> rev Karovomatlay éxévTwy as meaning ‘‘some of the 

numbers mentioned at the beginning which have a special name,” where ‘at 

the beginning” refers to the passage in which Archimedes first mentions rév 
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than those which could be expressed in the ordinary Greek no- 

tation. This system embraced all numbers up to the enormous 

figure which we should now represent by a 1 followed by 80,000 

billion ciphers ; and, in setting out the same system in the Sand- 

reckoner, Archimedes explains that he does so for the benefit of 

those who had not had the opportunity of seeing the earlier work 

addressed to Zeuxippus. 

3. wept Cvyav, On balances or levers, in which Pappus says (VIII. 

p. 1068) that Archimedes proved that “ greater circles overpower 

(kataxpatotor) lesser circles when they revolve about the same 

centre.” It was doubtless in this book that Archimedes proved 

the theorem assumed by him in the Quadrature of the Parabola, 

Prop. 6, viz. that, if a body hangs at rest from a point, the centre 

of gravity of the body and the point of suspension are in the same 

vertical line. 

4, xevtpoBapixa, On centres of gravity. This work is mentioned 

by Simplicius on Aristot. de caelo 1. (Scholia in Arist. 508 a 30). 

Archimedes may be referring to it when he says (On the equilibrium 

of planes 1. 4) that it has before, been proved that the centre of 

_ gravity of two bodies taken together lies on the line joining the 

centres of gravity of the separate bodies. In the treatise On 

floating bodies Archimedes assumes that the centre of gravity of a 

segment of a paraboloid of revolution is on the axis of the segment 

at a distance from the vertex equal to $rds of its length. This 

may perhaps have been proved in the xevrpoBapixd, if it was 

not made the subject of a separate work. 

Doubtless both the zept Cvydv and the xevrpoBapixa preceded 

the extant treatise On the equilibrium of planes. 

5. xKatomrpixa, an optical work, from which Theon (on Ptolemy, 

Synt. 1. p. 29, ed. Halma) quotes a remark about refraction. 

Cf. Olympiodorus in Aristot. Meteor., 1. p. 94, ed. Ideler. 

Ud’ apa katwvouacuevey apiOuav kal évdedouéevav év Tois mort Levéimmov yeypap- 

pévos. But év dpxais seems a less natural expression for “at the beginning” 

| than é& apxn or kar’ dpxds would have been. Moreover, there being no 

participial expression except carovouatlay éxdvrwy to be taken with éy dpxats in 

this sense, the meaning would be unsatisfactory; for the numbers are not 

| named at the beginning, but only referred to, and therefore some word like 

' eipnuévwy should have been used. For these reasons I think that Heiberg, 

/ Cantor and Susemihl are right in taking dpyai to be the name of the treatise. 

| 
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6. sept ofaiporoitas, On sphere-making, a mechanical work on 

the construction of a sphere representing the motions of the 

heavenly bodies as already mentioned (p. xxi). 

7. épdd.uv, a Method, noticed by Suidas, who says that Theo- 

dosius wrote a commentary on it, buf gives no further information 

about it. 

8. According to Hipparchus Archimedes must have written 

on the Calendar or the length of the year (cf. p. xxi). 

Some Arabian writers attribute to Archimedes works (1) On 

a heptagon in a circle, (2) On circles touching one another, (3) On 

parallel lines, (4) On triangles, (5) On the properties of right- 

angled triangles, (6) a book of Data; but there is no confirmatory 

evidence of his having written such works. A book translated 

into Latin from the Arabic by Gongava (Louvain, 1548) and en- 

titled antiqui scriptoris de speculo comburente concavitatis parabolae 

cannot be the work of Archimedes, since it quotes Apollonius. 
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THE RELATION OF ARCHIMEDES TO HIS PREDECESSORS. 

AN extraordinarily large proportion of the subject matter of 
the writings of Archimedes represents entirely new discoveries of 

his own: Though his range of subjects was almost encyclopaedic, 

embracing geometry (plane and solid), arithmetic, mechanics, hydro- 

statics and astronomy, he was no compiler, no writer of text- 

books ; and in this respect he differs even from his great successor 

Apollonius, whose work, like that of Euclid before him, largely 

consisted of systematising and generalising the methods used, and 

the results obtained, in the isolated efforts of earlier geometers. 

There is in Archimedes no mere working-up of existing materials ; 

his objective is always some new thing, some definite addition to 

the sum of knowledge, and his complete originality cannot fail 

to strike any one who reads his works intelligently, without any 

corroborative evidence such as is found in the introductory letters 

prefixed to most of them. These introductions, however, are emi- 

nently characteristic of the man and of his work ; their directness 

and simplicity, the complete absence of egoism and of any effort 

to magnify his own achievements by comparison with those of 

others or by emphasising their failures where he himself succeeded : 

all these things intensify the same impression. Thus his manner 

is to state simply what particular discoveries made by his pre- 

decessors had suggested to him the possibility of extending them 

in new directions; e.g. he says that, in connexion with the efforts 

of earlier geometers to square the circle and other figures, it 

occurred to him that no one had endeavoured to square a parabola, 

and he accordingly attempted the problem and finally solved it. 

In like manner, he speaks, in the preface of his treatise On the 
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Sphere and Cylinder, of his discoveries with reference to those 

solids as supplementing the theorems about the pyramid, the cone 

and the cylinder proved by Eudoxus. He does not hesitate to 

say that certain problems baffled him for’a long time, and that 

the solution of some took him many years to effect; and in one 

place (in the preface to the book Oh Spirals) he positively insists, 

for the sake of pointing a moral, on specifying two propositions 

which he had enunciated and which proved on further investigation 

to be wrong. The same preface contains a generous eulogy of 

Conon, declaring that, but for his untimely death, Conon would 

have solved certain problems before him and would have enriched 

geometry by many other discoveries in the meantime, 

In some of his subjects Archimedes had no fore-runners, e.g. 

in hydrostatics, where he invented the whole science, and (so 

far as mathematical demonstration was concerned) in his me- 

chanical investigations. In these cases therefore he had, in laying 

the foundations of the subject, to adopt a form more closely re- 

sembling that of an elementary textbook, but in the later parts 

he at once applied himself to specialised investigations. 

Thus the historian of mathematics, in dealing with Archimedes’ 

obligations to his predecessors, has a comparatively easy task before 

him. But it is necessary, first, to give some description of the use 

which Archimedes made of the general methods which had found 

acceptance with the earlier geometers, and, secondly, to refer to 

some particular results which he mentions as having been previously 

discovered and as lying at the root of his own investigations, or 

which he tacitly assumes as known. 

§1. Use of traditional geometrical methods. 

In my edition of the Conics of Apollonius*, I endeavoured, 

following the lead given in Zeuthen’s work, Die Lehre von den 

Kegelschnitten im Altertum, to give some account of what has been 

fitly called the geometrical algebra which played such an important 

part in the works of the Greek geometers. The two main methods 

included under the term were (1) the use of the theory of pro- 

portions, and (2) the method of application of areas, and it was 

shown that, while both methods are fully expounded in the Hlements 

of Euclid, the second was much the older of the two, being 

attributed by the pupils of Eudemus (quoted by Proclus) to the 

* Apollonius of Perga, pp. ci sqq. 
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Pythagoreans. It was pointed out that the application of areas, 

as set forth in the second Book of Euclid and extended in the 

sixth, was made by Apollonius the means of expressing what he 

takes as the fundamental properties of the conic sections, namely 

the properties which we express by the Cartesian equations 

y? = pe, 
: = po, 

Y = px + a 

referred to any diameter and the tangent at its extremity as axes ; 

and the latter equation was compared with the results obtained in the 

27th, 28th and 29th Props. of Euclid’s Book v1, which are equivalent 

to the solution, by geometrical means, of the quadratic equations 

b 
aet+-x =D. 

c 

It was also shown that Archimedes does not, as a rule, connect his 

description of the central conics with the method of application of 

areas, as Apollonius does, but that Archimedes generally expresses 

the fundamental property in the form of a proportion 

and, in the case of the ellipse, 
y? b? 

ee nit 

where 2, x, are the abscissae measured from the ends of the diameter 

of reference. 

It results from this that the application of areas is of much less 

frequent occurrence in Archimedes than in Apollonius. It is 

however used by the former in all but the most general form. The 

simplest form of “applying a rectangle” to a given straight line 

which shall be equal to a given area occurs e.g. in the proposition On 

the equilibrium of Planes 11. 1; and the same mode of expression 

is used (as in Apollonius) for the property y’= px in the parabola, 

px being described in Archimedes’ phrase as the rectangle “applied 

to” (raparimrov apd) a line equal to p and “having at its width” 

(xddros éxov) the abscissa (x). Then in Props. 2, 25, 26, 29 of the 

book On Conoids and Spheroids we have the complete expression 

which is the equivalent of solving the equation 

we + x? = 67, 

“let a rectangle be applied (to a certain straight line) exceeding by 
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a square figure (raparemToKeTo xwplov trepBadrAov eldet TeTparywvw) 

and equal to (a certain rectangle).” Thus a rectangle of this sort 

has to be made (in Prop. 25) equal to what we have above called 

x.a, in the case of the hyperbola, which is the same thing as 

x(a+x) or ax+a*, where a is the length of the transverse axis. 

But, curiously enough, we do not find in Archimedes the application 

of a rectangle “falling short by a square figure,” which we should 

obtain in the case of the ellipse if we substituted «(a—«) for x. a,. 

In the case of the ellipse the area x. a, is represented (On Conoids 

and Spheroids, Prop. 29) as a gnomon which is the difference - 

between the rectangle h.h, (where h, h, are the abscissae of the 

ordinate bounding a segment of an ellipse) and a rectangle applied 

to h,-h and exceeding by a square figure whose side is h—a; and 

the rectangle 2. h, is simply constructed from the sides h, h,. Thus 

Archimedes avoids* the application of a rectangle falling short by a 

square, using for «.«, the rather complicated form 

h.hy—{(hy—h) (h—-a@) + (h—-2)?!, 

It is easy to see that this last expression is equal to w. a, for it 
reduces to 

h.hy— th, (h — a) —a (h—2)! 

=a(h, +h) -2’, 

=ax—a, since h,+h=a, 

SALON 

It will readily be understood that the transformation of rectangles 

and squares in accordance with the methods of Euclid, Book 1, is 

just as important to Archimedes as to other geometers, and there is 

no need to enlarge on that form of geometrical algebra. 

The theory of proportions, as expounded in the fifth and sixth 

Books of Euclid, including the transformation of ratios (denoted by 

the terms componendo, dividendo, etc.) and the composition or 

multiplication of ratios, made it possible for the ancient geometers 

to deal with magnitudes in general and to work out relations 

between them with an effectiveness not much inferior to that of 

modern algebra, Thus the addition and subtraction of ratios could 

be effected by procedure equivalent to what we should in algebra 

* The object of Archimedes was no doubt to make the Lemma in Prop. 2 

(dealing with the summation of a series of terms of the form a.ra + (ra)?, where r 

successively takes the values 1, 2, 3,...) serve for the hyperboloid of revolution 

and the spheroid as well, 
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call bringing to a common denominator. Next, the composition or 

multiplication of ratios could be indefinitely extended, and hence 

the algebraical operations of multiplication and division found easy 

and convenient expression in the geometrical algebra. As a par- 

ticular case, suppose that there is a series of magnitudes in continued 

proportion (i.e. in geometrical progression) as a, @,, M2, ... Gy, 80 that 

a  % — G1 

a My Gn, 

We have then, by multiplication, 

ioe fs 
Gy. \ hy hy 

It is easy to understand how powerful such a method as that of 

proportions would become in the hands of an Archimedes, and a few 

instances are here appended in order to illustrate the mastery with 

which he uses it. 

1. A good example of a reduction in the order of a ratio after 

the manner just shown is furnished by On the equilibrium of Planes 

u.10. Here Archimedes has a ratio which we will call a?/6°, where 

a’/b?=c/d; and he reduces the ratio between cubes to a ratio 

between straight lines by taking two lines x, y such that 

eee 
2 a y- 

2 2 

It follows from this that (<) unseaig 
x a UF 

ee: 
id in) eee 

a? c\? ¢ «de 
and hence a= (5) ee 

2. In the last example we have an instance of the use of 

auxiliary fixed lines for the purpose of simplifying ratios and 

thereby, as it were, economising power in order to grapple the more 

successfully with a complicated problem. With the aid of such 

auxiliary lines or (what is the same thing) auxiliary fixed points in 

a figure, combined with the use of proportions, Archimedes is able to 

effect some remarkable eliminations. 
Thus in the proposition On the Sphere and Cylinder 11. 4 he obtains 

three relations connecting three as yet undetermined points, and 
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proceeds at once to eliminate two of the points, so that the problem 

is then reduced to finding the remaining point by means of one 

equation. Expressed in an algebraical form, the three original 

relations amount to the three equations 

3a-"_y 

Qa-x «2 

G+ 2% 

x ~ Dei 

Zoe 
zn 

and the result, after the elimination of y and z, is stated by 

Archimedes in a form equivalent to 

M+n a+n 4@? 

‘ile ot an) (2a—2)?" 

Again the proposition On the equilibrium of Planes 11. 9 proves 

by the same method of proportions that, if a, b, ¢, d, x, y, are straight 

lines satisfying the conditions 

=a (a>b>e>d) 

a—a &(a@—0)’ 
2a+4b+6c+3d iy 

5a+106+10c+5d a-—e’ 

then ety = 

and 

a 

The proposition is merely brought in as a subsidiary lemma to the 

proposition following, and is not of any intrinsic importance ; but a 

glance at the proof (which again introduces an auxiliary line) will 

show that it is a really extraordinary instance of the manipulation 

of proportions. 

3. Yet another instance is worth giving here. It amounts to 

the proof that, if 
eye 

¥ —] 
ioe : 

then =—— se y? 2) = 4ab?. ears Pan siranee 2 ” yp (a +x) ab 

A, A’ are the points of contact of two parallel tangent planes to a 

spheroid ; the plane of the paper is the plane through 44’ and the 



RELATION OF ARCHIMEDES TO HIS PREDECESSORS. xlv 

axis of the spheroid, and PP’ is the intersection of this plane with 

another plane at right angles to it (and therefore parallel to the 

tangent planes), which latter plane divides the spheroid into two 

segments whose axes are AW, A’. Another plane is drawn through 

B P 

the centre and parallel to the tangent plane, cutting the spheroid 

into two halves. Lastly cones are drawn whose bases are the 

sections of the spheroid by the parallel planes as shown in the 

figure. 

Archimedes’ proposition takes the following form [On Conoids 

and Spheroids, Props. 31, 32]. 

APP’ being the smaller segment of the two whose common base 

is the section through PP’, and x, y being the coordinates of P, 

he has proved in preceding propositions that 

(volume of) segment APP’  2a+a 

(volume of) cone APRs a Gees a (4); 

half spheroid 4 BB’ 
as Di Sie ns arte sian ene ene 

gad cone ABB’ : (8); 

and he seeks to prove that 

segment A’PP’ 2a-«a 

Deane LPP eae 

The method is as follows. 

cone ABB’ ih (oF hand wo 
We have a = —= ; Ai 

cone APP’ a-x y a-x &-# 

If we suppose 

the ratio of the cones becomes 
Ra 

piano: 
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Next, by hypothesis (a), 

cone APP’ = a+ @& 
seomt. APP’ 2a+a° 

Therefore, ex aequali, 
cone ABBY _ 20 

segmt. APP’ (a—«) (2a+2)’ 

It follows from (8) that 

spheroid _ Aza 

segmt. APP’ (a—«a) (2a+2)’ 

segmt. A’PP’ 42a — (a—«) (2a+ 2) 
whence r= 7 

segmt. A PP (a—«) (2a + @) 

is 2 (2a—x)+(2a+2) (z =a~@) 
(a—«) (2a + «) 

Now we have to obtain the ratio of the segment A’PP’ to the cone 

A’PP', and the comparison between the segment APP’ and the cone 

A’PP’ is made by combining two ratios ex aequali, Thus 

segmt. APP’ re Vas 

ConemAlPPe eB iaeeay LA) 

aa cone A _a-2 

cone A'/PP’ a+a° 

Thus combining the last three proportions, ex aequali, we have 

segmt. A'PP' 2z(2a—ax)+(2a+«) (2- a— x) 

cone A’PP’ — a? + 2a + a 

_ &(2a—x)+(2a + x) (z— a—«) 

ia z(a—a)+(2a+a)a ’ 

ae 
since a =2(a—x), by (y). 

[The object of the transformation of the numerator and denominator 

of the last fraction, by which z(2a—«) and z(a—«) are made the 
) : . , ; 2a—2 . : : 

first terms, 1s now obvious, because ——— is the fraction which 

Archimedes wishes to arrive at, and, in order to prove that the 

required ratio is equal to this, it is only necessary to show that 

] 
2a—%  2—(a—x) 

a—e a 
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Qa—«a a 
Now = 1 + 

a—2 a-—2 

lI — + la s 
——~,. ~ —— 

lI ee) (dwidendo), 
a 

seomt. A’PP’ 2Ya—-ax 
so that 5 as ; 

cone A’PP’ WD 

4. One use by Euclid of the method of proportions deserves 

mention because Archimedes does not use it in similar circumstances. 

Archimedes (Quadrature of the Parabola, Prop. 23) sums a particular 

geometric series 
ata(t)+a(4yt...+4a(4)" 

in a manner somewhat similar to that of our text-books, whereas 

Euclid (1x. 35) sums any geometric series of any number of terms by 

means of proportions thus, 

Suppose a), Gy, ..- ny Any, to be (n+1) terms of a geometric 

series in which a,,, 1s the greatest term. Then 

On+1 An _ An-1 

Gn Ani A_2 ay 

Therefore Gn+1~ %n — by ~ U1 dy — Gy 

Gy Gn _1 ay 

Adding all the antecedents and all the consequents, we have 

Ons — Cy — Ay 

+ gt Ag+... + Ay ay 
+) 

which gives the sum of 7 terms of the series, 

$2. Earlier discoveries affecting quadrature and cuba- 

ture. 

Archimedes quotes the theorem that circles are to one another as 

the squares on their diameters as having being proved by earlier 

geometers, and he also says that it was proved by means of a certain 

lemma which he states as follows: “Of unequal lines, unequal 

surfaces, or unequal solids, the greater exceeds the less by such a 

magnitude as is capable, if added [continually] to itself, of exceeding 
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any given magnitude of those which are comparable with one another 

(r&v mpos GAAnAa eyopevwv).” We know that Hippocrates of Chios 

proved the theorem that circles are to one another as the squares on 

their diameters, but no clear conclusion can ‘be established as to the 

method which he used. On the other hand, Eudoxus (who is 

_ mmentioned in the preface to The Sphere and Cylinder as having 

proved two theorems in solid geometry to be mentioned presently) 

is generally credited with the invention of the method of exhaustion 

by which Euclid proves the proposition in question in x11, 2. The 

lemma stated by Archimedes to have been used in the original proof 

is not however found in that form in Euclid and is not used in the 

proof of xil. 2, where the lemma used is that proved by him in 

x. 1, viz. that “Given two unequal magnitudes, if from the greater 

[a part] be subtracted greater than the half, if from the remainder 

[a part] greater than the half be subtracted, and so on continually, 

there will be left some magnitude which will be less than the lesser 

given magnitude.” This last lemma is frequently assumed by 

Archimedes, and the application of it to equilateral polygons in- 

scribed in a circle or sector in the manner of x11. 2 is referred to as 

having been handed down in the Hlements*, by which it is clear 

that only Euclid’s Hlements can be meant. The apparent difficulty 

caused by the mention of ¢wo lemmas in connexion with the theorem 

in question can, however, I think, be explained by reference to 

the proof of x. 1 in Euclid. He there takes the lesser magnitude 

and says that it is possible, by multiplying it, to make it some time 

exceed the greater, and this statement he clearly bases on the 4th 

definition of Book v. to the effect that ‘‘ magnitudes are said to bear 

a ratio to one another, which can, if multiplied, exceed one another.” 

Since then the smaller magnitude in x. 1 may be regarded as the 

difference between some two unequal magnitudes, it is clear that the 

lemma first quoted by Archimedes is in substance used to prove the 

lemma in x. 1 which appears to play so much larger a part in the in- 

vestigations in quadrature and cubature which have come down to us. 

The two theorems which Archimedes attributes to Eudoxus 

by namet are 

(1) that any pyramid is one third part of the prism which has 

the same base as the pyramid and equal height, and 

* On the Sphere and Cylinder, t. 6. 

+ ibid. Preface. 
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(2) that any cone is one third part of the cylinder which has 

the same base as the cone and equal height. 

The other theorems in solid geometry which Archimedes quotes 

as having been proved by earlier geometers are*: 

(3) Cones of equal height are in the ratio of their bases, and 
conversely. 

(4) If a cylinder be divided by a plane parallel to the base, 

cylinder as to cylinder as axis to axis. 

(5) Cones which have the same bases as cylinders and equal 

height with them are to one another as the cylinders. 

(6) The bases of equal cones are reciprocally proportional to 

their heights, and conversely. 

(7) Cones the diameters of whose bases have the same ratio as 

their axes are in the triplicate ratio of the diameters of their bases. 

In the preface to the Quadrature of the Parabola he says 

that earlier geometers had also proved that 

(8) Spheres have to one another the triplicate ratio of their 

diameters ; and he adds that this proposition and the first of those 

which he attributes to Eudoxus, numbered (1) above, were proved 

by means of the same lemma, viz. that the difference between 

any two unequal magnitudes can be so multiplied as to exceed 

any given magnitude, while (if the text of Heiberg is right) the 

second of the propositions of Eudoxus, numbered (2), was proved 

by means of “a lemma similar to that aforesaid.” As a matter 

of fact, all the propositions (1) to (8) are given in Euclid’s twelfth 

Book, except (5), which, however, is an easy deduction from (2) ; 

and (1), (2), (3), and (7) all depend upon the same lemma [x. 1] 

as that used in Eucl. xit. 2. 

The proofs of the above seven propositions, excluding (5), as 

given by Euclid are too long to quote here, but the following sketch 

will show the line taken in the proofs and the order of the propo- 

sitions. Suppose ABCD to be a pyramid with a triangular base, 

and suppose it to be cut by two planes, one bisecting AB, AC, 

AD in F, G, EF respectively, and the other bisecting BC, BD, BA 

in H, K, F respectively. These planes are then each parallel to 

one face, and they cut off two pyramids each similar to the original 

* Lemmas placed between Props. 16 and 17 of Book 1. On the Sphere and 

Cylinder. 

HH Ay d 
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pyramid and equal to one another, while the remainder of the 

pyramid is proved to form two equal prisms which, taken together, 

A 

B K D 

are greater than one half of the original pyramid [xu. 3]. It is 

next proved [xu 4] that, if there are two pyramids with triangular 

bases and equal height, and if they are each divided in the 

manner shown into two equal pyramids each similar to the whole 

and two prisms, the sum of the prisms in one pyramid is to the 

sum of the prisms in the other in the ratio of the bases of the 

whole pyramids respectively. Thus, if we divide in the same 

manner the two pyramids which remain in each, then all 

the pyramids which remain, and so on continually, it follows 

on the one hand, by x. 1, that we shall ultimately have 

pyramids remaining which are together less than any assigned 

solid, while on the other hand the sums of all the prisms 

resulting from the successive subdivisions are in the ratio of 

the bases of the original pyramids. Accordingly Euclid is able 

to use the regular method of exhaustion exemplified in xm. 2, 

and to establish the proposition [x11. 5] that pyramids with the 

same height and with triangular bases are to one another as their 

bases. The proposition is then extended [ x11. 6] to pyramids with the 

same height and with polygonal bases. Next [xu. 7] a prism with 

a triangular base is divided into three pyramids which are shown 

to be equal by means of xu. 5; and it follows, as a corollary, that 

any pyramid is one third part of the prism which has the same 

base and equal height. Again, two similar and similarly situated 

pyramids are taken and the solid parallelepipeds are completed, 

which are then seen to be six times as large as the pyramids 

respectively ; and, since (by x1. 33) similar parallelepipeds are in 

the triplicate ratio of corresponding sides, it follows that the same 



RELATION OF ARCHIMEDES TO HIS PREDECESSORS. hi 

is true of the pyramids [xu. 8]. A corollary gives the obvious 

extension to the case of similar pyramids with polygonal bases, 

The proposition [x11. 9] that, in equal pyramids with triangular 

bases, the bases are reciprocally proportional to the heights is 

proved by the same method of completing the parallelepipeds and 

using x1. 34; and similarly for the converse. It is next proved 

[x11. 10] that, if in the circle which is the base of a cylinder a 

square be described, and then polygons be successively described 

by bisecting the ares remaining in each case, and so doubling the 

number of sides, and if prisms of the same height as the cylinder 

be erected on the square and the polygons as bases respectively, 

the prism with the square base will be greater than half the 

cylinder, the next prism will add to it more than half of the 

remainder, and so on. And each prism is triple of the pyramid with 

the same base and altitude. Thus the same method of exhaustion 

as that in xu. 2 proves that any cone is one third part of the 

cylinder with the same base and equal height. Exactly the same 

method is used to prove [x11. 11] that cones and cylinders which 
have the same height are to one another as their bases, and 

[x11. 12] that similar cones and cylinders are to one another in 

the triplicate ratio of the diameters of their bases (the latter 

proposition depending of course on the similar proposition x11. 8 

for pyramids). The next three propositions are proved without 

fresh recourse to x. 1. Thus the criterion of equimultiples laid 

down in Def. 5 of Book v. is used to prove [x1 13] that, if a 

cylinder be cut by a plane parallel to its bases, the resulting 

cylinders are to one another as their axes. It is an easy deduction 

[xu. 14] that cones and cylinders which have equal bases are 

proportional to their heights, and [xu. 15] that in equal cones 

and cylinders the bases are reciprocally proportional to the heights, 

and, conversely, that cones or cylinders having this property are 

equal. Lastly, to prove that spheres are to one another in the 

triplicate ratio of their diameters [x1. 18], a new procedure is 

adopted, involving two preliminary propositions. In the first of 

these [x11. 16] it is proved, by an application of the usual lemma 

x. l, that, if two concentric circles are given (however nearly 

equal), an equilateral polygon can be inscribed in the outer circle 

whose sides do not touch the inner ; the second proposition [x11. 17] 

uses the result of the first to prove that, given two concentric 

spheres, it is possible to inscribe a certain polyhedron in the outer 

a2 
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so that it does not anywhere touch the inner, and a corollary adds 

the proof that, if a similar polyhedron be inscribed in a second 

sphere, the volumes of the polyhedra are to one another in the 

triplicate ratio of the diameters of the respective spheres. This 

last property is then applied [x1. 18] to prove that spheres are 

in the triplicate ratio of their diameters. 

§ 3. Conic Sections. 

In my edition of the Conics of Apollonius there is a complete 

account of all the propositions in conics which are used by Archi- 

medes, classified under three headings, (1) those propositions 

which he expressly attributes to earlier writers, (2) those which 

are assumed without any such reference, (3) those which appear to 

represent new developments of the theory of conics due to Archi- 

medes himself. As all these properties will appear in this 

volume in their proper places, it will suffice here to state only 

such propositions as come under the first heading and a few under 

the second which may safely be supposed to have been previously 

known. 

Archimedes says that the following propositions “are proved 

in the elements of conics,” i.e. in the earlier treatises of Euclid 

and Aristaeus. 

1. In the parabola 

(a) if PV be the diameter of a segment and QVq the 

chord parallel to the tangent at P, then QV=Vq; 

(6) if the tangent at @ meet VP produced in 7, then 
1A ee ES 

(c) if two chords QVq, Q'V’q' each parallel to the tangent 

at P meet the diameter PV in V, V' respectively, 

PY SP VASO Oe 

2, If straight lines drawn from the same point touch any 

conic section whatever, and if two chords parallel to the respective 

tangents intersect one another, then the rectangles under the 

segments of the chords are to one another as the squares on the 

parallel tangents respectively. 

3. The following proposition is quoted as proved “in the conics.” 

If in a parabola p, be the parameter of the principal ordinates, 
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QQ’ any chord not perpendicular to the axis which is bisected in V’ 

by the diameter PV, » the parameter of the ordinates to PV, and 

if QD be drawn perpendicular to PV, then 

OV" OD3=0 <Dys 

[On Conoids and Spheroids, Prop. 3, which see. ] 

The properties of a parabola, PV’=p,. AN, and QV?=p.PV, 

were already well known before the time of Archimedes. In fact 

the former property was used by Menaechmus, the discoverer of 

conic sections, in his duplication of the cube. 

It may be taken as certain that the following properties of the 

ellipse and hyperbola were proved in the Conics of Euclid. 

l. For the ellipse 

Poway A Vt NV PAN A aCe 2 OA 

and Vk en WN OE Vee he Vous (1) iO de 

(Either proposition could in fact be derived from the proposition 

about the rectangles under the segments of intersecting chords 

above referred to.) 

2. For the hyperbola 

Pea a Nw AN IAN 

and OV ei ay OP VPs 

though in this case the absence of the conception of the double 

hyperbola as one curve (first found in Apollonius) prevented Euclid, 

and Archimedes also, from equating the respective ratios to those 

of the squares on the parallel semidiameters. 

3. In a hyperbola, if P be any point on the curve and PA, 

PL be each drawn parallel to one asymptote and meeting the 

other, 
PK. PL=(const.) 

This property, in the particular case of the rectangular hyperbola, 

was known to Menaechmus. 

It is probable also that the property of the subnormal of the 

parabola (VG=4 ,) was known to Archimedes’ predecessors. It 

is tacitly assumed, On floating bodies, 11. 4, etc. 

From the assumption that, in the hyperbola, 47’< AWN (where 

N is the foot of the ordinate from P, and 7’ the point in which the 
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tangent at P meets the transverse axis) we may perhaps infer 

that the harmonic property 

LE LP T= 2a) ele We 

or at least the particular case of it, 

VAS SAAN eA 

was known before Archimedes’ time. 

Lastly, with reference to the genesis of conic sections from 

cones and cylinders, Euclid had already stated in his Phaenomena 

that, “if a cone or cylinder be cut by a plane not parallel to the 

base, the resulting section is a section of an acute-angled cone 

[an ellipse] which is similar to a Oupeds.” Though it is not probable 

that Euclid had in mind any other than a right cone, the statement 

should be compared with On Conoids and Spheroids, Props. 7, 8, 9. 

$4. Surfaces of the second degree. 

Prop. 11 of the treatise On Conoids and Spheroids states without 

proof the nature of certain plane sections of the conicoids of revo- 

lution. Besides the obvious facts (1) that sections perpendicular 

to the axis of revolution are circles, and (2) that sections through 

the axis are the same as the generating conic, Archimedes asserts 

the following. 

1. In a paraboloid of revolution any plane section parallel to 

the axis is a parabola equal to the generating parabola. 

2. In a hyperboloid of revolution any plane section parallel 

to the axis is a hyperbola similar to the generating hyperbola. 

3. Ina hyperboloid of revolution a plane section through the 

vertex of the enveloping cone is a hyperbola which is not similar 

to the generating hyperbola. 

4. In any spheroid a plane section parallel to the axis is an 

ellipse similar to the generating ellipse. 

Archimedes adds that “the proofs of all these propositions 

are manifest (favepac).” The proofs may in fact be supplied as 

follows. 

1, Section of a paraboloid of revolution by a plane parallel 

to the axes. 
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Suppose that the plane of the paper represents the plane section 

through the axis AV which intersects the given plane section at right 

angles, and let 4’O be the line of intersection. 

Let POP’ be any double ordinate to AV in the 

section through the axis, meeting A’O and 4NV 

at right angles in O, WV respectively. Draw A’ 

perpendicular to AJ. 

Suppose a perpendicular drawn from 0 to 

A’O in the plane of‘the given section parallel to 

the axis, and let y be the length intercepted by 

the surface on this perpendicular. 

Then, since the extremity of y is on the 

circular section whose diameter is PP’, 

y= PO. OP". 

If A’O =a, and if p is the principal parameter of the generating 

parabola, we have then 
p=PN* — ON* 

= PN * — ACM? 

=p (AN-AM) 

= pe, 

so that the section is a parabola equal to the generating parabola. 

2. Section of a hyperboloid of revolution by a plane parallel to 

the axis. 
Take, as before, the plane section through the axis which intersects 

Pr 

the given plane section at right angles in A’O. Let the hyperbola 
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PAP’ in the plane of the paper represent the plane section through 

the axis, and let C be the centre (or the vertex of the enveloping 

cone). Draw OC’ perpendicular to CA, and produce OA’ to meet it 

in C’. Let the rest of the construction be as before. 

Suppose that 

Wham ONaty, QO=% 

and let y have the same meaning as before. 

Then f=2=PO OP aE N =A a 

And, by the property of the original hyperbola, 

PN’®: CN?-CA?=A'M? : CM? -—CA? (which is constant). 

Thus A’M?: CM’?—CA’?=PN? : CN?—-CA? 

=PN*—A'’M* : CN*—-CM 

ay? 3 °—@*, 

whence it appears that the section is a hyperbola similar to the 

original one. 

3. Section of a hyperboloid of revolution by a plane passing 

through the centre (or the vertex of the enveloping cone). 

I think there can be no doubt that Archimedes would have proved 

his proposition about this section by means of the same general 

property of conics which he uses to prove Props. 3 and 12—14 of 

the same treatise, and which he enunciates at the beginning of 

Prop. 3 as a known theorem proved in the “elements of conics,” viz. 

that the rectangles under the segments of intersecting chords are as 

the squares of the parallel tangents. 

Let the plane of the paper represent the plane section through 

the axis which intersects the given plane passing through the 

centre at right angles. Let C'A’O be the line of intersection, C 

being the centre, and A’ being the point where CA’O meets the 

surface. Suppose CAIN to be the axis of the hyperboloid, and 

POp, P'O'p’ two double ordinates to it in the plane section through 

the axis, meeting CA’O in O, O’ respectively ; similarly let 4’JZ be 

the ordinate from A’. Draw the tangents at A and dA’ to the 

section through the axis meeting in 7’, and let QOq, Q'0'q’ be the 

two double ordinates in the same section which are parallel to the 

tangent at A’ and pass through O, O’ respectively. 

Suppose, as before, that y, y’ are the lengths cut off by the 
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surface from the perpendiculars at O and 0’ to OC in the plane of 

the given section through C4’O, and that 

CO=2, CO'=x', CA =a, CA’=a’. 

Pp’ 

Then, by the property of the intersecting chords, we have, since 

Q0 = 049, 
POMOp OC ZzTA OTA? 

mPOU, Os 0 One 

Also y= PO. Op, y7=P'0' . 0'n', 

and, by the property of the hyperbola, 

QO” 948 =a PDO 8k oh 

It follows, ew aequali, that 

(oN ees eet) Heater Mille Rt ae OETA EI 7 (a), 

and therefore that the section is a hyperbola. 

To prove that this hyperbola is not similar to the generating 

hyperbola, we draw CC’ perpendicular to Cd, and Cd’ parallel to 

CA meeting CC’ in C’ and Pp in U. 

If then the hyperbola (a) is similar to the original hyperbola, it 

must by the last proposition be similar to the hyperbolic section 

made by the plane through C'’A’UV at right angles to the plane of 

the paper. . 

Now C0O?-CA”’=(C'U?—C'A”)+(CC'+0U)?-CC” 

>C'U?-C'A”, 

and PO. Op 2PU-: Up. 
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Therefore PO. Op:C0O?-—CA°?<PU. Up: C'U?-C'A”, 

and it follows that the hyperbolas are not similar*. 

4. Section of a spheroid by a plane parallel to the axis. 

That this is an ellipse similar te the generating ellipse can of 

course be proved in exactly the same way as theorem (2) above 

for the hyperboloid. 

* IT think Archimedes is more likely to have used this proof than one on the 

lines suggested by Zeuthen (p. 421). The latter uses the equation of the 

hyperbola simply and proceeds thus. If y have the same meaning as above, 

and if the coordinates of P referred to CA, CC’ as axes be z, x, while those of O 

referred to the same axes are z, x’, we have, for the point P, 

a2=K (ea); 
where x is constant. 

Also, since the angle A’C4 is given, x’=az, where a is constant. 

Thus ysa —2?=(k— a?) 22 — Ka’. 

Now z is proportional to CO, being in fact equal to Wie: and the equation 

becomes 
k-a? 

IP= eee. = COTS KA%5, wnangseectionsGonesieoarmects (1), 

which is clearly a hyperbola, since a?<k. 

Now, though the Greeks could have worked out the proof in a geometrical 

form equivalent to the above, I think that it is alien from the manner in which 

Archimedes regarded the equations to central conics, These he always expressed 

in the form of a proportion 

y? ee ef [ = “ in the case of the ellipse | ; 
era een 

and never in the form of an equation between areas like that used by 

Apollonius, viz. 

P Yas a x. 

Moreover the occurrence of the two different constants and the necessity 

of expressing them geometrically as ratios between areas and lines respectively 

would have made the proof very long and complicated ; and, as a matter of fact, 

Archimedes never does express the ratio y?/(x? — a?) in the case of the hyperbola 

in the form of a ratio between constant areas like D*/a?. Lastly, when the 

equation of the given section through C4’O was found in the form (1), assuming 

that the Greeks had actually found the geometrical equivalent, it would still 

have been held necessary, I think, to verify that 

x (1+ ca ua 
i= Oy 

CA? = ’ 

before it was finally pronounced that the hyperbola represented by the equation 

and the section made by the plane were one and the same thing. 
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We are now in a position to consider the meaning of Archimedes’ 

remark that “the proofs of all these properties are manifest.” In 

the first place, it is not likely that “‘manifest”” means “known” as 

having been proved by earlier geometers ; for Archimedes’ habit is 

to be precise in stating the fact whenever he uses important 

propositions due to his immediate predecessors, as witness his 

references to Eudoxus, to the Hlements [of Euclid], and to the 

“elements of conics.” When we consider the remark with reference 

to the cases of the sections parallel to the axes of the surfaces 

respectively, a natural interpretation of it is to suppose that 

Archimedes meant simply that the theorems are such as can easily 

be deduced from the fundamental properties of the three conics now 

expressed by their equations, coupled with the consideration that 

the sections by planes perpendicular to the axes are circles. But I 

think that this particular explanation of the ‘‘ manifest” character 

of the proofs is not so applicable to the third of the theorems 

stating that any plane section of a hyperboloid of revolution 

through the vertex of the enveloping cone but not through the axis 

is a hyperbola. This fact is indeed no more “manifest” in the 

ordinary sense of the term than is the like theorem about the 

spheroid, viz. that any section through the centre but not through 

the axis is an ellipse. But this latter theorem is not given along 

with the other in Prop. 11 as being “manifest”; the proof of it is 

included in the more general proposition (14) that any section of a 

spheroid not perpendicular to the axis is an ellipse, and that parallel 

sections are similar. Nor, seeing that the propositions are essen- 

tially similar in character, can I think it possible that Archimedes 

wished it to be understood, as Zeuthen suggests, that the proposition 

about the hyperboloid alone, and not the other, should be proved 

directly by means of the geometrical equivalent of the Cartesian 

equation of the conic, and not by means of the property of the 

rectangles under the segments of intersecting chords, used earlier 

[Prop. 3] with reference to the parabola and later for the case of 

the spheroid and the elliptic sections of the conoids and spheroids 

generally. This is the more unlikely, I think, because the proof 

by means of the equation of the conic alone would present much 

more difficulty to the Greek, and therefore could hardly be called 

“ manifest.” 
It seems necessary therefore to seek for another explanation, 

and I think it is the following. The theorems, numbered 1, 2, and 
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4 above, about sections of conoids and spheroids parallel to the axis 

are used afterwards in Props. 15-17 relating to tangent planes ; 

whereas the theorem (3) about the section of the hyperboloid by a 

plane through the centre but not through the axis is not used in 

connexion with tangent planes, but only for formally proving that a 

straight line drawn from any point on a hyperboloid parallel to any 

transverse diameter of the hyperboloid falls, on the convex side of 

the surface, without it, and on the concave side within it. Hence 

it does not seem so probable that the four theorems were collected 

in Prop. 11 on account of the use made of them later, as that they 

were inserted in the particular place with special reference to the 

three propositions (12—14) immediately following and treating of the 

elliptic sections of the three surfaces. The main object of the whole 

treatise was the determination of the volumes of segments of the 

three solids cut off by planes, and hence it was first necessary to 

determine all the sections which were ellipses or circles and therefore 

could form the bases of the segments. Thus in Props. 12-14 

Archimedes addresses himself to finding the elliptic sections, but, 

before he does this, he gives the theorems grouped in Prop. 11 by 

way of clearing the ground, so as to enable the propositions about 

elliptic sections to be enunciated with the utmost precision. Prop. 

11 contains, in fact, explanations directed to defining the scope of 

the three following propositions rather than theorems definitely 

enunciated for their own sake; Archimedes thinks it necessary to 

explain, before passing to elliptic sections, that sections perpen- 

dicular to the axis of each surface are not ellipses but circles, and 

that some sections of each of the two conoids are neither ellipses nor 

circles, but parabolas and hyperbolas respectively. It is as if he had 

said, ‘“‘ My object being to find the volumes of segments of the three 

solids cut off by circular or elliptic sections, I proceed to consider 

the various elliptic sections ; but I should first explain that sections 

at right angles to the axis are not ellipses but circles, while sections 

of the conoids by planes drawn in a certain manner are neither 

ellipses nor circles, but parabolas and hyperbolas respectively. With 

these last sections I am not concerned in the next propositions, and 

I need not therefore cumber my book with the proofs ; but, as some 

of them can be easily supplied by the help of the ordinary properties 

of conics, and others by means of the methods illustrated in the 
propositions now about to be given, I leave them as an exercise for 
the reader.” This will, I think, completely explain the assumption 
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of all the theorems except that concer ning the sections of a spheroid 
parallel to the axis; and I think this is mentioned along with the 
others for symmetry, and because it can be proved in the same way 
as the corresponding one for the hyperboloid, whereas, if mention of 
it had been postponed till Prop. 14 about the elliptic sections of a 
spheroid generally, it would still require a proposition for itself, since 
the axes of the sections dealt with in Prop. 14 make an angle with 
the axis of the spher oid and are not parallel to it. 

At the same time the fact that Archimedes omits the proofs of 
the theorems about sections of conoids and spheroids parallel to the 
axis as “manifest” is in itself sufficient to raise the presumption 

that contemporary geometers were familiar with the idea of three 

dimensions and knew how to apply it in practice. This is no matter 

for surprise, seeing that we find Archytas, in his solution of the 

problem of the two mean proportionals, using the intersection of a 

certain cone with a curve of double curvature traced on a right 

circular cylinder*. But, when we look for other instances of early 

investigations in geometry of three dimensions, we find practically 

nothing except a few vague indications as to the contents of a lost 

treatise of Euclid’s consisting of two Books entitled Surface-loci 

(Toro. mpds émpaveia)t. This treatise is mentioned by Pappus 

among other works by Aristaeus, Euclid and Apollonius grouped 

as forming the so-called rozos avaAvépevost. As the other works in 

the list which were on plane subjects dealt only with straight lines, 

circles and conic sections, it is a priori likely that the swrface-loce of 

* Cf. Eutocius on Archimedes (Vol. 111. pp. 98—102), or Apollonius of Perga, 

pp. xxii.—xxiii. 

+ By this term we conclude that the Greeks meant ‘‘loci which are surfaces” 

as distinct from loci which are lines. Cf. Proclus’ definition of a locus as 

‘a position of a line or a surface involving one and the same property” 

(ypauphs 7 émupavelas Oéois movotoa év kal radroy olimmTwpa), Pp. 394. Pappus 

(pp. 660—2) gives, quoting from the Plane Loci of Apollonius, a classification of 

loci according to their order in relation to that of which they are the loci. Thus, 

he says, loci are (1) épexrixol, i.e. fixed, e.g. in this sense the locus of a point is 

a point, of a linea line, and so on; (2) dveEodixot or moving along, a line being in 

this sense the locus of a point, a surface of a line, and a solid of a surface ; 

(3) dvacrpogixol, turning backwards, i.e., presumably, moving backwards and 

forwards, a surface being in this sense the locus of a point, and a solid of a line. 

Thus a surface-locus might apparently be either the locus of a point or the 

locus of a line moving in space. 

+ Pappus, pp. 634, 636. 
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Euclid included at least such loci as were cones, cylinders and 

spheres. Beyond this, all is conjecture based upon two lemmas 

given by Pappus in connexion with the treatise. 

First lemma to the Surface-loci of HLuclid*. 

The text of this lemma and the attached figure are not satisfac- 

tory as they stand, but they have been explained by Tannery in a 

way which requires a change in the figure, but only the very slightest 

alteration in the text, as followsy. 

“Tf AB be a straight line and CD be parallel to a straight line 

given in position, and if the ratio AD . DB: DC® be [given], the 

point C lies on a conic section, 
E 

If now AB be no longer given in 

position and A, B be no longer 

given but lie on straight lines 

AE, HB given in position}, the 

point C raised above [the plane 

containing AH, HB) is on a 

surface given in position. And 

this was proved.” 

According to this interpretation, it is asserted that, if 4 moves 

with one extremity on each of the lines 4#, HB which are fixed, 

while DC is in a fixed direction and 4D. DB: DC? is constant, 

then C’ lies on a certain surface. So far as the first sentence is 

concerned, AB remains of constant length, but it is not made 

precisely clear whether, when AB is no longer given in position, its 

length may also vary§. If however AB remains of constant length 

for all positions which it assumes, the surface which is the locus of 

C would be a complicated one which we cannot suppose that Euclid 

could have profitably investigated. It may, therefore, be that 

Pappus purposely left the enunciation somewhat vague in order to 

make it appear to cover several surface-loci which, though belonging 

to the same type, were separately discussed by Euclid as involving 

* Pappus, p. 1004. 

+ Bulletin des sciences math., 2° Série, v1, 149. 

t The words of the Greek text are yévnrac 5¢ mpds Oéce edOeta Tals AB, EB, 

and the above translation only requires ed#elais instead of evOeta. The figure in 

the text is so drawn that 4DB, AEB are represented as two parallel lines, and 

CD is represented as perpendicular to ADB and meeting ANB in FE. 
§ The words are simply “if AB be deprived of its position (crepynOy ris 

Oécews) and the points A, B be deprived of their [character of] being given” 
(crepynOy Tod Sobévros etvat). 
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in each case somewhat different sets of conditions limiting the 
generality of the theorem. 

It is at least open to conjecture, as Zeuthen has pointed out*, 
that two cases of the type were considered by Euclid, namely, (1) 
that in which AB remains of constant length while the two fixed 
straight lines on which 4, B respectively move are parallel instead 
of meeting in a point, and (2) that in which the two fixed straight 

lines meet in a point while AB moves always parallel to itself 
and varies in length accordingly. 

(1) In the first case, where the length of AB is constant and 

the two fixed lines parallel, we should have a surface described by a 

conic moving bodily+. This surface would be a cylindrical surface, 

though it would only have been called a “ cylinder” by the ancients 

in the case where the moving conic was an ellipse, since the essence 

of a “cylinder” was that it could be bounded between two parallel 

circular sections. If then the moving conic was an ellipse, it would 

not be difficult to find the circular sections of the cylinder ; this 

could be done by first taking a section at right angles to the axis, 

after which it could be proved, after the manner of Archimedes, 

On Conoids and Spheroids, Prop. 9, first that the section is an ellipse 

or a circle, and then, in the former case, that a section made by 

a plane drawn at a certain inclination to the ellipse and passing 

through, or parallel to, the major axis is a circle. There was 

nothing to prevent Euclid from investigating the surface similarly 

generated by a moving hyperbola or parabola; but there would 

be no circular sections, and hence the surfaces might perhaps not 

have been considered as of very great importance, 

(2) In the second case, where AH, BE meet at a point and 

AB moves always parallel to itself, the surface generated is of 

course a cone. Some particular cases of this sort may easily have 

been discussed by Euclid, but he could hardly have dealt with the 

general case, where DC has any direction whatever, up to the 

point of showing that the surface was really a cone in the sense 

in which the Greeks understood the term, or (in other words) 

of finding the circular sections. To do this it would have been 

necessary to determine the principal planes, or to solve the dis- 

* Zeuthen, Die Lehre von den Kegelschnitten, pp. 425 sqq. 

+ This would give a surface generated by a moving line, defoduKds ypaumrs 

as Pappus has it. 
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criminating cubic, which we cannot suppose Euclid to have done. 

Moreover, if Euclid had found the circular sections in the most 

general case, Archimedes would simply have referred to the fact 

instead of setting himself to do the same thing in the particular 

case where the plane of symmetry is given. These remarks apply 

to the case where the conic which is the locus of C is an ellipse ; 

there is still less ground for supposing that Euclid could have 

proved the existence of circular sections where the conic was a 

hyperbola, for there is no evidence that Euclid even knew that 

hyperbolas and parabolas could be obtained by cutting an oblique 

circular cone. 

Second lemma to the Surface-loci. 

In this Pappus states, and gives a complete proof of the propo- 

sition, that the locus of a point whose distance from a given pornt 

is in a gwen ratio to its distance from a fixed line is a conic 

section, which is un ellipse, a parabola, or a hyperbola according 

as the given ratio is less than, equal to, or greater than unity*. 

Two conjectures are possible as to the application of this theorem 

by Euclid in the treatise referred to. 

(1) Consider a plane and a straight line meeting it at any angle. 

Imagine any plane drawn at right angles to the straight line and 

meeting the first plane in another straight line which we will call 

X. If then the given straight line meets the plane at right angles 

to it in the point S, a conic can be described in that plane with 

S for focus and X for directrix ; and, as the perpendicular on X 

from any point on the conic is in a constant ratio to the per- 

pendicular from the same point on the original plane, all points 

on the conic have the property that their distances from S are in 

a given ratio to their distances from the given plane respectively. 

Similarly, by taking planes cutting the given straight line at right 

angles in any number of other points besides S, we see that the locus 

of a point whose distance from a given straight line is in a given 
ratio to its distance from a given plane is a cone whose vertex is 
the point in which the given line meets the given plane, while the 
plane of symmetry passes through the given line and is at right 
angles to the given plane. If the given ratio was such that the 
guiding conic was an ellipse, the circular sections of the surface 

* See Pappus, pp. 1006—1014, and Hultsch’s Appendix, pp. 1270—1273 ; or 
ef, Apollonius of Perga, pp, xxxvi.—xxxyiii, 
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could, in that case at least, be found by the same method as 
that used by Archimedes (On Conoids and Spheroids, Prop. 8) in 
the rather more general case where the perpendicular from the 
vertex of the cone on the plane of the given elliptic section does 
not necessarily pass through the focus. 

(2) Another natural conjecture would be to suppose that, by 
means of the proposition given by Pappus, Euclid found the locus 

of a point whose distance from a given point is in a given ratio 

to tts distance from a fixed plane. This would have given surfaces 

identical with the conoids and spheroids discussed by Archimedes 
excluding the spheroid generated by the revolution of an ellipse 

about the minor axis. We are thus brought to the same point as 

Chasles who conjectured that the Suzfuce-loci of Euclid dealt with 

surfaces of revolution of the second degree and sections of the 

same*, Recent writers have generally regarded this theory as 

improbable. Thus Heiberg says that the conoids and spheroids 

were without any doubt discovered by Archimedes himself ; other- 

wise he would not have held it necessary to give exact definitions 

of them in his introductory letter to Dositheus ; hence they could 

not have been the subject of Euclid’s treatiset. I confess I think 

that the argument of Heiberg, so far from being conclusive against 

the probability of Chasles’ conjecture, is not of any great weight. 

To suppose that Euclid found, by means of the theorem enunciated 

and proved by Pappus, the locus of a point whose distance from 

a given point is in a given ratio to its distance from a fixed plane 

does not oblige us to assume either that he gave a name to the 

loci or that he investigated them further than to show that sections 

through the perpendicular from the given point on the given plane 

were conics, while sections at right angles to the same perpendicular 

were circles; and of course these facts would readily suggest them- 

selves. Seeing however that the object of Archimedes was to 

find the volumes of segments of each surface, it is not surprising 

that he should have preferred to give a definition of them which 

would indicate their form more directly than a description of them 

as loci would have done; and we have a parallel case in the dis- 

tinction drawn between conics as such and conics regarded as loci, 

which is illustrated by the different titles of Euclid’s Conics and 

the Solid Loci of Aristaeus, and also by the fact that Apollonius, 

* Anercu historique, pp. 273, 4. 

+ Litterargeschichtliche Studien iiber Euklid, p. 79. 
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though he speaks in his preface of some of the theorems in his | 

Conics as useful for the synthesis of ‘solid loci’ and goes on to 

mention the ‘locus with respect to three or four lines,’ yet enun- 

ciates no proposition stating that the locus of such and such a point 

is a conic. There was a further special reason for defining the 

conoids and spheroids as surfaces described by the revolution of 

a conic about its axis, namely that this definition enabled Archi- 

medes to include the spheroid which he calls ‘flat’ (érurAard 

adatpoeidés), ie. the spheroid described by the revolution of an 

ellipse about its minor axis, which is not one of the loci which 

the hypothesis assumes Euclid to have discovered. Archimedes’ 

new definition had the incidental effect of making the nature of 

the sections through and perpendicular to the axis of revolution 

even more obvious than it would be from Euclid’s supposed way 

of treating the surfaces; and this would account for Archimedes’ 

omission to state that the two classes of sections had been known 

before, for there would have been no point in attributing to Euclid 

the proof of propositions which, with the new definition of the 

surfaces, became self-evident. The further definitions given by 

Archimedes may be explained on the same principle. Thus the 

axis, as defined by him, has special reference to his definition of 

the surfaces, since it means the axis of revolution, whereas the 

axis of a conic is for Archimedes a diameter. The enveloping cone 

of the hyperboloid, which is generated by the revolution of the 

asymptotes about the axis, and the centre regarded as the point 

of intersection of the asymptotes were useful to Archimedes’ dis- 

cussion of the surfaces, but need not have been brought into 

Euclid’s description of the surfaces as loci. Similarly with the 

axis and vertex of a segment of each surface. And, generally, it 

seems to me that all the definitions given by Archimedes can be 

explained in lke manner without prejudice to the supposed dis- 

covery of three of the surfaces by Euclid. 

I think, then, that we may still regard it as possible that 

Euclid’s Swrface-loci was concerned, not only with cones, cylinders 

and (probably) spheres, but also (to a limited extent) with three 

other surfaces of revolution of the second degree, viz. the paraboloid, 
the hyperboloid and the prolate spheroid. Unfortunately however 
we are confined to the statement of possibilities; and certainty 
can hardly be attained unless as the result of the discovery of 
fresh documents. 
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§ 5. Two mean proportionals in continued proportion. 

Archimedes assumes the construction of two mean proportionals 

in two propositions (On the Sphere and Cylinder 1. 1, 5). Perhaps 

he was content to use the constructions given by Archytas, 

Menaechmus*, and Eudoxus. It is worth noting, however, that 

Archimedes does not introduce the two geometric means where 

they are merely convenient but not necessary ; thus, when (On the 

Sphere and Cylinder 1. 34) he has to substitute for a ratio (fy, 
af 

where B>y, a ratio between lines, and it is sufficient for his 

purpose that the required ratio cannot be greater than (Fy but 
VY 

may be less, he takes two arithmetic means between B, y, as 6, «, 

and then assumestf as a known result that 

Bier 
a? 

* The constructions of Archytas and Menaechmus are given by Eutocius 

[Archimedes, Vol. 1. pp. 92—102]; or see Apollonius of Perga, pp. xix—xxill. 

+ The proposition is proved by Eutocius; see the note to On the Sphere 

and Cylinder 1. 34 (p, 42). 

e2 



CHAPTER IV. 

ARITHMETIC IN ARCHIMEDES. 

Two of the treatises, the Measurement of a circle and the 

Sand-reckoner, are mostly arithmetical in content. Of the Sand- 

reckoner nothing need be said here, because the system for expressing 

numbers of any magnitude which it unfolds and applies cannot be 

better described than in the book itself; in the Measurement of a 

circle, however, which involves a great deal of manipulation of 

numbers of considerable size though expressible by means of the 

ordinary Greek notation for numerals, Archimedes merely gives the 

results of the various arithmetical operations, multiplication, extrac- 

tion of the square root, etc., without setting out any of the operations 

themselves. Various interesting questions are accordingly involved, 

and, for the convenience of the reader, I shall first give a short 

account of the Greek system of numerals and of the methods by 

which other Greek mathematicians usually performed the various 

operations included under the general term Aoyotixy (the art of 

calculating), in order to lead up to an explanation (1) of the way in 

which Archimedes worked out approximations to the square roots of 

large numbers, (2) of his method of arriving at the two approximate 

values of /3 which he simply sets down without any hint as to how 

they were obtained*. 

* Tn writing this chapter I have been under particular obligations to Hultsch’s 

articles Arithmetica and Archimedes in Pauly-Wissowa’s Real-Encyclopidie, 1. 

1, as well as to the same scholar’s articles (1) Die Ndiherungswerthe irrationaler 

Quadratwurzeln bei Archimedes in the Nachrichten von der kgl. Gesellschaft der 

Wissenschasten zu Géttingen (1893), pp. 367 sqq., and (2) Zur Kreismessung des 

Archimedes in the Zeitschrift fiir Math. u. Physik (Hist. litt. Abtheilung) xxxix. 

(1894), pp. 121 sqq. and 161 sqq. I have also made use, in the earlier part 

of the chapter, of Nesselmann’s work Die Algebra der Griechen and the histories 

of Cantor and Gow. 
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§ l. Greek numeral system. 

It is well known that the Greeks expressed all numbers from 1 
to 999 by means of the letters of the alphabet reinforced by the 
addition of three other signs, according to the following scheme, in 
which however the accent on each letter might be replaced by a 
short horizontal stroke above it, as @. 

Byes ye. ©; 5,0, 0 are 12-3, 4,5, 6,7, 8, 9 respectively, 

MU PN Pc, Oyo ake 51) 10,030; 80, snvace ct: 90 

Potter Ue Oy, 7, 0, 5, 100, 200, 300....;.. 900 3 

Intermediate numbers were expressed by simple juxtaposition. 

(representing in this case addition), the largest number being placed 

on the left, the next largest following it, and so on in order. Thus 

the number 153 would be expressed by pry’ or pvy. There was no 

sign for zero, and therefore 780 was wz’, and 306 rs’ simply. 

Thousands (yArades) were taken as units of a higher order, and 

1,000, 2,000, ... up to 9,000 (spoken of as Avot, SuoryiAuot, K.7.A.) Were 

represented by the same letters as the first nine natural numbers 

but with a small dash in front and below the line; thus e.g. 6’ was 

4,000, and, on the same principle of juxtaposition as before, 1,823 was 

expressed by awxy’ or awxy, 1,007 by af’, and so on. 

Above 9,999 came a myriad (pvpias), and 10,000 and higher 

numbers were expressed by using the ordinary numerals with the 

substantive pupiddes taken as a new denomination (though the words 

popror, Surpvpior, tpiopvpior, x.7.A. are also found, following the 

analogy of xiArou, ducyxéAvon and so on). Various abbreviations were 

used for the word pupids, the most common being M or Mv; and, 

where this was used, the number of myriads, or the multiple of 

10,000, was generally written over the abbreviation, though some- 
AS 

times before it and even after it. Thus 349,450 was M 6vr’*. 

Fractions (Xer7a) were written in a variety of ways. The most 

usual was to express the denominator by the ordinary numeral with 

two accents affixed. When the numerator was unity, and it was 

therefore simply a question of a symbol for a single word such as 

* Diophantus denoted myriads Ares by thousands by the ordinary signs 

for numbers of units, only separating them by a dot from the thousands. Thus 

for 3,069,000 he writes 7s. 0, and dy. aos for 331,776, Sometimes myriads 

were represented by the ordinary letters with two dots above, as p =100 myriads 

(1,000,000), and myriads of myriads with two pairs of dots, as ¢ for 10 myriad- 

myriads (1,000,000,000). 
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tptrov, 4, there was no need to express the numerator, and the 

symbol was y’; similarly ¢”=4, ve’= ';, and so on. When the 

numerator was not unity and a certain number of fourths, fifths, 

etc., had to be expressed, the ordinary numeral was used for the 

numerator; thus 6’ 1” = %, ’ ow” =19. In Heron’s Geometry the 

denominator was written twice in the latter class of fractions ; thus 
© a v, > / 

(S00 méumra) was B'e"e", 3 (Aewta tpiaxoorotpita Ky OF eiKkoouTpla 
oto 

Tpiaxogrorpita) was Ky’ Ay" dy’. The sign for 4, jyucv, is in 

Archimedes, Diophantus and Eutocius |”, in Heron C or a sign 

similar to a capital S*, 
A favourite way of expressing fractions with numerators greater 

than unity was to separate them into component fractions with 

numerator unity, when juxtaposition as usual meant addition. Thus 

# was written L’S’=4h4+1; 15 was Cd’qts”=4+4+34+ 7%; 

Eutocius writes L”é6” or $+ ,4, for 33, and so on. Sometimes the 

same fraction was separated into several different sums; thus in 

Heron (p. 119, ed. Hultsch) 122 is variously expressed as 

(0) 3+7+ye+3i2+a2 
(6) $+et+ie+szt+rim 

and (c) $+¢+artriztoar . 

Seaagesimal fractions. This system has to be mentioned because 

the only instances of the working out of some arithmetical operations 

which have been handed down to us are calculations expressed in 

terms of such fractions; and moreover they are of special interest 

as having much in common with the modern system of decimal 

fractions, with the difference of course that the submultiple is 60 

instead of 10, The scheme of sexagesimal fractions was used by the 

Greeks in astronomical calculations and appears fully developed in 

the ovvragis of Ptolemy. The circumference of a circle, and along 

with it the four right angles subtended by it at the centre, are 

divided into 360 parts (tyypara or potpac) or as we should say degrees, 

each potpa into 60 parts called (first) siatieths, (xpdra) é€nxoord, 

or minutes (herd), each of these again into devrepa éEnxoord. (seconds), 

and so on. A similar division of the radius of the circle into 60 

* Diophantus has a general method of expressing fractions which is the 
exact reverse of modern practice; the denominator is written above the 

N: KE a. Ws 

numerator, thus ¢=5/3, ca = 21/25, and pxf. py =1,270,568/10,816. Some- 
times he writes down the numerator and then introduces the denominator 

with év poply or poplov, e.g. 7s . 0 wop. Ny. aos = 3,069,000/331,776. 
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parts (tu2maTa) was also made, and these were each subdivided into 

sixtieths, and so on. Thus a convenient fractional system was 

available for general arithmetical calculations, expressed in units of 

any magnitude or character, so many of the fractions which we 

should represent by 5, so many of those which we should write 

(zo) (gln)®, and so on to any extent. It is therefore not surprising 

that Ptolemy should say in one place “In general we shall use the 

method of numbers according to the sexagesimal manner because of 

the inconvenience of the [ordinary] fractions.” For it is clear that 

the successive submultiples by 60 formed a sort of frame with fixed 

compartments into which any fractions whatever could be located, 

and it is easy to see that e.g. in additions and subtractions the 

sexagesimal fractions were almost as easy to work with as decimals 

are now, 60 units of one denomination being equal to one unit of 

the next higher denomination, and “carrying” and “borrowing” 

being no less simple than it is when the number of units of one 

denomination necessary to make one of the next higher is 10 instead 

of 60. In expressing the units of the circumference, degrees, wotpat 

or the symbol was generally used along with the ordinary numeral 

which had a stroke above it ; minutes, seconds, etc. were expressed 

by one, two, etc. accents affixed to the numerals. Thus fi B= 2°, 

powpav pl pf’ p” =47° 4240’. Also where there was no unit in any 

particular denomination O was used, signifying otdeuéa potpa, ovdev 

é€nxoorov and the like; thus Oa’ 8” 0’ =0° 12" 0’. Similarly, for 

the units representing the divisions of the radius the word tyjpara 

or some equivalent was used, and the fractions were represented as 

before ; thus tynpdrwv €¢ 8 ve’ = 67 (units) 4°55”, 

§ 2. Addition and Subtraction. 

There is no doubt that, in writing down numbers for these 

purposes, the several powers of 10 were kept separate in a manner 

corresponding practically to our system of numerals, and the 

hundreds, thousands, etc., were written in separate vertical rows, 

The following would therefore be a typical form of a sum in addition ; 

ound = 1424 

p.y 103 

Mora’ 12281 
M X-- 30030 
5 

M yor y «43838 
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and the mental part of the work would be the same for the Greek as 

for us. 

Similarly a subtraction would be represented as follows : 

Myyae'= 93636 

May 6 23409 

MI axl 70227 

§ 3. Multiplication. 

A number of instances are given in Eutocius’ commentary on 

the Measurement of a circle, and the similarity to our procedure is 

just as marked as in the above cases of addition and subtraction. 

The multiplicand is written first, and below it the multiplier preceded 

by éwi (= “into”). Then the highest power of 10 in the multiplier 

is taken and multiplied into the terms containing the separate 

multiples of the successive powers of 10, beginning with the highest 

and descending to the lowest ; after which the next highest power 

of 10 in the multiplier is multiplied into the various denominations 

in the multiplicand in the same order. The same procedure is 

followed where either or both of the numbers to be multiplied 

contain fractions. Two instances from Eutocius are appended from 

which the whole procedure will be understood. 

(1) Wa’ 780 

ert Wr x 780 
Oe 

MM 490000 56000 
Mee, 56000 6400 

é 
2) ood M nv’ sum 608400 

yey V8" 30134 $ [= 30133] 
Be sy! ee" x 301344 
a» 7% 5 
MM 6 ad’ 9,000,000 30,000 9,000 1500 750 

Y 
MpAe f’ ” 30,000 100 30 5 24 

tONG a se 8" 9,000 30 9 1h 444 
ad’ ea! 8!" " lb 500 5 13 4 + 

‘ Re 8g” _ 750 23 Fee 
[op00 | M Byrd's” (9,041,250 + 30, 1374 +9, 0414 +1506+34+44+2 

"HTB een 
= 9,082,689,),. 
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One instance of a similar multiplication of numbers involving 
fractions may be given from Heron (pp. 80, 81). It is only one of 
many, and, for brevity, the Girepke notation will be omitted. Heron 

2 has to find the product of 433 and 7&2, and proceeds as follows : 

The multiplication of 37° 4’ 55” (in the sexagesimal system) by 

itself is performed by Theon of Alexandria in his commentary on 

Ptolemy’s ovvraégis in an exactly similar manner. 

§ 4. Division. 

The operation of dividing by a number of one digit only was 

easy for the Greeks as for us, and what we call “long division” was 

with them performed, mutatis mutandis, in the same way as now 

“with the help of multiplication and subtraction. Suppose, for 

instance, that the operation in the first case of multiplication given 

above had to be reversed and that vee (608,400) had to be divided 

by wx’ (780). The terms involving the different powers of 10 would 

be mentally kept separate as in addition and subtraction, and the 

first question would be, how many times will 7 hundreds go into 60 

myriads, due allowance being made for the fact that the 7 hundreds 

have 80 behind them and that 780 is not far short of 8 hundreds? 

The answer is 7 hundreds or y’, and this multiplied by the divisor 
v6 é 

yx’ (780) would give Ms’ ae 000) which, subtracted from M nv’ 

(608,400), leaves the remainder M Bv' (62,400), This remainder has 

then to be divided by 780 or a Bae approaching 8 hundreds, and 

8 tens or 7’ would have to be tried. In the particular case the 

result would then be complete, the quotient being yz’ (780), and 

there being no remainder, since x’ (80) multiplied by wx’ (780) gives 

the exact figure M, Bo" (62,400). 
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An actual case of long division where the dividend and divisor 

contain sexagesimal fractions is described by Theon. The problem 

is to divide 1515 20’ 15” by 25 12’ 10”, and Theon’s account of the 

process comes to this. 

Divisor Dividend * Quotient 

D5) IY Oy" 1515 2 Vel om First term 60 

— 25 . 60 = 1500 
Remainder 15 = 900’ 

Sum 920’ 

I, CO = 720’ 

Remainder 200’ 

OOO) = 10’ 

Remainder 190’ | Second term 7’ 
MU = iy ; 

15’ = 900" 

Sum Ona 

DY. 84” 

Remainder Gil e 

OMe Te OMe 

Remainder 829” 50” | Third term 33” 

YW), Bey" S258 

Remainder 4750" = 290” 

WA B37 396" 

(too great by) 106’” 

Thus the quotient is something less than 60 7’ 33”. It will be 

observed that the difference between this operation of Theon’s and 

that followed in dividing Me! (608,400) by Wr’ (780) as above is 
that Theon makes three subtractions for one term of the quotient, 

whereas the remainder was arrived at in the other case after one 

subtraction. The result is that, though Theon’s method is quite 

clear, it is longer, and moreover makes it less easy to foresee what 

will be the proper figure to try in the quotient, so that more time 

would be apt to be lost in making unsuccessful trials. 

§ 5. Extraction of the square root. 

We are now in a position to see how the operation of extracting 
the square root would be likely to be attacked, First, as in the case 

of division, the given whole number whose square root is required 
would be separated, so to speak, into compartments each containing 
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such and such a number of units and of the separate powers of 10. 
Thus there would be so many units, so many tens, so many hundreds, 
etc., and it would have to be borne in mind that the squares of 

numbers from 1 to 9 would lie between 1 and 99, the squares of 

numbers from 10 to 90 between 100 and 9900, and so on. Then the 

first term of the square root would be some number of tens or 

hundreds or thousands, and so on, and would have to be found in 

much the same way as the first term of a quotient in a “long 

division,” by trial if necessary. If A is the number whose square 

root is required, while a represents the first term or denomination of 

the square root and a the next term or denomination still to be 

found, it would be necessary to use the identity (a + x)? =a? + 2aa +a? 
and to find a so that 2ax+a* might be somewhat less than the 

remainder 4—a*. Thus by trial the highest possible value of x 

satisfying the condition would be easily found. If that value were 

b, the further quantity 2ab +0? would have to be subtracted from 

the first remainder A — a’, and from the second remainder thus left 

a third term or denomination of the square root would have to be 

derived, and so on. That this was the actual procedure adopted is 

clear from a simple case given by Theon in his commentary on the 

ovvraéis. Here the square root of 144 is in question, and it is 

obtained by means of Eucl. 1. 4. The highest possible denomina- 

tion (i.e. power of 10) in the square root is 10 ; 10° subtracted from 

144 leaves 44, and this must contain not only twice the product of 

10 and the next term of the square root but also the square of that 

next term itself. Now, since 2.10 itself produces 20, the division 

of 44 by 20 suggests 2 as the next term of the square root; and 

this turns out to be the exact figure required, since 

2.204 2?= 44. 

The same procedure is illustrated by Theon’s explanation of 

Ptolemy’s method of extracting square roots according to the 

sexagesimal system of fractions. The problem is to find approxi- 

mately the square root of 4500 potpa: or degrees, and a geometrical 

figure is used which makes clear the essentially Euclidean basis of 

the whole method. Nesselmann gives a complete reproduction of 

the passage of Theon, but the following purely arithmetical represen- 

tation of its purport will probably be found clearer, when looked at 

side by side with the figure. 

Ptolemy has first found the integral part of 4500 to be 67. 
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Now 672= 4489, so that the remainder is 11. Suppose now that 

the rest of the square root is expressed by means of the usual 

sexagesimal fractions, and that we may therefore put 

/4500 = \/67° + 11 =67 + 
60 * GP 

2. 67x 
where x, y are yet to be found. Thus x must be such that C05. 

' 11.60 
is somewhat less than 11, or « must be somewhat less than 267 

330 Ae : ie 
or Er which is at the same time greater than 4. On trial, it 

turns out that 4 will satisfy the conditions of the problem, namely 
2 

that (67 - ma) must be less than 4500, so that a remainder will 

be left by means of which y may be found. 

a n K 6 

67° 4' 55” | 

4489 268 | & 
— 

% 
3 
ioe) 

€ ce 
$ 

4’ 268’ 16” 

6 x 
55” 3688” 40’” 

B Y 

2.67.4 4\2, 2 oy 
Now 11 — — Wa (a) is the remainder, and this is equal to 

11. 60°—2.67.4.60-16 7424 

60° = GORE 

4\ y : 7424 Thus we must suppose that 2 (67 + xa) 602 approximates to Bor? 

or that 8048y is approximately equal to 7424. 60, 
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Therefore y is approximately equal to 55. We have then to 
subtract 

2/( at BB\? 449640 3025 
_ 60 ( ) . 

Fa 5 cecil Peahatierey Bla ae ee 
“* 60) 608 * \60? 60° * 608° 

from the remainder tees above found. 

442640 7424, 2800 46 40 The subtracti <a ane uve’ 3 ; e subtraction of 6o® TOM Gor sives Goes OF aoe + Gos; 

3025 

60"? but Theon does not go further and subtract the remaining 

od 

instead of which he merely remarks that the square of we 

: 46 40 
approximates to B02 * G0? As a matter of fact, if we deduct the 

3025 2800 
60! from Sor 8° as to obtain the correct remainder, it is 

164975 
found to be ST a 

To show the power of this method of extracting square roots by 

means of sexagesimal fractions, it is only necessary to mention that 

Ptolemy gives au ee + aa 
60 60? 60° 

approximation is equivalent to 17320509 in the ordinary decimal 

notation and is therefore correct to 6 places. 

But it is now time to pass to the question how Archimedes 

as an approximation to V3, which 

obtained the two approximations to the value of 3 which he 

assumes in the Measurement of a circle. In dealing with this 

subject I shall follow the historical method of explanation adopted 

by Hultsch, in preference to any of the mostly a priort theories 

which the ingenuity of a multitude of writers has devised at 

different times. 

§6. Early investigations of surds or incommensurables. 

From a passage in Proclus’ commentary on Eucl. 1.* we learn 

that it was Pythagoras who discovered the theory of irrationals 

(4 tv dAdywv rpaypareia). Further Plato says (Theaetetus 147 D), 

“On square roots this Theodorus [of Cyrene] wrote a work in 

* ». 65 (ed. Friedlein). 
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which he proved to us, with reference to those of 3 or 5 [square] feet 

that they are incommensurable in length with the side of one square 

foot, and proceeded similarly to select, one by one, each [of the other 

incommensurable roots] as far as the root of 17 square feet, beyond 

which for some reason he did not go,” The reason why /2 is not 

mentioned as an incommensurable square root must be, as Cantor 

says, that it was before known to be such. We may therefore 

conclude that it was the square root of 2 which was geometrically 

constructed by Pythagoras and proved to be incommensurable with 

the side of a square in which it represented the diagonal. A clue 

to the method by which Pythagoras investigated the value of /2 

is found by Cantor and Hultsch in the famous passage of Plato 

(Rep. vu. 546 B, ©) about the ‘geometrical’ or ‘nuptial’ number. 

Thus, when Plato contrasts the fn7) and appytos diapmetpos tis 

mepmraoos, he is referring to the diagonal of a square whose side 

contains five units of length ; the appyros diapertpos, or the irrational 

diagonal, is then J/50 itself, and the nearest rational number is 

V50—1, which is the fnr7 Siauerpos. We have herein the 

explanation of the way in which Pythagoras must have made the 

first and most readily comprehensible approximation to J2; he 

must have taken, instead of 2, an improper fraction equal to it but 

such that the denominator was a square in any case, while the 

numerator was as near as possible to a complete square. Thus 

, and the first approximation to /2 was Pythagoras chose 2 

: ihe : : : 
accordingly 5? it being moreover obvious that /2> Again, 

7 
5° 

Pythagoras cannot have been unaware of the truth of the 

proposition, proved in Eucl. 11. 4, that (a+ 6)’=a* + 2ab +b’, where 

a, 6 are any two straight lines, for this proposition depends solely 

upon propositions in Book 1. which precede the Pythagorean 

proposition 1. 47 and which, as the basis of 1. 47, must necessarily 

have been in substance known to its author. <A slightly different 

geometrical proof would give the formula (a—6) =a’ —2ab +6’, 

which must have been equally well known to Pythagoras. It could 

not therefore have escaped the discoverer of the first approximation 

/50—1 for /50 that the use of the formula with the positive sign 

; bar eie ‘ 1 ete 
would give a much nearer approximation, viz. 7 + ve which is only 
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a 1\2 
greater than ./50 to the extent of Ga) . Thus we may properly 

assign to Pythagoras the discovery of the fact represented by 

id 1 Ea 
( 14 = /50 = (he 

The consequential result that J3> 5 /50=1 is used by 

Aristarchus of Samos in the 7th proposition of his work On the 

size and distances of the sun and moon*, 

With reference to the investigations of the values of /3, V5, 

NG s:.; V17 by Theodorus, it is pretty certain that /3 was 
geometrically represented by him, in the same way as it appears 

* Part of the proof of this proposition was a sort of foretaste of the first part 

of Prop. 3 of Archimedes’ Measurement of a 

circle, and the substance of it is accordingly 4A K 

appended as reproduced by Hultsch. 

ABEK is a square, KB a diagonal, 2 HBE 

=14/ KBE, 4 FBE=3°,and AC is perpendicu- 

lar to BF so that the triangles ACB, BEF are 

similar. H 

Aristarchus seeks to prove that 

AB BC sis: 1). 
If R denote a right angle, the angles KBE, ae 

HBE, FBE are respectively 3°9R, 32R, 2R. B e 

Then HE ;:FE > ZHBE: LFEBE. 

[This is assumed as a known lemma by Aristarchus as well as Archimedes. ] 

Therefore ISH OU hd Dies AS) trp ean ganes ape poodeonabAsy Gad (a). 

Now, by construction, BK?=2BE?, 

Also [Eucl. vi. 3] BK: BE=KH ;: HE; 

whence KH=N2HE. 

: =~ 50-1 
And, since N2 > \/ 95? 

IEE S NEON SB Gy. 

so that JRO, DUGG DS ABYSS) rons cncbodondonocdondsionnroDedsoce (B). 

From (a) and (8), ex aequali, 

TGR BJS) S= Mee Ab 

Therefore, since BF > BE (or KE), 

BF: FE > 18:1, 
so that, by similar triangles, 

JAIB? Gh JEXC! > Ae) BAL, 
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afterwards in Archimedes, as the perpendicular from an angular 

point of an equilateral triangle on the opposite side. It would 

thus be readily comparable with the side of the “1 square foot” 

mentioned by Plato. The fact also that it is the side of three 

square feet (tpizovus dvvayus) which was proved to be incommensurable 

suggests that there was some special reason in Theodorus’ proof for 

specifying feet, instead of units of length simply; and the ex- 

planation is probably that Theodorus subdivided the sides of his 

triangles in the same way as the Greek foot was divided into 

halves, fourths, eighths and sixteenths. Presumably therefore, 

exactly as Pythagoras had approximated to /2 by putting 2 

for 2, Theodorus started from the identity 3 = 2 . It would then 

= 481 7 
Se, i677” beg: 

To investigate /48 further, Theodorus would put it in the form 

/49—1, as Pythagoras put ./50 into the form /49+1, and the 

result would be 

be clear that 

48 E oo 

We know of no further investigations into incommensurable 

square roots until we come to Archimedes. 

§ 7. Archimedes’ approximations to V3. ° 

Seeing that Aristarchus of Samos was still content to use the 

first and very rough approximation to \/2 discovered by Pythagoras, 

it is all the more astounding that Aristarchus’ younger contemporary 

Archimedes should all at once, without a word of explanation, give 

out that 

1851 aie 265 

780 153’ 

as he does in the Measurement of a circle. 

In order to lead up to the explanation of the probable steps by 

which Archimedes obtained these approximations, Hultsch adopts 

the same method of analysis as was used by the Greek geometers in 

solving problems, the method, that is, of supposing the problem 

solved and following out the necessary consequences. To compare 
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; 265 1351 viet ; 
the two fractions 153 and R90 We first divide both denominators 

into their smallest factors, and we obtain 

780 =252-3.5. 13, 

LDS Ode 

We observe also that 2.2.13 = 52, while 3.17 =51, and we may 

therefore show the NT between the numbers thus, 

; T0600 s 
153=3. 51, 

For convenience of comparison we multiply the numerator and 

denominator of — by 5; the two original fractions are then 

1351 ree 1325 
15.52 To). 

so that we can put Archimedes’ assumption in the form 

Bae ae oe 

and this is seen to be ae to 

1 ay I Sa Green 

UNE , 
Now 26— oe =, / 26° —l+ (55) , and the latter expression 

is an approximation to /26?—1. 

We have then | i= 25> 20a -1. 

As hes was compared with 15,/3, and we want an ap- 

proximation to ./3 itself, we one by 15 and so obtain 

1 m4 
26 — o— 75 (28 35) > 7g N21. 

jl ees 676-1 _ fi = gol] 
But 13 ¥26 sie ea 395 595 => and it follows 

that = (26 - 55) > /3 3. 

The lower limit for /3 was given by 

1 1 3040-4), 
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and a glance at this suggests that it may have been arrived at by 
simply substituting (52-1) for 52. 

Now as a matter of fact the following proposition is true. Jf 

a +b is a whole number which is not a square, while a? is the nearest 

square number (above or below the first number, as the case may be), 

then : 

ate > VED > ats. 

Hultsch proves this pair of inequalities in a series of propositions 

formulated after the Greek manner, and there can be little doubt 

that Archimedes had discovered and proved the same results in 

substance, if not in the same form. The following circumstances 

confirm the probability of this assumption. 

(1) Certain approximations given by Heron show that he 

knew and frequently used the formula 

—=— b 
Ne? SE bwa at Syn 

2a 

(where the sign «& denotes ‘‘is approximately equal to”). 

Thus he gives /50 0 7 + - ) 

— 1 

= 11 
N75 08 + 7. 

(2) The formula Ja’+baoa+ Saal is used by the Arabian 

Alkarkhi (11th century) who drew from Greek sources (Cantor, 

Vai Lo sq.) 

It can therefore hardly be accidental that the formula 

aty> NP Eb> aby 
gives us what we want in order to obtain the two Archimedean 

approximations to V3, and that in direct connexion with one 

another*, 

* Most of the a priori theories as to the origin of the approximations are 

open to the serious objection that, as a rule, they give series of approximate 

values in which the two now in question do not follow consecutively, but are 

separated by others which do not appear in Archimedes. Hultsch’s explanation 

is much preferable as being free from this objection. But it is fair to say that 

the actual formula used by Hultsch appears in Hunrath’s solution of the puzzle 
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We are now in a position to work out the synthesis as follows. 
From the geometrical representation of /3 as the perpendicular 
from an angle of an equilateral triangle on the opposite side we 
obtain /2?—1= 4/3 and, as a first approximation, 

2— : > /3. 

Using our formula we can transform this at once into 

“ i! 
Sa aes or 2—3- 

Archimedes would then square € ~ 3) or 5 and would obtain. 

2 
, which he would compare with 3, or all ; Le. he would put ae 9 
> 2542 
a= ef _ and would obtain 

3(5+ 5) > NS, ie. > WB 
3 

To obtain a still nearer approximation, he would proceed in the 

and compar (5) tig ith 3, &@ h i same manner and compare (75), or 555, wi Or 555» Whence it 

5 26° —1 
would appear that /3 = 995? 

ditherefors tha, + (26-1). 3 and therefore tha 1B (2 55) aN e. 

; 1351 5 
that is, 730 7 J3 

The application of the formula would then give the result 

ee (26 : ), 
15 52-1 

1326-1 265 
fo Wee lS 

The complete result would therefore be 

1351 265 

780 > NB > 153° 

_ (Die Berechnung irrationaler Quadratwurzeln vor der Herrschaft der Decimal- 

briiche, Kiel, 1884, p. 21; ef. Ueber das Ausziehen der Quadratwurzel bet 

Griechen und Indern, Hadersleben, 1883), and the same formula is implicitly 

used in one of the solutions suggested by Tannery (Sur la mesure dw cercle 

ad Archiméde in Mémoires de la société des sciences Brees et naturelles de 

Bordeaux, 2° série, 1v. (1882), p. 313-337). 

yo 

that is, V3 > 
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4 

Thus Archimedes probably passed from the first approximation 

tage D 5 i 26 26 ,. 1351 
f to 3? from 3 to TB? and from TB directly to 780° 

approximation of all, from which again he derived the less close 

the closest 

9 

approximation zee The reason why he did not proceed to a still 
153° 

nearer approximation than ee is probably that the squaring of 

this fraction would have brought in numbers much too large to be 

conveniently used in the rest of his calculations. A similar reason 

will account for his having started from orate of fe if he had 
3 

used the latter, he would first have obtained, by the same method, 

= = cee = = 
V3= a and thence 7 ee /3, or is /3; the squaring 

V9 1 
56 

of a would have given J/3= 5G , and the corresponding 

approximation would have given where again the numbers 
56.194’ 

are inconveniently large for his purpose. 

§ 8. Approximations to the square roots of large 

numbers. 

Archimedes gives in the Measwrement of a circle the following 

approximate values: 

(1) 30133 > /9082321, 

(2) 18382, > 3380929, 

(3) 10093 > 71018405, 

(4) 20174 > 40692841, 

(5) 5911 < /349450, 

(6) 11722 < /137394333, 

(7) 2339} < 5472132... 

There is no doubt that in obtaining the integral portion 
of the square root of these numbers Archimedes used the method 
based on the Euclidean theorem (a+b)? = a?+2ab+0? which has 
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already been exemplified in the instance given above from Theon, 
where an approximation to /4500 is found in sexagesimal fractions. 
The method does not substantially differ from that now followed; but 
whereas, to take the first case, 9082321, we can at once see what 
will be the number of digits in the square root by marking off pairs 

of digits in the given number, beginning from the end, the absence 

of a sign for 0 in Greek made the number of digits in the square 

root less easy to ascertain because, as written in Greek, the number 

M Brea’ only contains six signs representing digits instead of seven. 

Even in the Greek notation however it would not be difficult to see 

that, of the denominations, units, tens, hundreds, etc. in the square 

root, the units would correspond to xa’ in the original number, the 

” a : 
tens to Br, the hundreds to M, and the thousands to M. Thus it 

would be clear that the square root of 9082321 must be of the form 

1000x + 100y + 10z + w, 

where a, y, 2, w can only have one or other of the values 0, 1, 2,...9. 

Supposing then that a is found, the remainder V — (1000z)’, where 

WV is the given number, must next contain 2.1000”.100y and 

(100y)?, then 2(1000”+100y).10z and (10z)’, after which the 

remainder must contain two more numbers similarly formed. 

In the particular case (1) clearly x=3. The subtraction of 

(3000)? leaves 82321, which must contain 2.3000.100y. But, even 

if y is as small as 1, this product would be 600,000, which is greater 

than 82321. Hence there is no digit representing hundreds in the 

square root. To find z, we know that 82321 must contain 

2. 3000. 10z + (10z)’, 

and z has to be obtained by dividing 82321 by 60,000. Therefore 

z=1. Again, to find w, we know that the remainder 

(82321 —2. 3000. 10-10%), 

or 22221, must contain 2.3010w+w*, and dividing 22221 by 

2.3010 we see that w=3. Thus 3013 is the integral portion of 

the square root, and the remainder is 22221 —(2. 3010. 3 +3’), or 

4152. 

The conditions of the proposition now require that the approx1- 

mate value to be taken for the square root must not be less than 
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the real value, and therefore the fractional part to be added to 3013 

must be if anything too great. Now it is easy to see that the 

fraction to be added is greater than : because 2.3013 ee G) is 

less than the remainder 4152. Suppose then that the number 

required (which is nearer to 3014 than to 3013) is 3014—F, 

and ; has to be if anything too small. 

Now (3014)? = (3013)? + 2.3013 + 1 = (3013)? + 6027 
= 9082321 — 4152 + 6027, 

whence 9082321 = (3014)? — 1875. 

By applying Archimedes’ formula Ja? +b<a+ x we obtain 

1875 232 3014 — 5p q> V 9082321. 
75 

The required value & F has therefore to be not greater than 6098" 

It remains to be explained why Archimedes put fort the value 4 

ha kat 1507 
which is equal to 6028" 

fractions with unity for numerator and some power of 2 for 

In the first place, he evidently preferred 

denominator because they contributed to ease in working, e.g. when 

two such fractions, being equal to each other, had to be added. 

The exceptions, the fractions and a are to be explained b p 6 Pp bf 
9 
ll 

exceptional circumstances presently to be mentioned.) Further, in 

the particular case, it must be remembered that in the subsequent 

work 2911 had to be added to 3014 =F and the sum divided by 780, 

or 2.2.3.5.13. It would obviously lead to simplification if a 

factor could be divided out, e.g. the best for the purpose, 13. Now, 

dividing 2911 + 3014, or 5925, by 13, we obtain the quotient 455, 

and a remainder 10, so that es remains to be divided by 13. 

Therefore Py 

; ; 1875 : 
~ approximates to, but is not greater than, a The solution 

p=1,q=4 would therefore be natural and easy. 

as to be so chosen that 10q—p is divisible by 13, while 
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(2) 4/3380929, 
The usual process for extraction of the square root gave as the 

integral part of it 1838, and as the remainder 2685. As before, it 
was easy to see that the exact root was nearer to 1839 than to 1838, 
and that 

/3380929 = 1838" + 2685 = 1839" — 2. 1838 — 1 + 2685 

“ = 1839° — 992. 

The Archimedean formula then gave 

992 SROADOR ee eh D) 1839 — 5 F399 > V3380929. 

It could not have escaped Archimedes that : was a near approxima- 

, 992 O84 on 1839 1 : 
tion to 3678 or rap Since 7= 7356: and Z would have satisfied 

the necessary condition that the fraction to be taken must be less 

2 
than the real value. Thus it is clear that, in taking i * the 

approximate value of the fraction, Archimedes had in view the 

simplification of the ol work by the elimination of a factor, 

If the fraction be denoted by 7 , the sum of 1839-7 and 1823, or 

3662 — > had to be divided by An ie. by 6.40. Division of 3662 

by 40 gave 22 as remainder, and then p, g had to be so chosen that 

22? was conveniently divisible by 40, while - was less than but 
q 

2 

3678 ° 
seen to satisfy the conditions. 

The solution p= 2, g=11 was easily approximately equal to 

(3) 1018405. 
The usual procedure gave 1018405=1009°+324 and the ap- 

proximation 
324 

2018 
, 324 

It was here necessary that the fraction to replace 5018 should be 

. 1 alter ys 
greater but approximately equal to it, and 6 satisfied the conditions, 

while the subsequent work did not require any change in it. 
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(4) »/4069284.2, 

The usual process gave 4069284,3, = 2017? + 995.3, ; it followed 

that 

36.995 +] 
2017 + 55-5. 2017 7 1009284: 

and 20174 was an obvious value to take as an approximation 

somewhat greater than the left side of the inequality. 

(5) /349450. 

In the case of this and the two following roots an approximation 

had to be obtained which was less, instead of greater, than the true 

value. Thus Archimedes had to use the second part of the formula 

b b as 
at—>/J/e@+b>at a 
20 Jus —%at+1 

In the particular case of ./349450 the integral part of the root is 

591, and the remainder is 169, This gave the result 

169 169 
591 + Ei BROT TN 949400 = 591 + 5a BOL a1? 

and since 169=13’, while 2.591+1=7.13°, it resulted without 

further calculation that 

/349450 > 5911. 

Why then did Archimedes take, instead of this approximation, 

another which was not so close, viz. 5911? The answer which the 

subsequent working and the other approximations in the first part of 

the proof suggest is that he preferred, for convenience of calculation, 

1 
to use for his approximations fractions of the form oa only. But he 

could not have failed to see that to take the nearest fraction of this 

form, 7 instead of : might conceivably affect his final result and 

make it less near the truth than it need be. As a matter of fact, 

as Hultsch shows, it does not affect the result to take 5914 and to 

work onwards from that figure. Hence we must suppose that 

Archimedes had satisfied himself, by taking 5914 and proceeding on 

that basis for some distance, that he would not be introducing any 

appreciable error in taking the more convenient though less accurate 

approximation 5914. 
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(6) ,/187394333. 

In this case the integral portion of the root is 1172, and the 

remainder 35933, Thus, if R denote the root, 

33 

Helbig 2 See 

“ A ee a Orn, >1172 2+ a L172 a1? % Sorteors. 

3 
Now 2.1172+1=2345; the fraction accordingly becomes ee 

1 359 4 re ; : 
and 7 (= 3513) satisfies the necessary conditions, viz, that it must 

be approximately equal to, but not greater than, the given fraction. 

Here again Archimedes would have taken 1172} as the approximate 

value but that, for the same reason as in the last case, 11724 was 

more convenient. 

(7) »/54721324, 

The integral portion of the root is here 2339, and the remainder 

1211,4, so that, if & is the exact root, 

12115), 
2. 2339+1 

> 23391, a fortiori. 

A few words may be added concerning Archimedes’ ultimate 

reduction of the inequalities 

RK > 2339 + 

6674 2844 
oT 1GI8h «1 20174 

1 10 
to the simpler result 3 oT 3 71° 

1 6674 
As a matter of fact so that in the first fraction it was 

Tacos 
only necessary to make the eral change of diminishing the de- 

: : ‘ ; 1 
nominator by 1 in order to obtain the simple 37. 

f tak 2841 = 1137 ana 
As regards the lower limit for 7, we see tha 20174 = 8069? 

Hultsch ingeniously suggests the method of trying the effect of 

increasing the denominator of the latter fraction by 1. This 
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ae pee and, if we divide 2690 by 379, the quotient 

is between 7 and 8, so that 

jee 
7 ~ 2690 ~ 8° 

Now it is a known proposition (proved in Pappus VII. p. 689) 

a@ ate 
that, if ¢ Na * then Na aR eb 

Similarly it may be proved that 

produces 

a+e ¢ 

bid da 

It follows in the above case that 

3719p W379 1 hol 

2690 ~ 2690+8~ 8? 
Ve 

it 
which exactly gives 

LOY. 37 
and 7 is very much nearer to 5,5 5690 than 5 

Note on alternative hypotheses with regard to the 

approwimations to r/3. 

For a description and examination of all the various theories put 

forward, up to the year 1882, for the purpose of explaining Archimedes’ 

approximations to »/3 the reader is referred to the exhaustive paper by 

Dr Siegmund Giinther, entitled Die guadratischen Irrationalitiiten der Alten 
und deren Entwickelungsmethoden (Leipzig, 1882). The same author gives 

further references in his Abriss der Geschichte der Mathematik und der Natur- 

wissenschaften im Altertum forming an Appendix to Vol. v. Pt. 1 of Iwan von 

Miiller’s Handbuch der klassischen Altertums-wissenschaft (Miinchen, 1894). 

Giinther groups the different hypotheses under three general heads : 

(1) those which amount to a more or less disguised use of the 

method of continued fractions and under which are included the solutions 
of De Lagny, Mollweide, Hauber, Buzengeiger, Zeuthen, P. Tannery (first 
solution), Heilermann ; 

(2) those which give the approximations in the form of a series 
? 1 1 1 . 

of fractions such as a+ — + —— +———+...; under this class come the 
m1 192 19293 

solutions of Radicke, v. Pessl, Rodet (with reference to the Culvasiitras), 
Tannery (second solution) ; 
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(3) those which locate the incommensurable surd between a greater 

and lesser limit and then proceed to draw the limits closer and closer. 

This class includes the solutions of Oppermann, Alexejeff, Schénborn, 

Hunrath, though the first two are also connected by Giinther with the 
method of continued fractions. 

Of the methods so distinguished by Giinther only those need be here 

referred to which can, more or less, claim to rest on a historical basis 
in the sense of representing applications or extensions of principles laid 

down in the works of Greek mathematicians other than Archimedes which 

have come down to us. Most of these quasi-historical solutions connect 

themselves with the system of side- and diagonal-numbers (mevpixot and 

Staperpixol apiOuoi) explained by Theon of Smyrna (c. 130 a.D.) in a work 

which was intended to give so much of the principles of mathematics as 
was necessary for the study of the works of Plato. 

The side- and diagonal-numbers are formed as follows. We start with 

two units, and (a) from the sum of them, (b) from the sum of twice 

the first unit and once the second, we form two new numbers ; thus 

1.141=2,  2.141=3. 

Of these numbers the first is a side- and the second a diagonal-number 

respectively, or (as we may say) 

Gn=2, d,=3. 

In the same way as these numbers were formed from a,=1, d,=1, suc- 
cessive pairs of numbers are formed from a, d,, and so on, in accordance 

with ‘the formula 
On41=An tn, An 41 =n +d, 

whence we have 
dg=1.24+3=5, d,=2.24+3=7, 

4=1.54+7=12, dy=2.5+7=17, 
and so on. 

Theon states, with reference to these numbers, the general proposition 

which we should express by the equation 

d,? = 2a,” apJle 

The proof (no doubt omitted because it was well-known) is simple. For 

we have : 
Dy? — Lin? = (2Ay — 1 + Ay — 1)? — 2 (Gn + En -1) 

a 24,1" i Danie 

Sres(djey? 205.1?) 
= + (d,_? — 24,-3”), and so on, 

while d,?—2a,2= —1,; whence the proposition is established. 

Cantor has pointed out that any one familiar with the truth of this 

proposition could not have failed to observe that, as the numbers were 

successively formed, the value of d,2/a,2 would approach more and more 

nearly to 2, and consequently the successive fractions d,/ay would give 
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nearer and nearer approximations to the value of 4/2, or in other words that 

eon ee 
1? 9? RY 12” 29” eeceee 

are successive approximations to /2. It is to be observed that the third 

of these approximations, r is the Pythagorean approximation which 

appears to be hinted at by Plato, while the above scheme of Theon, 

amounting to a method of finding all the solutions in positive integers of 

the indeterminate equation 
24? — y= +1, 

and given in a work designedly introductory to the study of Plato, 

distinctly suggests, as Tannery has pointed out, the probability that even 

in Plato’s lifetime the systematic investigation of the said equation had 
already begun in the Academy. In this connexion Proclus’ commentary 
on Eucl. 1. 47 is interesting. It is there explained that in isosceles 

right-angled triangles “it is not possible to find numbers corresponding to 

the sides; for there is no square number which is double of a square 

except in the sense of approximately double, e.g. 72 is double of 5? less 1.” 

When it is remembered that Theon’s process has for its object the finding 

of any number of squares differing only by unity from double the squares 

of another series of numbers respectively, and that the sides of the two 

sets of squares are called diagonal- and side-numbers respectively, the 

conclusion becomes almost irresistible that Plato had such a system in 

mind when he spoke of pyr Suaperpos (rational diagonal) as compared 

with appnros Siaperpos (trrational diagonal) r7s meurados (cf. p. lxxviii above). 

One supposition then is that, following a similar line to that by which 

successive approximations to 1/2 could be obtained from the successive 

solutions, in rational numbers, of the indeterminate equations 2a? — 7?= +1, 

Archimedes set himself the task of finding all the solutions, in rational 

numbers, of the two indeterminate equations bearing a similar relation 

to “3, viz. 
av —3y=1, 

v?—3y2= —2. 

Zeuthen appears to have been the first to connect, eo nomine, the ancient 

approximations to 3 with the solution of these equations, which are also 
made by Tannery the basis of his first method. But, in substance, the 

same method had been used as early as 1723 by De Lagny, whose 

hypothesis will be, for purposes of comparison, described after Tannery’s 
which it so exactly anticipated. 

Zeuthen’s solution. 

After recalling the fact that, even before Euclid’s time, the solution 

of the indeterminate equation #+y7?=2? by means of the substitutions 
m?—n? m+n? 

v=mn, y= yes a 
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was well known, Zeuthen concludes that there could have been no 

difficulty in deducing from Eucl. 1. 5 the identity 

4, (me—38n2\2_— (m2? +3n?\? 
3 (mn) +(=3*) = ( 5 ) F 

from which, by multiplying up, it was easy to obtain the formula 

3 (2mn)? + (m? — 3n*)? = (m2 + 3n?)?, 

If therefore one solution m?—3n?=1 was known, a second could at once 

be found by putting 
t=m+3n7, y=22mn. 

Now obviously the equation 

m—3n?=1 

is satisfied by the values m=2, n=1; hence the next solution of the 

equation 
v—3y?=1 

is y=24+3.1=7, 7,=2.2.1=4; 
and, proceeding in like manner, we have any number of solutions as 

M=743.4=97, yy=2.7.4=56, 
#,=977 +3 .567=18817, Yg=2.97.56= 10864, 

and so on. 

Next, addressing himself to the other equation 

ue? — 3y?= —2, 
Zeuthen uses the identity 

(m+3n)2—3 (m+n)? = — 2 (m?—3n?). 

Thus, if we know one solution of the equation m?—3n?=1, we ean proceed 

to substitute 
+ «£=m-+3n, Y=mMtn. 

Suppose m=2, n=1, as before ; we then have 

#=5, n=3. 

If we put #,=%,+3y,=14, y,=7,+y,=8, we obtain 

pesca 
ETS Tae 

(and m=7, n=4 is seen to be a solution of m?—3n?=1). 

Starting again from 7, y,, we have 

Ga Oy Y= 22, 

and ye 
y, i 

(m=19, n=11 being a solution of the equation m?—3n?= - 2); 

#,= 104, Y4= 60, 

26 
whence se yal a 

Y, 15 
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(and m=26, n=15 satisfies m?—3n?=1), 

@,= 284, ¥;5= 164, 

or iy 
Y, 41° 

Rete: te 91 x, 265 
Similarly Wy, OGbage 7 188: and so.on. 

This method gives all the successive approximations to 1/3, taking 

account as it does of both the equations 

—37"°=1, 

wv 3y?= — 2. 

Tannery's first solution. 

Tannery asks himself the question how Diophantus would have set 

about solving the two indeterminate equations. He takes the first equation 

in the generalised form 
v—ay=1, 

and then, assuming one solution (p, q) of the equation to be known, he 
supposes 

Pi=ML—P, H=L+4. 
Then pag? = mx? — 2px +p? — ax?—Lagu — ag?=1, 

whence, since p?—ag?=1, by hypothesis, 

mp+a eon ee q 
ma 

re +a) p+ a) Imp + (mn? +a) g 
poaeaak tales m—a di at ee 
and p,?-ag?=1. 

The values of ,, 9, so found are rational but not necessarily integral ; 

if integral solutions are wanted, we have only to put 

p= (w+ av?) p + 2aurq, Q = 2puv + (wv? + av?) g, 

where (uv, v) is another integral solution of x? - ay?=1. 

Generally, if (p, g) be a known solution of the equation 

w—ay=r, 

suppose p, =ap+8q, 4 =yp +g, and “il suffit pour déterminer a, 8, y, § de 

connaitre les trois groupes de solutions les plus simples et de résoudre 

deux couples d’équations du premier degré & deux inconnues.” Thus 
(1) for the equation 

ww 3y?2= 
the first three solutions are 

(p=1,¢=0), (p=2,qg=1), (p=, ¢=4), 
2=a 7=2a+pP 

whence em and Anos AN 

so that C=2) 8 =3, y=) 0=2, 
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and it follows that the fourth solution is given by 

p=2.7+3.4=26, 
q=1.74+2.4=15; 

(2) for the equation x? —3y?= —2, 

the first three solutions being (1, 1), (5, 3), (19, 11), we have 

sia ae eae 
3=y+6 11=5y+386) ’ 

whence a=2, 8=3,;"y=1, =2, and the next solution is given by 

p=2.194+3.11=71, 
q=1.19+2.11=41, 

and so on. 

Therefore, by using the two indeterminate equations and proceeding as 

shown, all the successive approximations to V3 can be found. 

Of the two methods of dealing with the equations it will be seen that 

Tannery’s has the advantage, as compared with Zeuthen’s, that it can be 

applied to the solution of any equation of the form x? —ay*=r. 

De Lagny’s method. 

The argument is this. If /3 could be exactly expressed by an im- 

proper fraction, that fraction would fall between 1 and 2, and the square of 

its numerator would be three times the square of its denominator. Since 

this is impossible, two numbers have to be sought such that the square of 

the greater differs as little as possible from 3 times the square of the 

smaller, though it may be either greater or less. De Lagny then evolved 

the following successive relations, 

=3.12+1, 52=3.32-2, 7=3.42+1, 192=3.11?-2, 

262=3.152+1, 712=3. 412-2, ete. 

From these relations were derived a series of fractions greater than V3, 

viz. - ’ = , etc, and another series of fractions less than V3, viz. 

iS I) efi : P : 
3°11? 47? etc. The law of formation was found in each case to be that, if 

; was one fraction in the series and a the next, then 

eee tie? 
q p+2g 

This led to the results 

2_7_26_97_ 362_ 1351 _ ys 
< a eS) 

1°47 18> 56° 209° 780°" *” 

a 519 _71_ 265 989 3601 ig, 
3 < 11 <a ~ 153 ~ 571 ~2131° 
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while the law of formation of the successive approximations in each series 

is precisely that obtained by Tannery as the result of treating the two 

indeterminate equations by the Diophantine method. 

Heilermann’s method. 

This method needs to be mentionedsbecause it also depends upon a 

generalisation of the system of séde- and diagonal-numbers given by Theon 

of Smyrna. 

Theon’s rule of formation was 

Sr=Sn-1tDn-1 Dy = 2! anit Dy-13 

and Heilermann simply substitutes for 2 in the second relation any 
arbitrary number a, developing the following scheme, 

S,=S)+D), D,=aS8,+ Do; 

S,=S,+D,, D,=a8S,+D,, 

S;=S.+D,, D;=aS,+Dz; 

Sn=SratDriy  Dn=ASp~tDn-- 

It follows that 

GAS y2= Sp)? + 248 yy Dn + OD”, 

Dia =— C4 Senet ee ete 

By subtraction, D2 — aS? = (1 — @) (Dp? — WS”) 

=(1—a)? (Dp? — aSy_,”), similarly, 

=(1-—a)"(D,?— a8,?). 

This corresponds to the most general form of the “ Pellian” equation 

a? — ay” = (const.). 

If now we put Dy) =S)=1, we have 

DS (l-a)**} 

v 2 sa [<a ee 

Se Se : 

from which it appears that, where the fraction on the right-hand side 

: Die , I 
approaches zero as ” increases, gis an approximate value for Va, 

n 

Clearly in the case where a=3, D)=2, Sp=1 we have 

Dy 2 Dye 5 D, 1407 DD, 19 Dye o2iea6 
Sy ck ey (St Ng Ome aL eade Ae SO ioe 

D;_71 D,_194 97 D, 265 
Ss LOGS. EIS Ger SS 1S? 

and so on, 
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But the method is, as shown by Heilermann, more rapid if it is used to 
find, not a, but b/a, where b is so chosen as to make b2u (which takes 

the place of a) somewhat near to unity. Thus suppose a= a so that 

Va= ; 4/3, and we then have (putting D)=S)=1) 

52 = O26 26 
Si=2:; eerie and V30 3-58 or 15” 

102 « , 54452 106 5 106 265 
No= 25” D,= 25 => 25 ) and VB0 5. 102” or 153? 

g.-208 py _ 102.27 106 __ 5404 
See 5 25025 485.95" 

hee 25a) 
N30 5 -508°3? OT Fag" 

This is one of the very few instances of success in bringing out the two 

Archimedean approximations in immediate sequence without any foreign 

values intervening. No other methods appear to connect the two values 

in this direct way except those of Hunrath and Hultsch depending on the 

formula 

and 

b 
+— > NV art +- a Ve+b>a Sa41° 

We now pass to the second class of solutions which develops the 

approximations in the form of the sum of a series of fractions, and under 

this head comes 

Tannery's second method. 

This may be exhibited by means of its application (1) to the case of the 

square root of a large number, e.g. /349450 or 4/571?+ 23409, the first of 

the kind appearing in Archimedes, (2) to the case of /3. 

(1) Using the formula 
eae b 

VP +boats, 

we try the effect of putting for 1/571" + 23409 the expression 

23409 
BIE a6 

It turns out that this gives correctly the integral part of the root, and we 

now suppose the root to be 
1 

571+20+—. 
m 

Squaring and regarding 5 as negligible, we have 

42 40 
571? ie e+ = 5712+ 23409, 
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1182 
whence — = 169, 

Ne 

F T1691 
bas m 11827 7? 

so that (349450 >591 
(2) Bearing in mind that 

b 
2 

Va+beoatse rs: 
= 2 
£ 2 we have V3=V 242 +2 cote 

~ (ye or . 
3} 3 

; = 1 : meal : 
Assuming then that /3 = G 4 5 , Squaring and neglecting ap We obtain 

25 10 _ 
Sa 

whence m=15, and we get as the second approximation 

Hi 26 
3 +75 8 is 

We have now 262—3.15?=1, 

and can proceed to find other approximations by means of Tannery’s first 
method. 

2 1\? 
Or we can also put (145 +igt i) =3, 

and, neglecting = we get 

26? | 52 _ 
Looe Tbe man 

whence 7= —15.52= — 780, and 

= 2 1 1 1351 

V3.0 (145 +75 807 a0 ): 
It is however to be observed that this method only connects a with 

- and not with the intermediate approximation os 3? to obtain which 

Tannery implicitly uses a particular case of the formula of Hunrath and 

Hultsch. 

Rodet’s method was apparently invented to explain the approximation 
in the Culvastitras* 

Ul 1 1 
V2e01+5 373. 4. 3.4.34? 

Pca 

* See Cantor, Vorlenmand aber Gesch. d. Math, p- 600 sq. 
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but, given the approximation - 

indicated by the formula can be obtained by the method of squaring just: 

described* without such elaborate work as that of Rodet, which, when 

the other two successive approximations 

applied to 4/3, only gives the same results as the simpler method. 

Lastly, with reference to the third class of solutions, it may be 
mentioned 

(1) that Oppermann used the formula 
“ 

a+b = Mele: 
oe Jab 

a+b? 

: ‘ 2 = 3 
which gave successively iz V3> 3? 

7 = IY 
ea 

97 =_ 168 
Ree lee nae 

but only led to one of the Archimedean approximations, and that by 
combining the last two ratios, thus 

97+168 265 
56+97 153’ 

(2) that Schénborn came somewhat near to the formula successfully used 

by Hunrath and Hultsch when he provedt that 

ae dees b 
EE, ne NE Mea ray 

* Cantor had already pointed this out in his first edition of 1880. 

+ Zeitschrift fiir Math. wu. Physik (Hist. litt, Abtheilung) xxvii, (1883), 

p. 169 sq. 

91213 



CHAPTER V. 

ON THE PROBLEMS KNOWN AS NETYZ2EIS. 

THE word veto.s, commonly wclinatio in Latin, is difficult to 

translate satisfactorily, but its meaning will be gathered from some 

general remarks by Pappus having reference to the two Books of 

Apollonius entitled vetoes (now lost). Pappus says*, “A line is 

said to verge (vevew) towards a point if, being produced, it reach the 

point,” and he gives, among particular cases of the general form of 

the problem, the following. 

“Two lines being given in position, to place between them a 

straight line given in length and verging towards a given point.” 

“Tf there be given in position (1) a semicircle and a straight 

line at right angles to the base, or (2) two semicircles with their 

bases in a straight line, to place between the two lines a straight 

line given in length and verging towards a corner (ywviav) of a 

semicircle.” 

Thus a straight line has to be laid across two lines or curves so 

that it passes through a given point and the intercept on it between 

the lines or curves is equal to a given lengtht. 

§1. The following allusions to particular vevoes are found in 

Archimedes. The proofs of Props. 5, 6, 7 of the book On Spirals 

use respectively three particular cases of the general theorem that, 

* Pappus (ed. Hultsch) vir. p. 670. 

+ In the German translation of Zeuthen’s work, Die Lehre von den 

Kegelschnitten im Altertum, vedo.s is translated by ‘ EKinschiebung,”’ or as we 

might say “insertion,” but this fails to express the condition that the required 

line must pass through a given point, just as inclinatio (and for that matter the 

Greek term itself) fails to express the other requirement that the intercept on 

the line must be of given length. 
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¥ A be any point on a circle and BC any diameter, it is possible to 
draw through A a straight line, meeting the circle again in P and 
BC produced in R, such that the intercept PR is equal to any given 

length. In each particular case the fact is merely stated as true 

without any explanation or proof, and 

(1) Prop. 5 assumes the case where the tangent at A is parallel 

to BO, 

(2) Prop. 6 the case where the points A, P in the figure are 

interchanged, 

(3) Prop. 7 the case where A, P are in the relative positions 

shown in the figure. 

Again, (4) Props. 8 and 9 each assume (as before, without proof, 

_ and without giving any solution of the 

implied problem) that, 1f AZ, BC be two 

chords of a circle intersecting at right 

angles in a point D such that BD > DC, 

then it is possible to draw through A 

another line ARP, meeting BC in Kk and 

the circle again in P, such that PR = DE. 

Lastly, with the assumptions in Props. 

5, 6, 7 should be compared Prop. 8 of the 

Liber Assumptorum, which may well be 

due to Archimedes, whatever may be said of the composition of the 

whole book. This proposition proves that, ¢f in the first figure 

APR is so drawn that PR is equal to the radius OP, then the are 

AB is three times the are PC. In other words, if an arc AB of a 

circle be taken subtending any angle at the centre O, an arc equal 

to one-third of the given are can be found, 2.¢, the given angle can be 

trisected, if only APR can be drawn through A im such a manner 

E 
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that the intercept PR between the circle and BO produced is equal to 

the radius of the circle. Thus the trisection of an angle is reduced to 

a vedors exactly similar to those assumed as possible in Props. 6, 7 

of the book On Spirals. 
The vevoes so referred to by Archimedes are not, in general, 

capable of solution by means of the straight line and circle alone, 

as may be easily shown. Suppose in the first figure that a 

represents the unknown length OR, where O is the middle point 

of BC, and that & is the given length to which P& is to be equal ; 

also let OD=a, AD=b, BC =2c. Then, whether BC be a diameter 

or (more generally) any chord of the circle, we have 

AR.RP=BR. RC, 

and therefore kN + (a —a)? (2 — a)? =x —c. 

The resulting equation, after rationalisation, is an equation of the 

fourth degree in «; or, if we denote the length of AA by y, we have, 

for the determination of x and y, the two equations 

y? = (wa)? + 0? 

ky =x? — 0 } 

In other words, if we have a rectangular system of coordinate 

axes, the values of x and y satisfying the conditions of the problem 

can be determined as the coordinates of the points of intersection of 

a certain rectangular hyperbola and a certain parabola. 

In one particular case, that namely in which D coincides with O 

the middle point of SC, or in which A is one extremity of the 

diameter bisecting BC at right angles, a=0, and the equations 

reduce to the single equation 

y —ky=b' +e, 

which is a quadratic and can be geometrically solved by the 

traditional method of application of areas; for, if w be substituted 

for y—k, so that w= AP, the equation becomes 

u(k+u)=0' +’, 

and we have simply “to apply to a straight line of length & a 

rectangle exceeding by a square figure and equal to a given 

area (b° + ¢?).” 

The other vetous referred to in Props. 8 and 9 can be solved in 

the more general form where h, the given length to which PR 
is to be equal, has any value within a certain maximum and is not 
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necessarily equal to DZ, in exactly the same manner; and the two 
equations corresponding to (a) will be for the second figure 

y’ =(a—2)? +b?) 
ky =0 — a j 

Here, again, the problem can be solved by the ordinary method 

of application of areas in the particular case where AZ is the 

diameter bisecting BC at right angles; and it is interesting to note 

that this particular case appears to be assumed in a fragment 

of Hippocrates’ Quadrature of lunes preserved in a quotation 

by Simplicius* from Eudemus’ History of Geometry, while Hippo- 

crates flourished probably as early as 450 B.c. 

Accordingly we find that Pappus distinguishes different classes 

of vevoers corresponding to his classification of geometrical problems 

in general. According to him, the Greeks distinguished three kinds 

of problems, some being plane, others solid, and others linear. He 

proceeds thus}: ‘‘Those which can be solved by means of a straight 

line and a circumference of a circle may properly be called plane 

(éxireda); for the lines by means of which such problems are 

solved have their origin in a plane. Those however which are 

solved by using for their discovery (evpeovv) one or more of the 

sections of the cone have been called solid (oreped); for the 

construction requires the use of surfaces of solid figures, namely, 

those of cones. There remains a third kind of problem, that 

which is called linear (ypappuxov) ; for other lines [curves] besides 

those mentioned are assumed for the construction whose origin 

is more complicated and less natural, as they are generated from 

more irregular surfaces and intricate movements.” Among other 

instances of the linear class of curves Pappus mentions spirals, the 

curves known as guadratrices, conchoids and cissoids. He adds 

that “it seems to be a grave error which geometers fall into 

whenever any one discovers the solution of a plane problem by 

means of conics or linear curves, or generally solves it by means of 

a foreign kind, as is the case, for example, (1) with the problem in 

the fifth Book of the Conics of Apollonius relating to the parabola}, 

* Simplicius, Comment. in Aristot. Phys. pp. 61—68 (ed. Diels). The whole 

quotation is reproduced by Bretschneider, Die Geometrie und die Geometer vor 

Euklides, pp. 109—121. As regards the assumed construction see particularly 

p. 64 and p. xxiv of Diels’ edition; cf. Bretschneider, pp. 114, 115, and Zeuthen, 

Die Lehre von den Kegelschnitten im Altertum, pp. 269, 270. 

+ Pappus tv. pp. 270—272. 
+ Cf. Apollonius of Perga, pp. exxviii. exxix. 
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and (2) when Archimedes assumes in his work on the spiral a 

vedo.ts of a solid character with reference to a circle; for it is 

possible without calling in the aid of anything solid to find the 

[proof of the] theorem given by the latter [Archimedes], that is, to 

prove that the circumference of the circle arrived at in the first 

revolution is equal to the straight line drawn at right angles to the 

initial line to meet the tangent to the spiral.” 

The “solid vedous” referred to in this passage is that assumed to 

be possible in Props. 8 and 9 of the book On Spirals, and is mentioned 

again by Pappus in another place where he shows how to solve the 

problem by means of conics*. This solution will be given later, but, 

when Pappus objects to the procedure of Archimedes as unorthodox, 

the objection appears strained if we consider what precisely it is that 

Archimedes assumes. It is not the actual solution which is assumed, 

but only its possibility ; and its possibility can be perceived without 

any use of conics. For in the particular case it is only necessary, 

as a condition of possibility, that DH in the second figure above 

should not be the maximum length which the intercept PR could 

have’as APR revolves about A from the position ADF in the 

direction of the centre of the circle; and that DZ is not the 

maximum length which PA can have is almost self-evident. In 

fact, if P, instead of moving along the circle, moved along the 

straight line through Z parallel to BC, and if ARP moved from the 

position ADJZ in the direction of the centre, the length of PR would 

continually increase, and @ fortiori, so long as P is on the are of the 

circle cut off by the parallel through # to BC, PR must be greater 

in length than DZ’; and on the other hand, as ARP moves further 

in the direction of B, it must sometime intercept a length PR 

equal to DE before P reaches B, when PR vanishes. Since, then, 

Archimedes’ method merely depends upon the theoretical possibility 

of a solution of the veto.s, and this possibility could be inferred 

from quite elementary considerations, he had no occasion to use 

conic sections for the purpose immediately in view, and he cannot 

fairly be said to have solved a plane problem by the use of conics. 

At the same time we may safely assume that Archimedes 

was in possession of a solution of the vedous referred to. But there 

is no evidence to show how he solved it, whether by means of conics, 

or otherwise. That he would have been able to effect the solution, 

* Pappus Iv. p. 298 sq. 
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as Pappus does, by the use of conics cannot be doubted. A precedent 

for the introduction of conics where a “solid problem” had to be 

solved was at hand in the determination of two mean proportionals 

between two unequal straight lines by Menaechnius, the inventor of 

the conic sections, who used for the purpose the intersections of a 

parabola and a rectangular hyperbola. The solution of the cubic 

equation on which the proposition On the Sphere and Cylinder u. 4 

depends is also effeeted by means of the intersections of a parabola 

with a rectangular hyperbola in the fragment given by Eutocius 

and by him assumed to be the work of Archimedes himself*. 

Whenever a problem did not admit of solution by means of the 

straight line and circle, its solution, where possible, by means of 

conics was of the greatest theoretical importance. First, the 

possibility of such a solution enabled the problem to be classified 

as a “solid problem”; hence the importance attached by Pappus 

to solution by means of conics. But, secondly, the method had 

other great advantages, particularly in view of the requirement that 

the solution of a problem should be accompanied by a d.opicpos 

giving the criterion for the possibility of a real solution. Often too 

the d.opiopds involved (as frequently in Apollonius) the determination 

of the number of solutions as well as the limits for their possibility. 

Thus, in any case where the solution of a problem depended on the 

intersections of two conics, the theory of conics afforded an effective 

means of investigating diopurpol. 

§ 2. But though the solution of ‘solid problems” by means of 

conics had such advantages, it was not the only method open to 

Archimedes. An alternative would be the use of some mechanical 

construction such as was often used by the Greek geometers and is 

recognised by Pappus himself as a legitimate substitute for conics, 

which are not easy to draw in a planet. Thus in Apollonius’ 

solution of the problem of the two mean proportionals as given by 

Eutocius a ruler is supposed to be moved about a point until the 

points at which the ruler crosses two given straight lines at right 

angles are equidistant from a certain other fixed point; and the 

same construction is also given under Heron’s name. Another 

version of Apollonius’ solution is that given by Ioannes Philoponus, 

which assumes that, given a circle with diameter OC and two 

* See note to On the Sphere and Cylinder, u. 4. 

+ Pappus 111. p. 54, 
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straight lines OD, O# through O and at right angles to one 

another, a line can be drawn through C, meeting the circle again 
in / and the two lines in D, # respectively, such that the in- 

tercepts CD, PH are equal. This solution was no doubt discovered 

by means of the intersection of the circle with a rectangular hyper- 

bola drawn with OD, OF as asymptotes and passing through C; 

and this supposition accords with Pappus’ statement that Apollonius 

solved the problem by means of the sections of the cone*. The 

equivalent mechanical construction is given by Eutocius as that 

of Philo Byzantinus, who turns a ruler about C until CD, FF are 

equal ft. 

Now clearly a similar method could be used for the purpose of 

effecting a vetous. We have only to suppose a ruler (or any object 

with a straight edge) with two marks made on it at a distance 

equal to the given length which the problem requires to be 

intercepted between two curves by a line passing through the 

fixed point; then, if the ruler be so moved that it always passes 

through the fixed point, while one of the marked points on it follows 

the course of one of the curves, it is only necessary to move the 

ruler until the second marked point falls on the other curve. Some 

such operation as this may have led Nicomedes to the discovery of 

his curve, the conchoid, which he introduced (according to Pappus) 

into his doubling of the cube, and by which he also trisected an 

angle (according to the same authority). From the fact that 

Nicomedes is said to have spoken disrespectfully of Eratosthenes’ 

mechanical solution of the duplication problem, and therefore must 

have lived later than Eratosthenes, it is concluded that his date 

must have been subsequent to 200 B.c., while on the other hand 

he must have written earlier than 70 B.c., since Geminus knew the 

name of the curve about that date; Tannery places him between 

Archimedes and Apollonius. While therefore there appears to 

be no evidence of the use, before the time of Nicomedes, of such 

a mechanical method of solving a vedov.s, the interval between 

Archimedes and the discovery of the conchoid can hardly have 

been very long. As a matter of fact, the conchoid of Nicomedes 

can be used to solve not only all the vevoecs mentioned in Archimedes 

but any case of such a problem where one of the curves is a straight 

* Pappus in. p. 56. 

+ For fuller details see Apollonius of Perga, pp. exxv—exxvii. 

Bulletin des Sciences Mathématiques, 2° série vit. p. 284, 
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line. Both Pappus and Eutocius attribute to Nicomedes the inven- 

tion of a machine for drawing his conchoid. 4B is supposed to be 

a ruler with a slot in it parallel to its length, /Z a second ruler at 

right angles to the first with a fixed peg in it, C. This peg moves 

in a slot made in a third ruler parallel to its length, while this 

ruler has a fixed peg on it, D, in a straight line with the slot in 

which C moves ; and the peg D can move along the slot in AB. If 

then the ruler PD moves so that the peg D describes the length of 

the slot in ABS on each side of /, the extremity of the ruler, P, 

describes the curve which is called a conchoid. Nicomedes called 

the straight line AB the ruler (xavev), the fixed point C the pole 

(w0Xos), and the length PD the distance (duocrnwa); and the 

fundamental property of the curve, which in polar coordinates 

would now be denoted by the equation r=a+bsec @, is that, if 

any radius vector be drawn from C to the curve, as CP, the length 

intercepted on the radius vector between the curve and the straight 

line AB is constant. Thus any veio.s in which one of the two 

given lines is a straight line can be solved by means of the 

intersection of the other line with a certain conchoid whose pole 

is the fixed point to which the required straight line must verge 

(vevew). In practice Pappus tells us that the conchoid was not 

always actually drawn, but that “some,” for greater convenience, 

moved the ruler about the fixed point until by trial the intercept 

was made equal to the given length*. 

§ 8. The following is the way in which Pappus applies 

conic sections to the solution of the vedo.s referred to in Props. 8, 9 

of the book On Spirals. He begins with two lemmas. 

* Pappus Iv. p. 246. 
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(1) If from a given point A any straight line be drawn meeting 

a straight line BC given in position in #, and if RY be drawn 

perpendicular to BC and bearing a given ratio to AR, the locus of 

Q is a hyperbola. 

For draw AD perpendicular to BC, and on AD produced take A’ 

such that 
Qk: RA=A'D : DA = (the given ratio). 

Measure DA” along DA equal to DA’. 

Then, if QV be perpendicular to AX, 

(AR? — AD?) : (QR? — A'D?) = (const.), 

or QN® 3 AV Ad N=. (comets) 

(2) If BC be given in length, and if AQ, a straight line drawn 

at right angles to BC from any point # on it, be such that 

BR. RC=k. RQ, 

where & is a straight line of given length, then the locus of Q isa 

parabola. 

Let O be the middle point of BC, and let OK be drawn at right 

angles to it and of such length that 

OC? =k, KO; 

Draw QN' perpendicular to OX, 

Then ON? = O08? =0C"— BERERC 

=k.(KO— RQ), by hypothesis, 

= hia 
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In the particular case referred to by Archimedes (with the slight 

generalisation that the given length & to which PR is to be equal is 

not necessarily equal to DH) we have 

(1) the given ratio RY: AR is unity, or RQ=AR, whence A” 
coincides with 4, and, by the first lemma, 

QN?=AN . A'N, 

so that Q lies on a rectangular hyperbola. 

(2) BR. ROAR. RP=k. AR=k. RQ, and, by the second 
lemma, @ les on a certain parabola. 

If now we take O as origin, OC as axis of w and OK as axis of y, 

and if we put OD=a, AD=b, BC =2c, the hyperbola and parabola 

determining the position of @ are respectively denoted by the 

equations 
2 

(a-2P=y¥y— b’, 

cx = ky, 

which correspond exactly to the equations (8) above obtained by 

purely algebraical methods. 

Pappus says nothing of the d.opucuds which is necessary to the 

complete solution of the generalised problem, the dvopuopes namely 

which determines the maaimwm value of & for which the solution is 

possible. This maximum value would of course correspond to the 
case in which the rectangular hyperbola and the parabola touch one 

another. Zeuthen has shown* that the corresponding value of & can 

be determined by means of the intersection of two other hyperbolas or 

of a hyperbola and a parabola, and there is no doubt that Apollonius, 

with his knowledge of conics, and in accordance with his avowed 

object in giving the properties useful and necessary for dopicpoi, 

would have been able to work out this particular d:opurpos by means 

of conies; but there is no evidence to show that Archimedes investi- 

gated it by the aid of conics, or indeed at all, it being clear, as shown 
above, that it was not necessary for his immediate purpose. 

This chapter may fitly conclude with a description of (1) some 

important applications of veioes given by Pappus, and (2) certain 

particular cases of the same class of problems which are plane, that 

is, can be solved by the aid of the straight line and circle only, and 

which were (according to Pappus) shown by the Greek geometers to 

be of that character. 

* Zeuthen, Die Lehre von den Kegelschnitten im Altertum, pp. 273—5. 
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$4. One of the two important applications of ‘solid’ vedoes was 

discovered by Nicomedes, the inventor of the conchoid, who intro- 

duced that curve for solving a vetdors to which he reduced the problem 

of doubling the cube* or (what amounts to thé same thing) the finding 

of two mean proportionals between two given unequal straight lines. 

Let the given unequal straight lines be placed at right angles as 

CL, LA. Complete the parallelogram A BCL, and bisect AB at D, 

and BC at HZ. Join LD and produce it to.meet CB produced in H. 

From # draw £F at right angles to BC, and take a point / on £F | 

such that CY is equal to AD. Join HF, and through C' draw CG 

parallel to HF. If we produce BC to K, the straight lines CG, CK 

form an angle, and we now draw from the given point F a straight | 

lme FG@K, meeting CG, CK in G, K respectively, such that the 

intercept GX is equal to AD or FC. (This is the vedous to which 

the problem is reduced, and it can be solved by means of a conchoid 

with / as pole.) 

Join XZ and produce it to meet BA produced in M. 

Then shall CX, A be the required mean proportionals between 

CL, LA, or 
CL: CK =CK VAM a AMerAL, 

We have, by Eucl. 1. 6, 

BK . KC + CE? = ER’. 
If we add LI? to each side, 

BE. KC+ Cre = Pix 
Now, by parallels, 

MA: ABS ML eLE, 

= DC Uk 
\ 

* Pappus tv, p. 242 sq. and m1. p, 58 sq.; Eutocius on Archimedes, On the 
Sphere and Cylinder, 11. 1 (Vol. 11. p. 114 sq.) 
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and, since AB= 2AD, and BC =1HC; 

MAS ADS HC: CK 

= FG : GK, by parallels, 
whence, componendo, 

MD:AD=FE : GK. 

But GK = AD; therefore WD = FK, and MD? = FR?. 

Again, MD*=BM . MA + AD?, 

and FK*=BK . KC + CF’, from above, 

while “ MD? = FK?, and AD?=CF’; 
_ therefore BM .MA=BK. KC. — 

Hence CK: MA=BM: BRY 

; is ee : : o : by parallels, 

that is, LG: CK=CK:; MA= MA: AL, 

§ 5. The second important problem which can be reduced to 

a ‘solid’ vedo. is the trisection of any angle. One method of 

reducing it to a vetou.s has been mentioned above as following from 
Prop. 8 of the Liber Assumptorum. This method is not mentioned 

by Pappus, who describes (iv. p. 272 sq.) another way of effecting 

the reduction, introducing it with the words, “The earlier 

geometers, when they sought to solve the aforesaid problem about 

the [trisection of the] angle, a problem by nature ‘solid,’ by 

‘plane’ methods, were unable to discover the solution; for they 

were not yet accustomed to the use of the sections of the cone, 

, and were for that reason at a loss. Later, however, they trisected 

an angle by means S conics, having used for the ge! of it 

the following vetats.’ 
The vetdo.s is thus enunciated: Given a rectangle ABCD, let it 

be required to draw through A a straight line AQ, meeting CD in 

Q and BC produced in R, such that the intercept QA is equal to a 

given length, & suppose. 

Suppose the problem solved, QR being equal to k. Draw DP 

parallel to QF and RP parallel to CD, meeting in P. Then, in the 

parallelogram DR, DP = QR =k. 
Hence P lies on a circle with centre D and radius k. 

Again, by Eucl. 1. 43 relating to the complements of the 

parallelograms about the diagonal of the complete parallelogram, 

BO.CD=BR. QD 

nie pelos: 
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and, since BC. CD is given, it follows that P lies on a rectangular 

hyperbola with BR, BA as asymptotes and passing through D. 

B Cc R 

Therefore, to effect the construction, we have only to draw this 

rectangular hyperbola and the circle with centre D and radius equal 

to k. The intersection of the two curves gives the point P, and & 

is determined by drawing PL parallel to DC. Thus AQF is found. 

{Though Pappus makes ABCD a rectangle, the construction 

applies equally if ABCD is any parallelogram. | 
Now suppose ABC to be any acute angle which it is required to 

trisect. Let AC be perpendicular to BC. Complete the parallelo- 

gram ADBC, and produce DA. 
Suppose the problem solved, and let the angle CBZ be one-third 

of the angle ABC. Let BH meet AC in # and DA produced in F. 

Bisect HF in H, and join AZ. 

Then, since the angle ABZ is equal to twice the angle HBC and, 

by parallels, the angles HBC, HFA are equal, 

LABE=2L AFH=z AHB. 

Therefore “ANB =A EL 

and HF=2HF 

Henee, in order to trisect the angle ABO, we have only to solve 

the following vetois: Given the rectangle ADBC whose diagonal 
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ts AB, to draw through B a straight line BEF, meeting AC in KE and 

DA produced in F, such that EF may be equal to twice AB; and this 

vevors is solved in the manner just shown. 

These methods of doubling the cube and trisecting any acute 

angle are seen to depend upon the application of one and the same 

vedo.s, Which may be stated in its most general form thus. Given 

any two straight lines forming an angle and any fixed point 

which is not on either line, it is required to draw through the 

fixed point a straight line such that the portion of it intercepted 

between the fixed lines is equal to a given length. If AE, AC be 

the fixed lines and B the fixed point, let the parallelogram ACLD 

be completed, and suppose that YR, meeting CA in Y and AL in 

&, satisfies the conditions of the problem, so that QA is equal to 

the given length. If then the parallelogram CQAP is completed, 

we may regard P as an auxiliary point to be determined in order 

that the problem may be solved; and we have seen that P can be 

found as one of the points of intersection of (1) a circle with centre 

C and radius equal to &, the given length, and (2) the hyperbola 

which passes through C and has DH, DB for its asymptotes. 

It remains only to consider some particular cases of the problem 

which do not require conics for their solution, but are ‘plane’ 

problems requiring only the use of the straight line and circle. 

§ 6. We know from Pappus that Apollonius occupied him- 

self, in his two Books of vetoes, with problems of that type 

which were capable of solution by ‘plane’ methods. As a matter 

of fact, the above vedovs reduces to a ‘plane’ problem in the 

particular case where B lies on one of the bisectors of the angle 

between the two given straight lines, or (in other words) where the 

parallelogram ACBD is a rhombus or a square. Accordingly we 

find Pappus enunciating, as one of the ‘plane’ cases which had 

H. A. h 
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been singled out for proof on account of their greater utility for 
many purposes, the following*: Given a rhombus with one side 

produced, to fit into the exterior angle a straight line given in 

length and verging to the opposite angle ; and he gives later on, in 

his lemmas to Apollonius’ work, a theorem bearing on the problem 

with regard to the rhombus, and {after a preliminary lemma) 

a solution of the veto.s with reference to a square. 

The question therefore arises, how did the Greek geometers 

discover these and other particular cases, where a problem which 

is in general ‘solid,’ and therefore requires the use of conics (or a 

mechanical equivalent), becomes ‘plane’? Zeuthen is of opinion that 

they were probably discovered as the result of a study of the general 

solution by means of conicst. I do not feel convinced of this, for 

the following reasons. 

(1) The authenticated instances appear to be very rare in 

which we should be justified in assuming that the Greeks used 

the properties of conics, in the same way as we should combine 

and transform two Cartesian equations of the second degree, for 

the purpose of proving that the intersections of two conics also 

lie on certain circles or straight lines. It is true that we may 

reasonably infer that Apollonius discovered by a method of this sort 

his solution of the problem of doubling the cube where, in place 

of the parabola and rectangular hyperbola used by Menaechmus, 

he employs the same hyperbola along with the circle which passes 

through the points common to the hyperbola and parabolat ; but 

in the only propositions contained in his conics which offer an 

opportunity for making a similar reduction§, Apollonius does not 

make it, and is blamed by Pappus for not doing so. In the pro- 

positions referred to the feet of the normals to a parabola drawn 

from a given point are determined as the intersections of the 

parabola with a certain rectangular hyperbola, and Pappus objects 

* Pappus vit. p. 670. 

+ “Mit dieser selben Aufgabe ist nimlich ein wichtiges Beispiel dafiir 

verkniipft, dass ian bemtiht war solche Falle zu entdecken, in denen Aufgaben, 

zu deren Lésung im allgemeinen Kegelschnitte erforderlich sind, sich mittels 

Zirkel und Lineal lésen lassen. Da nun das Studium der allgemeinen Lisung 

durch Kegelschnitte das beste Mittel gewahrt solche Fille zu entdecken, so ist 

es ziemlich wahrscheinlich, dass man wirklich diesen Weg eingeschlagen hat.” 
Zeuthen, op. cit. p. 280. 

t+ Apollonius of Perga, p. Cxxv, Cxxvi. 

§ Ibid. p. exxviii and pp. 182, 186 (Conics, v. 58, 62 
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to this method as an instance of discovering the solution of a 
‘plane’ problem by means of conics*, the objection having reference 

to the use of a hyperbola where the same points could be obtained 

as the intersections of the parabola with a certain circle. Now the 

proof of this latter fact would present no difficulty to Apollonius, 

and Pappus must have been aware that it would not; if therefore 

he objects in the circumstances to the use of the hyperbola, it is at 

least arguable that he would equally have objected had Apollonius 
brought in the hyperbola and used its properties for the purpose 

of proving the problem to be ‘plane’ in the particular case. 

(2) The solution of the general problem by means of conics 

brings in the auxiliary point P and the straight line CP. We 

should therefore naturally expect to find some trace of these in the 

particular solutions of the vetdov.s for a rhombus and square; but 

they do not appear in the corresponding demonstrations and figures 

given by Pappus. 

Zeuthen considers that the vedo.s with reference to a square was 

probably shown to be ‘plane’ by means of the same investigation 

which showed that the more general case of the rhombus was also 

capable of solution with the help of the straight line and circle 

only, i.e. by a systematic study of the general solution by means of 

conics. This supposition seems to him more probable than the view 

that the discovery of the plane construction for the square may have 

been accidental ; for (he says) if the same problem is treated solely 

by the aid of elementary geometrical expedients, the discovery that 

it is ‘plane’ is by no means a simple matterj. Here, again, I am 

not convinced by Zeuthen’s argument, as it seems to me that a 

’ simpler explanation is possible of the way in which the Greeks were 

led to the discovery that the particular vetoess were plane. They 

knew in the first place that the trisection of a right angle was a 

‘plane’ problem, and therefore that half a right angle could be 

trisected by means of the straight line and circle. It followed 

* Pappus Iv. p. 270. Cf. p. ciil above. 

+ “ Die Ausfiihrbarkeit kann dann auf die zuerst angedeutete Weise gefunden 

sein, die den allgemeinen Fall, wo der Winkel zwischen den gegebenen Geraden 

beliebig ist, in sich begreift. Dies scheint mir viel wahrscheinlicher als die 

Annahme, dass die Entdeckung dieser ebenen Konstruction zufallig sein sollte ; 

denn wenn man dieselbe Aufgabe nur mittels rein elementar-geometrischer 

Hiilfsmittel behandelt, so liegt die Entdeckung, dass sie eben ist, ziemlich fern.” 

Zeuthen, op, cit. p. 282. 

h2 
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therefore that the corresponding vetovs, ie. that for a square, was 

a ‘plane’ problem in the particular case where the given length 

to which the required intercept was to be equal was double of 

the diagonal of the square. This fact would naturally suggest 

the question whether the problem was still plane if & had 

any other value; and, when once this question was thoroughly 

investigated, the proof that the problem was ‘plane,’ and the 

solution of it, could hardly have evaded for long the pursuit of 

geometers so ingenious as the Greeks. This will, I think, be 

clear when the solution given by Pappus and reproduced below 

is examined. Again, after it had been proved that the vedov.s with 

reference to a square was ‘plane,’ what more natural than the further 

inquiry as to whether the intermediate case between that of the 

square and parallelogram, that of the rhombus, might perhaps be a 

‘plane’ problem ? 

As regards the actual solution of the plane vevoes with respect 

to the rhombus and square, i.e. the cases in general where the fixed 

point B lies on one of the bisectors of the angles between the two 

given straight lines, Zeuthen says that only in one of the cases have 

we a positive statement that the Greeks solved the vedors by means 

of the circle and ruler, the case, namely, where ACLD is a square*. 

This appears to be a misapprehension, for not only does Pappus 

mention the case of the rhombus as one of the plane vevoes which 

the Greeks had solved, but it is clear, from a proposition given by 

him later, how it was actually solved. The proposition is stated 

by Pappus to be “involved” (zapafewpovjevov, meaning presumably 

“the subject of concurrent investigation”) in the 8th problem of 

Apollonius’ first Book of vevcers, and is enunciated in the following 

form}. Given a rhombus AD with diameter BC produced to EB, if EF 

be w mean proportional between BE, EC, and if a circle be described 

with centre E and radius EF cutting CD in K and AC produced in 

H, BKH shall be a straight line. The proof is as follows. 

Let the circle cut AC in Z, and join HE, KE, LE. Let LK 
meet BC in WM, 

* “Indessen besitzen wir doch nur in einem einzelnen hierher gehérigen 
Falle eine positive Angabe dariiber, dass die Griechen die Einschiebung mittels 
Zirkel und Lineal ausgefiihrt haben, wenn nimlich die gegebenen Geraden 
zugleich rechte Winkel bilden, AZBC also ein Quadrat wird.” Zeuthen, op. cit. 
p. 281. 

+ Pappus vit. p. 778. 
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Since, from the property of the rhombus, the angles LOM, KOM 
are equal, and therefore CL, CK make equal angles with the diameter 
FG of the circle, it follows that CL = CK. 

Also HK = EL, and CE is common to the triangles HCK, ECL. 

Therefore the said triangles are equal in all respects, and 

ECKE=LCLE=2 CHE. 

Now, by hypothesis, i 

EB: EF=EF: EC, 

or EB: EK=EK: EC (since HY = ELK), 

and the angle CZK is common to the triangles BEX, KEC; there- 

fore the triangles BEX, KEC are similar, and 

LCBK=LCKE 

= CHE, from above. 

Again, CHCOE=LACB Ae BOR, 

Thus in the triangles CBX, CHE two angles are equal re- 

spectively ; 

therefore OLE AC IB: 

But, since . CKE =z CHE, from above, the points K, C, #, 1 

are concyclic. 

Hence . CEH + < CKH = (two right angles). 

Accordingly, since LCEH=2CKB, 

£CKH +2 CKB = (two right angles), 

and BKH is a straight line. 
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Now the form of the proposition at once suggests that, in the 

8th problem referred to, Apollonius had simply given a construction 

involving the drawing of a circle cutting CD and AC produced in 

the points A, H respectively, and Pappus’ proof that BAH is a 

straight line is intended to prove that, HK verges towards B, or (in 

other words) to verify that the construction given by Apollonius 

solves a certain vetows requiring BKH to be drawn so that KH is 

equal to a given length. 

The analysis leading to the construction must have been worked 

out somewhat as follows. 
Suppose BK H drawn so that KH is equal to the given length &. 

Bisect KH at NV, and draw NE at right angles to KH meeting BC 

produced in £, 

Draw KW perpendicular to BC and produce it to meet CA in L. 

Then, from the property of the rhombus, the triangles KOM, LCM 

are equal in all respects. 

Therefore KM= ML; and accordingly, if WN be joined, AN, 

LH are parallel. 

Now, since the angles at M/, WV are right, a circle can be described 

about LUKN. 

Therefore LCEK=z2zMNK, in the same segment, 

=. CHK, by parallels. 

Hence a circle can be described about CHHK. It follows that 

LBCD=LCEK+cLCKE 

=ACHK +L CHE 

=f Kime Bo. 

Therefore the triangles HKH, DBC are similar. 

Lastly, LCKN=LCBK+z8BCK; 

and, subtracting from these equals the equal angles HAN, BCK 

respectively, we have 
4 EKC =c EBK. 

Hence the triangles HBK, EKC are similar, and 

BE: EK = EK: EC, 

or BE. EC = ER?. 

But, by similar triangles, 2K: KH = DC : CB, 

and the ratio DCU’: CB is given, while X// is also given (= h). 
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Therefore #X is given, and, in order to find #, we have only, in 
the Greek phrase, to ‘apply to BC a rectangle exceeding by a square 
figure and equal to the given area HK.” 

Thus the construction given by Apollonius was clearly the 

following*. 

If k be the given length, take a straight line p such that 

pi] ABER. 

Apply to BC a rectangle exceeding by a square figure and equal to 

the area p”. Let BE. EC be this rectangle, and with E as centre and 

radius equal to p describe a circle cutting AC produced in H and 

CD in K. 

HK is then equal to 4, and verges towards B, as proved by 

Pappus; the problem is therefore solved. 

The construction used by Apollonius for the ‘plane’ vedous with 

reference to the rhombus having been thus restored by means of the 

theorem given by Pappus, we are enabled to understand the purpose 

* This construction was suggested to me by a careful examination of 

Pappus’ proposition without other aid; but it is no new discovery. 

Samuel Horsley gives the same construction in his restoration of Apollonii 

Pergaei Inclinationum libri duo (Oxford, 1770); he explains, however, that 

he went astray in consequence of a mistake in the figure given in the mss., 

and was unable to deduce the construction from Pappus’s proposition until he 

was recalled to the right track by a solution of the same problem by Hugo 

dOmerique. This solution appears in a work entitled, Analysis geometrica, sive 

nova et vera methodus resolvendi tam problemata geometrica quam arithmeticas 

quaestiones, published at Cadiz in 1698. D’Omerique’s construction, which is 

practically identical with that of Apollonius, appears to have been evolved by 

means of an independent analysis of his own, since he makes no reference to 

Pappus, as he does in other cases where Pappus is drawn upon (e.g. when giving 

the construction for the case of the square attributed by Pappus to one 

Heraclitus). The construction differs from that given above only in the fact 

that the circle is merely used to determine the point K, after which BK is joined 

and produced to meet AC in H. Of other solutions of the same problem two 

may here be mentioned. (1) The solution contained in Marino Ghetaldi’s 

posthumous work De Resolutione et Compositione Mathematica Libri quinque 

(Rome, 1630), and included among the solutions of other problems all purporting 

to be solved ‘‘methodo qua antiqui utebantur,” is, though geometrical, entirely 

different from that above given, being effected by means of a reduction of the 

problem to a simpler plane vedo.s of the same character as that assumed by 

Hippocrates in his Quadrature of lunes. (2) Christian Huygens (De circuli 

magnitudine inventa; accedunt problematum quorundam illustrium constructiones, 

Lugduni Batavorum, 1654) gave a rather complicated solution, which may be 

described as a generalisation of Heraclitus’ solution in the case of a square. 
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for which Pappus, while still on the subject of the “8th problem ” 

of Apollonius, adds a solution for the particular case of the square 

(which he calls a ‘problem after Heraclitus”) with an introductory 

lemma. It seems clear that Apollonius did not treat the case of the 

square separately from the rhombus because the solution for the 

rhombus was equally applicable to the square, and this supposition 

is confirmed by the fact that, in setting out the main problems 

discussed in the vevoets, Pappus only mentions the rhombus and not 

the square. Being however acquainted with a solution by one 

Heraclitus of the vedors relating to a square which was not on the 

same lines as that of Apollonius, while it was not applicable to the 

case of the rhombus, Pappus adds it as an alternative method for 

the square which is worth noting*. This is no doubt the explanation 

of the heading to the lemma prefixed to Heraclitus’ problem which 

Hultsch found so much difficulty in explaining and put in brackets 

as an interpolation by a writer who misunderstood the figure 

and the object of the theorem. The words mean “Lemma useful 

for the [problem] with reference to squares taking the place 

of the rhombus” (literally “having the same property as the 

rhombus”), ie. a lemma useful for Heraclitus’ solution of the 

* This view of the matter receives strong support from the following 

facts. In Pappus’ summary (p. 670) of the contents of the vedcers of Apollonius 

“two cases” of the vefo.s with reference to the rhombus are mentioned last 

among the particular problems given in the first of the two Books. As we have 

seen, one case (that given above) was the subject of the ‘‘8th problem” of 

Apollonius, and it is equally clear that the other case was dealt with in the 

“9th problem.” The other case is clearly that in which 

the line to be drawn through B, instead of crossing the 

exterior angle of the rhombus at C, lies across the angle 

C itself, i.e. meets CA, CD both produced. In the former 

case the solution of the problem is always possible what- 

ever be the length of k; but in the second case clearly 

the problem is not capable of solution if k, the given 

length, is less than a certain minimum. Hence the 

problem requires a diopicuds to determine the minimum K 

length of k, Accordingly we find Pappus giving, after 

the interposition of the case of the square, a ‘‘lemma useful for the diopiouds of 

the 9th problem,” which proves that, if CH=CK and B be the middle point of 

HK, then Hi is the least straight line which can be drawn through B to meet 

OH, CK. Pappus adds that the diopicuds for the rhombus is then evident; if 

HK be the line drawn through B perpendicular to CB and meeting CA, CD 

produced in H, K, then, in order that the problem may admit of solution, the 

given length k must be not less than HK. 
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vedo.s in the particular case of a square*. The lemma is as 
follows. 

ABCD being a square, suppose BHE drawn so as to meet CD in 

H and AD produced in E, and let EF be drawn perpendicular to BE 

meeting BC produced in F. To prove that 

CF?’ = BC? + HE’. 

Suppose HG' drawn parallel to DC meeting CF in G. Then 

since BEF is a right angle, the angles HBC, FEE are equal. 

rea ee 

B 

oe ee 
c G F 

Therefore the triangles BCH, HGF are equal in all respects, and 

EF= BH. 

Now BF? = BE? + EF’, 

or BC .BF+BF.FC=BH.BE+BE. EH + EF’. 

But, the angles HCF, HEF being right, the points C, H, H, F 

are concyclic, and therefore 

BC, BR = BH OBE. 

Subtracting these equals, we have 

BF. FC=BE.EH+ EF? 

=BE.EHH+ BH’ 

= BH. HE + EH’ + BH’ 

- EB.BH+ HH* 

=VBVBCa LA”. 

* Hultsch translates the words \jupma xpjomov els Td él TeTpaywvwv TroLovyTwY 

Ta alta TH pouBw (p. 780) thus, “Lemma utile ad problema de quadratis quorum 

summa rhombo aequalis est,” and has a note in his Appendix (p. 1260) explaining 

what he supposes to be meant. The ‘squares’ he takes to be the given square 

and the square on the given length of the intercept, and the rhombus to be one 

for which he indicates a construction but which is not shown in Pappus’ figure. 

Thus he is obliged to translate r@ pou8w as ‘a rhombus,” which is one objec- 

tion to his interpretation, while ‘‘whose squares are equal’ scarcely seems a 

possible rendering of rovodytwy Ta adrd, 
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Take away the common part BC’. CF, and 

CF’ = BC’ + EH’. 

Heraclitus’ analysis and construction are now as follows. 

Suppose that we have drawn BHE so that HEH has a given 

length &. 4 

Since CL? = BO? + HH", or BC* ie, 

and BC and & are both given, 

CF is given, and therefore B/ is given. 

Thus the semicircle on BY as diameter is given, and therefore 

also #, its intersection with the given line ADH; hence SE£ is 

given. 

To effect the construction, we first find a square equal to the 

sum of the given square and the square on &. We then produce 

BC to F so that CF is equal to the side of the square so found. If 

a semicircle be now described on BF as diameter, it will pass above 

D (since CF’ > CD, and therefore BC .CY > CD"), and will therefore 

meet AD produced in some point Z. 
Join BE meeting CD in ZH. 

Then H# =k, and the problem is solved. 



CHAPTER VI. 

CUBIC EQUATIONS. 

Ir has often been explained how the Greek geometers were able 

to solve geometrically all forms of the quadratic equation which give 

positive roots ; while they could take no account of others because 

the conception of a negative quantity was unknown to them. The 

quadratic equation was regarded as a simple equation connecting 

areas, and its geometrical expression was facilitated by the methods 

which they possessed of transforming any rectilineal areas whatever 

into parallelograms, rectangles, and ultimately squares, of equal 

area ; its solution then depended on the principle of application of 

areas, the discovery of which is attributed to the Pythagoreans. 

Thus any plane problem which could be reduced to the geometrical 

equivalent of a quadratic equation with a positive root was at once 

solved. A particular form of the equation was the pure quadratic, 

which meant for the Greeks the problem of finding a square equal 

to a given rectilineal area. This area could be transformed into a 

rectangle, and the general form of the equation thus became a = ab, 

so that it was only necessary to find a mean proportional between @ 

and 6. In the particular case where the area was given as the 

suin of two or more squares, or as the difference of two squares, 

an alternative method depended on the Pythagorean theorem of 

Eucl. 1. 47 (applied, if necessary, any number of times successively). 

The connexion between the two methods is seen by comparing 

Eucl. vi. 13, where the mean proportional between a and 6 is 

found, and Eucl. 11. 14, where the same problem is solved without 

the use of proportions by means of I. 47, and where in fact the 

formula used is 
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The choice between the two methods was equally patent when the 

equation to be solved was a? =pa*, where p is any integer; hence 

the ‘multiplication’ of squares was seen to, be dependent on the 

finding of a mean proportional. The equation «= 2a’ was the 

simplest equation of the kind, and the discovery of a geometrical 

construction for the side of a square equal to twice a given square 

was specially important, as it was the beginning of the theory of 

incommensurables or ‘irrationals’ (dAéywov mpaypareta) which was 

invented by Pythagoras. There is every reason to believe that this 

successful doubling of the square was what suggested the question 

whether a construction could not be found for the doubling of the 

cube, and the stories of the tomb erected by Minos for his son and 

of the oracle bidding the Delians to double a cubical altar were no 

doubt intended to invest the purely mathematical problem with an 

element of romance. It may then have been the connexion between 

the doubling of the square and the finding of one mean proportional 

which suggested the reduction of the doubling of the cube to the 

problem of finding two mean proportionals between two unequal 

straight lines. This reduction, attributed to Hippocrates of Chios, 

showed at the same time the possibility of maltiplying the cube 

by any ratio. Thus, if «, y are two mean proportionals between 

a, 6, we have 
a:v=ns y=ye 6, 

and we derive at once 
GLb=0 TR; 

whence a cube (2%) is obtained which bears to a* the ratio 6: a, 

‘s 
q 

of which one (the consequent) is equal to the side a of the given 

cube. Thus the finding of two mean proportionals gives the solution 

of any pure cubic equation, or the equivalent of extracting the cube 

root, just as the single mean proportional is equivalent to extracting 

the square root. For suppose the given equation to be a = bed. 

We have then only to find a mean proportional a@ between ¢ and d, 

while any fraction — can be transformed into a ratio between lines 

; weniett b oe 
and the equation becomes a*=a?.b=a*.— which is exactly the 

(a7 

multiplication of a cube by a ratio between lines which the two 

mean proportionals enable us to effect. 

As a matter of fact, we do not find that the great geometers 

were in the habit of reducing problems to the multiplication of the 
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cube eo nomine, but to the equivalent problem of the two mean 

proportionals ; and the cubic equation a =a) is not usually stated 

in that form but as a proportion. Thus in the two propositions On 
the Sphere and Cylinder 1. 1, 5, where Archimedes uses the two 
mean proportionals, it is required to find « where 

@ se Sms 

he does not speak of finding the side of a cube equal to a certain 

parallelepiped, as the analogy of finding a square equal to a given 

rectangle might have suggested. So far therefore we do not find 

any evidence of a general system of adding and subtracting solids 

by transforming parallelepipeds into cubes and cubes into parallel- 

epipeds which we should have expected to see in operation if the 

Greeks had systematically investigated the solution of the general 

form of the cubic equation by a method analogous to that of the 

application of areas employed in dealing with quadratic equations. 

The question then arises, did the Greek geometers deal thus 

generally with the cubic equation 

etax’+ Be+T=0, 

which, on the supposition that it was regarded as an independent 

problem in solid geometry, would be for them a simple equation 

between solid figures, « and a both representing linear magnitudes, 

B an area (a rectangle), and I a volume (a parallelepiped)? And 

was the reduction of a problem of an order higher than that which 

could be solved by means of a quadratic equation to the solution of 

a cubic equation in the form shown above a regular and recognised 

method of dealing with such a problem? The only direct evidence 

pointing to such a supposition is found in Archimedes, who reduces 

the problem of dividing a sphere by a plane into two segments 

whose volumes are in a given ratio (On the Sphere and Cylinder m1. 4) 

to the solution of a cubic equation which he states in a form 

equivalent to 

where a is the radius of the sphere, m: the given ratio (being a 

ratio between straight lines of which m >), and # the height of the 

greater of the required segments. Archimedes explains that this is 

a particular case of a more general problem, to divide a straight 

line (a) into two parts (x, a—) such that one part (a—«) is to an- 

other given straight line (c) as a given area (which for convenience’ 
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sake we suppose transformed into a square, 0°) is to the square on 

the other part («’), i.e. so that 

(Gyo Ci U ee an tener ocr atari ee (2). 

He further explains that the equation (2) stated thus generally 

requires a d.opicpos, i.e. that the limits for the possibility of a real 

solution, etc., require to be investigated, but that the particular case 

(with the conditions obtaining in the particular proposition) requires 

no d.opiopos, i.e. the equation (1) will always give a real solution. 

He adds that “the analysis and synthesis of both these problems 

will be given at the end.” That is, he promises to give separately a 

complete investigation of the equation (2), which is equivalent to the 

cubic equation 

and to apply it to the particular case (1). 

Wherever the solution was given, it was temporarily lost, having 

apparently disappeared even before the time of Dionysodorus and 

Diocles (the latter of whom lived, according to Cantor, not later 

than about 100 B.c.); but Eutocius describes how he found an 

old fragment which appeared to contain the original solution of 

Archimedes, and gives it in full. It will be seen on reference to 

Eutocius’ note (which I have reproduced immediately after the 

proposition to which it relates, On the Sphere and Cylinder u. 4) 

that the solution (the genuineness of which there seems to be no 

reason to doubt) was effected by means of the intersection of a 

parabola and a rectangular hyperbola whose equations may ‘re- 

spectively be written thus, 
9 

nae eho) 

(a —2) y= ae, 

The dvopucpos takes the form of investigating the maaimum 

possible value of a’ (a—«), and it is proved that this maximum 
9 

value for a real solution is that corresponding to the value x = ; a. 

es : ‘ : 4 
This is established by showing that, if 0°c =97 a’, the curves touch 

9 

at the point for which «= 3 If on the other hand 0’c < i a”, it 
27 

is proved that there are two real solutions. In the particular case 

(1) it is clear that the condition for a real solution is satisfied, for 
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: : . . ° mm 
the expression in (1) corresponding to 6’c in (2) is 4a’, and it 

+n 
is only necessary that 

me 
4a® > (3a)%, or 4a’, S| m+n 

which is obviously true. 

Hence it is clear that not only did Archimedes solve the cubic 

equation (3) by means of the intersections of two conics, but he also 

discussed completely the conditions under which there are 0, 1 or 2 

roots lying between 0 and a. It is to be noted further that the 

dvopuruos is similar in character to that by which Apollonius 

investigates the number of possible normals that can be drawn 

to a conic from a given point*. Lastly, Archimedes’ method is 

seen to be an extension of that used by Menaechmus for the solution 

of the pure cubic equation. This can be put in the form 

a> Sh Gh old 

which can again be put in Archimedes’ form thus, 

Ce = en, 

and the conics used by Menaechmus are respectively 

xe = ay, xy = ab, 

which were of course suggested by the two mean proportionals 

satisfying the equations 

ih RENE EO reales 

The case above described is not the only one where we may 

assume Archimedes to have solved a problem by first reducing it 

to a cubic equation and then solving that. At the end of the 

preface to the book On Conoids and Spheroids he says that the 

results therein obtained may be used for discovering many theorems 

and problems, and, as instances of the latter, he mentions the 

following, “from a given spheroidal figure or conoid to cut off, 

by a plane drawn parallel to a given plane, a segment which shall 

be equal to a given cone or cylinder, or to a given sphere.” Though 

Archimedes does not give the solutions, the following considerations 

may satisfy us as to his method. 

(1) The case of the ‘right-angled conoid’ (the paraboloid of 

revolution) is a ‘plane’ problem and therefore does not concern us 

here. 

‘ * Cf. Apollonius of Perga, p. 168 sqq. 
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(2) In the case of the spheroid, the volume of the whole 

spheroid could be easily ascertained, and, by means of that, the 

ratio between the required segment and the remaining segment ; 

after which the problem could be solved in exactly the same way 

as the similar one in the case of the sphere above described, 

since the results in On Conoids and Spheroids, Props. 29—32, 

correspond to those of On the Sphere and Cylinder 1. 2. Or 

Archimedes may have proceeded in this case by a more direct 

method, which we may represent thus. Let a plane be drawn 

through the axis of the spheroid perpendicular to the given 

plane (and therefore to the base of the required segment). This 

plane will cut the elliptical base of the segment in one of its 

axes, which we will call 2y. Let « be the length of the axis 

of the segment (or the length intercepted within the segment 

of the diameter of the spheroid passing through the centre of the 

base of the segment). Then the area of the base of the segment will 

vary as z° (since all sections of the spheroid parallel to the given 

plane must be similar), and therefore the volume of the cone which 

has the same vertex and base as the required segment will vary as 

yx. And the ratio of the volume of the segment to that of the 

cone is (On Conoids and Spheroids, Props. 29—32) the ratio 

(3a —ax) : (2a—«a), where 2a is the length of the diameter of the 

spheroid which passes through the vertex of the segment. There- 

fore 
>». oa-2 

Ye. 5 =(, 
2a-—x 

where C' is a known volume. Further, since a, y are the coordinates 

of a point on the elliptical section of the spheroid made by the plane 

through the axis perpendicular to the cutting plane, referred to a 

diameter of that ellipse and the tangent at the extremity of the 

diameter, the ratio y’ :«(2a—«) is given. Hence the equation 
can be put in the form 

x? (3a —2) = be, 

and this again is the same equation as that solved in the fragment 

given by Eutocius. A diopicpds is formally necessary in this case, 

though it only requires the constants to be such that the volume 

to which the segment is to be equal must be less than that of the 
whole spheroid. 

(3) For the ‘obtuse-angled conoid’ (hyperboloid of revolution) 
it would be necessary to use the direct method just described for 
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the spheroid, and, if the notation be the same, the corresponding 

equations will be found, with the help of On Conoids and Spheroids, 
Props. 25, 26, to be 

and, since the ratio y’ : w (2a + x) is constant, 

a° (3a + x) = be. 

Tf this equation is written in the form of a proportion like the 
similar one above, it becomes 

6° : a = (8a+2): 0. 

There can be no doubt that Archimedes solved this equation as 

well as the similar one with a negative sign, i.e. he solved the two 

equations 
x + an’ + b’e=0, 

obtaining all their positive real roots. In other words, he solved 

completely, so far as the real roots are concerned, a cubic equation 

in which the term in « is absent, although the determination of the 

positive and negative roots of one and the same equation meant for 

-him two separate problems. And it is clear that all cubic equations 

can be easily reduced to the type which Archimedes solved. 

We possess one other solution of the cubic equation to which 

the division of a sphere into segments bearing a given ratio to one 

another is reduced by Archimedes. This solution is by Dionysodorus, 

and is given in the same note of Eutocius*. Dionysodorus does not 

generalise the equation, however, as is done in the fragment quoted 

above ; he merely addresses himself to the particular case, ° 

m 
* a = (3a—2) : : 4a? : x = (3a—«2) rie 

thereby avoiding the necessity for a diopicpds. The curves which he 

uses are the parabola 

m 3 eee 

mtn. Oa) a3 

and the rectangular hyperbola 

™m 
20 = LY. 

m+n Y 

When we turn to Apollonius, we find him emphasising in his 

* On the Sphere and Cylinder 1. 4 (note at end). 
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preface to Book tv. of the Conics* the usefulness of investigations 

of the possible number of points in which conics may intersect one 

another or circles, because “they at all events afford a more ready 

means of observing some things, e.g. that several solutions are 

possible, or that they are so many in number, and again that no 

solution is possible”; and he shows his mastery of this method 

of investigation in Book v., where he determines the number of 

normals that can be drawn to a conic through any given point, the 

condition that two normals through it coincide, or (in other words) 

that the point lies on the evolute of the conic, and so on. For these 

purposes he uses the points of intersection of a certain rectangular 

hyperbola with the conic in question, and among the cases we find 

(v. 51, 58, 62) some which can be reduced to cubic equations, those 

namely in which the conic is a parabola and the axis of the parabola 

is parallel to one of the asymptotes of the hyperbola. Apollonius 

however does not bring in the cubic equation ; he addresses himself 

to the direct geometrical solution of the problem in hand without 

reducing it to another. This is after all only natural, because the 

solution necessitated the drawing of the rectangular hyperbola in 

the actual figure containing the conic in question ; thus, e.g. in the 

case of the problem leading to a cubic equation, Apollonius can, so 

to speak, compress two steps into one, and the introduction of the 

cubic as such would be mere surplusage. The case was different 

with Archimedes, when he had no conic in his original figure ; and 

the fact that he set himself to solve a cubic somewhat more general 

than that actually involved in the problem made separate treatment 

with a number of new figures necessary. Moreover Apollonius was 

at the same time dealing, in other propositions, with cases which did 

not reduce to cubics, but would, if put in an algebraical form, lead 

to biquadratic equations, and these, expressed as such, would have 

had no meaning for the Greeks ; there was therefore the less reason 

in the simpler case to introduce a subsidiary problem. 

As already indicated, the cubic equation, as a subject of syste- 

matic and independent study, appears to have been lost sight of 

within a century or so after the death of Archimedes. Thus Diocles, 

the discoverer of the cissoid, speaks of the problem of the division of 

the sphere into segments in a given ratio as having been reduced 

by Archimedes “to another problem, which he does not solve in 

his work on the sphere and cylinder”; and he then proceeds to 

* Apollonius of Perga, p. Ixxiii. 
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solve the original problem directly, without in any way bringing 

in the cubic. This circumstance does not argue any want of 

geometrical ability in Diocles; on the contrary, his solution of the 

original problem is a remarkable instance of dexterity in the use of 

conics for the solution of a somewhat complicated problem, and it 

proceeds on independent lines in that it depends on the intersection 

of an ellipse and a rectangular hyperbola, whereas the solutions of 

the cubic equation have accustomed us to the use of the parabola 

and the rectangular hyperbola. I have reproduced Diocles’ solution 

in its proper place as part of the note of Eutocius on Archimedes’ 

proposition ; but it will, I think, be convenient to give here its 

equivalent in the ordinary notation of analytical geometry, in 

accordance with the plan of this chapter, Archimedes had proved 

[On the Sphere and Cylinder 11. 2] that, if k be the height of a 

segment cut off by a plane from a sphere of radius a, and if h be 

the height of the cone standing on the same base as that of the 

segment and equal in volume to the segment, then 

(3a—k) : (2a-—k)=h:k. 

Also, if 2’ be the height of the cone similarly related to the 

remaining segment of the sphere, 

(a+k):k=h': (2a—k). 

From these equations we derive 

(h—k):k=a: (2a—h), 

and (h'—2a+k) : (2a -—k)=a:k. 

Slightly generalising these equations by substituting for a in the 

third term of each proportion another length 6, and adding the 

condition that the segments (and therefore the cones) are to bear to 

each other the ratio m: 7, Diocles sets himself to solve the three 

equations 
(h—k) : k=6: (2a—hk) 

(hi'—2a+h):(Qa—h)=b 2b be sreeeereeseeees (A). 

and h:V=m:in 

Suppose m>n, so that k>a. The problem then is to divide 

straight line of length 2a into two parts & and (2a—) of which k is 

the greater, and which are such that the three given equations are 

all simultaneously satisfied. 

Imagine two coordinate axes such that the origin is the middle 

point of the given straight line, the axis of y is at right angles to it, 

42 
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and @ is positive when measured along that half of the given straight 

line which is to contain the required point of division. Then the 

conics drawn by Diocles are 

(1) the ellipse represented by the equation 

n 
o 4 9 (y+a—2)'=" (ab) 2, 

and (2) the rectangular hyperbola 

(w+ a) (y + 6) = 2ab. 

One intersection between these conics gives a value of x between 0 

and a, and leads to the solution required. Treating the equations 

algebraically, and eliminating y by means of the second equation 

which gives 

we obtain from the first equation 

(a—a)? @ + ie ; i = {(a + b)’-. ah, 
+2 27 

that is, (a+a)(a+b—2) = (a — 2)? (G+ 042) ccceee. (B). 

In other words Diocles’ method is the equivalent of solving a 

complete cubic equation containing all the three powers of 2 and a 

constant, though no mention is made of such an equation. 

To verify the correctness of the result we have only to remember 

that, « being the distance of the point of division from the middle 

point of the given straight line, 

k=at+a, 2a-k=a-x2. 

Thus, from the first two of the given equations (A) we obtain 

respectively 

a+2x 
h=at+ae+ 0, 

a—xX 

a-—x 
h'=a-x%2+—.), 

Gtx 

whence, by means of the third equation, we derive 

9 m 2 

(a+@)?(a+b—2)=—(a-x)?(a+b+2), 
n 

which is the same equation as that found by elimination above (B). 
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I have purposely postponed, until the evidence respecting the 

Greek treatment of the cubic equation was complete, any allusion 

to an interesting hypothesis of Zeuthen’s* which, if it could be 

accepted as proved, would explain some difficulties involved in 

Pappus’ account of the orthodox classification of problems and loci. 

I have already quoted the passage in which Pappus distinguishes 

the problems which are plane (ézireda), those which are solid (oreped) 

and those which are linear (ypappixd)t. Parallel to this division of 

problems into three orders or classes is the distinction between three 

classes of locz}. The first class consists of plane loci (réou éméredor) 

which are exclusively straight lines and circles, the second of solid 

loci (rowot otepeot) which are conic sections$, and the third of 

linear loci (rorou ypappixot). It is at the same time clearly implied 

by Pappus that problems were originally called plane, solid or linear 

respectively for the specific reason that they required for their 

solution the geometrical loci which bore the corresponding names. 

But there are some logical defects in the classification both as 

regards the problems and the loci. 

(1) Pappus speaks of its being a serious error on the part of 

geometers to solve a plane problem by means of conics (i.e. ‘solid 

loci’) or ‘linear’ curves, and generally to solve a problem “ by means 

of a foreign kind” (é& avorxefov yévous). If this principle were 

applied strictly, the objection would surely apply equally to the 

solution of a ‘solid’ problem by means of a ‘linear’ curve. Yet, 

though e.g. Pappus mentions the conchoid and the cissoid as being 

‘linear’ curves, he does not object to their employment in the 

solution of the problem of the two mean proportionals, which is a 

‘solid’ problem. 

(2) The application of the term ‘solid loci’ to the three conic 

sections must have reference simply to the definition of the curves 

as sections of a solid figure, viz. the cone, and it was no doubt in 

contrast to the ‘solid locus’ that the ‘plane locus’ was so called. 

This agrees with the statement of Pappus that ‘ plane’ problems may 

* Die Lehre von den Kegelschnitten, p. 226 sqq. 

+ p. ciil. 
+ Pappus vir. pp. 652, 662. 

§ Itis true that Proclus (p. 394, ed. Friedlein) gives a wider definition of 

“ golid lines” as those which arise ‘from some section of a solid figure, as the 

cylindrical helix and the conic curves”; but the reference to the cylindrical 

helix would seem to be due to some confusion. 
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properly be so called because the lines by means of which they are 

solved “have their origin in a plane.” But, though this may be 

regarded as a satisfactory distinction when ‘plane’ and ‘solid’ loci 

are merely considered in relation to one another, it becomes at once 

logically defective when the third or ‘linear’ class is also brought 

in. For, on the one hand, Pappus shows how the ‘quadratrix’ (a 

‘linear’ curve) can be produced by a construction in three 

dimensions (“by means of surface-loci,” d:d tov mpds emipavetass 

torwv); and, on the other hand, other ‘linear’ loci, the conchoid 

and cissoid, have their origin in a plane. If then Pappus’ account 

of the origin of the terms ‘plane’ and ‘solid’ as applied to problems 

and loci is literally correct, it would seem necessary to assume that 

the third name of ‘linear’ problems and loci was not invented until 

a period when the terms ‘plane’ and ‘solid loci’ had been so long 

recognised and used that their origin was forgotten. 

To get rid of these difficulties, Zeuthen suggests that the terms 

‘plane’ and ‘solid’ were first applied to problems, and that they 

came afterwards to be applied to the geometrical loci which were 

used for the purpose of solving them, On this interpretation, when 

problems which could be solved by means of the straight line and 

circle were called ‘plane,’ the term is supposed to have had reference, 

not to any particular property of the straight line or circle, but to 

the fact that the problems were such as depend on an equation of a 

degree not higher than the second. The solution of a quadratic 

equation took the geometrical form of application of areas, and the 

term ‘plane’ became a natural one to apply to the class of problems 

so soon as the Greeks found themselves confronted with a new class 

of problems to which, in contrast, the term ‘solid’ could be applied. 

This would happen when the operations by which problems were 

reduced to applications of areas were tried upon problems which 

depend on the solution of a cubic equation. Zeuthen, then, 

supposes that the Greeks sought to give this equation a similar 

shape to that which the reduced ‘plane’ problem took, that is, to 

form a simple equation between solids corresponding to the cubic 

equation 
+ ae?+ Bo+T=0; 

the term ‘solid’ or ‘plane’ being then applied according as it had 

been reduced, in the manner indicated, to the geometrical equivalent 

of a cubic or a quadratic equation. 

Zeuthen further explains the term ‘linear problem’ as having 
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been invented afterwards to describe the cases which, being 

equivalent to algebraical equations of an order higher than the 

third, would not admit of reduction to a simple relation between 

lengths, areas and volumes, and either could not be reduced to an 

equation at all or could only be represented as such by the use of 

compound ratios. The term ‘linear’ may perhaps have been applied 

because, in such cases, recourse was had to new classes of curves, 

directly and without any intermediate step in the shape of an 

equation. Or, possibly, the term may not have been used at all 

until a time when the original source of the names ‘plane’ and 

‘solid’ problems had been forgotten. 

On these assumptions, it would still be necessary to explain how 

Pappus came to give a more extended meaning to the term ‘solid 

problem,’ which according to him equally includes*those problems 

which, though solved by the same method of conics as was used to 

solve the equivalent of cubics, do not reduce to cubic equations but 

to biquadratics. This is explained by the supposition that, the 

cubic equation having by the time of Apollonius been obscured 

from view owing to the attention given to the method of solution 

by means of conics and the discovery that the latter method was 

one admitting of wider application, the possibility of solution by 

means of conics came itself to be regarded as the criterion deter- 

mining the class of problem, and the name ‘solid problem’ came 

to be used in the sense given to it by Pappus through a natural 

misapprehension. A similar supposition would account, in Zeuthen’s 

view, for a circumstance which would otherwise seem strange, viz. 

that Apollonius does not use the expression ‘solid problem,’ though 

it might have been looked for in the preface to the fourth Book 

of the Conics. The term may have been avoided by Apollonius 

because it then had the more restricted meaning attributed to it by 

Zeuthen and therefore would not have been applicable to all the 

problems which Apollonius had in view. 

It must be admitted that Zeuthen’s hypothesis is in several 

respects attractive. I cannot however feel satisfied that the 

positive evidence in favour of it is sufficiently strong to outweigh 

the authority of Pappus where his statements tell the other way. 

To make the position clear, we have to remember that Menaechmus, 

the discoverer of the conic sections, was a pupil of Eudoxus who 

flourished about 365 B.c.; probably therefore we may place the 
discovery of conics at about 350 B.c. Now Aristaeus ‘the elder’ 
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wrote a book on solid loci (orepeot té701) the date of which Cantor 

concludes to have been about 320 z.c. Thus, on Zeuthen’s hypo- 

thesis, the ‘solid problems’ the solution of which by means of conics 

caused the latter to be called ‘solid loci’? must have been such as 

had been already investigated and recognised as solid problems 

before 320 z.c., while the definite appropriation, so to speak, of the 

newly discovered curves to the service of the class of problems must 

have come about in the short period between their discovery and 

the date of Aristaeus’ work. It is therefore important to consider 

what particular problems leading to cubic equations appear to have 

been the subject of speculation before 320 B.c, We have certainly 

no ground for assuming that the cubic equation used by Archimedes 

(On the Sphere and Cylinder 1. 4) was one of these problems ; for 

the problem of cutting a sphere into segments bearing a given ratio 

to one another could not have been investigated by geometers who 

had not succeeded in finding the volume of a sphere and a segment 

of a sphere, and we know that Archimedes was the first to discover 

this. On the other hand there was the duplication of the cube, or 

the solution of a pure cubic equation, which was a problem dating 

from very early times. Also it is certain that the trisection of an 

angle had long exercised the minds of the Greek geometers. Pappus 

says that “the ancient geometers” considered this problem and first 

tried to solve it, though it was by nature a solid problem (zpoBAnpa 

Tm pvoe orepedv brapxov), by means of plane considerations (da trav 

erirédwv) but failed; and we know that Hippias of Elis invented, 

about 420 B.c., a transcendental curve which was capable of being 

used for two purposes, the trisection of an angle, and the quadrature 

of a circle*. This curve came to be called the Quadratrixt, but, as 

Deinostratus, a brother of Menaechmus, was apparently the first to 

apply the curve to the quadrature of the circle}, we may no doubt 

conclude that it was originally intended for the purpose of trisecting 

* Proclus (ed. Friedlein), p. 272. 

+ The character of the curve may be described as follows. Suppose there 
are two rectangular axes Oy, Ox and that a straight line OP of a certain length 
(a) revolves uniformly from a position along Oy to a position along Ox, while a 

straight line remaining always parallel to Ox and passing through P in its 
original position also moves uniformly and reaches Ow in the same time as the 
moving radius OP. The point of intersection of this line and OP describes the 
Quadratrix, which may therefore be represented by the equation 

y/a=26/7. 

+ Pappus tv. pp. 250—2, 
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an angle. Seeing therefore that the Greek geometers had used their 

best efforts to solve this problem before the invention of conics, it 

may easily be that they had succeeded in reducing it to the geo- 

metrical equivalent of a cubic equation. They would not have been 

unequal to effecting this reduction by means of the figure of the 

vedo.s given above on p. cxii. with a few lines added. The proof 

would of course be the equivalent of eliminating « between the two 
equations “ 

ay =ab 
Gaga AAAI ven Seuahowacernonrcass: (a) 

where «= DF, y=FP= EC, a=DA, b= DB. 

The second equation gives 

(w + a) (@— 3a) = (y + 6) (36 —y). 

From the first equation it is easily seen that 

(+a): (yt+b)=a:y, 

and that (x — 3a) y=a(b — 3y); 

we have therefore Ch SY y=" (SUK 99) \raeneeenc, ann eaenere (B) 

[or y® — 3by? — 3a’y + a*b = 0). 

If then the trisection of an angle had been reduced to the geo- 

metrical equivalent of this cubic equation, it would be natural for 

the Greeks to speak of it as a solid problem. In this respect it 

would be seen to be similar in character to the simpler problem of 

the duplication of the cube or the equivalent of a pure cubic 

equation; and it would be natural to see whether the transformation 

of volumes would enable the mixed cubic to be reduced to the form 

of the pure cubic, in the same way as the transformation of areas 

enabled the mixed quadratic to be reduced to the pure quadratic. 

The reduction to the pure cubic would soon be seen to be impossible, 

and the stereometric line of investigation would prove unfruitful 

and be abandoned accordingly. 

The two problems of the duplication of the cube and the 

trisection of an angle, leading in one case to a pure cubic equation 

and in the other to a mixed cubic, are then the only problems 

leading to cubic equations which we can be certain that the Greeks 

had occupied themselves with up to the time of the discovery of the 

conic sections. Menaechmus, who discovered these, showed that 

they could be successfully used for finding the two mean propor- 

tionals and therefore for solving the pure cubic equation, and the 
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next question is whether it had been proved before the date of 

Aristaeus’ Solid Loci that the trisection of an angle could be 

effected by means of the same conics, either in the form of the 

vedois above described directly and without the reduction to a cubic 

equation, or in the form of the subsidiary cubic (8). Now (1) the 

solution of the cubic would be somewhat difficult in the days when 

conics were still a new thing. The solution of the equation (f) as 

such would involve the drawing of the conics which we should 

represent by the equations 

ny =a, 

ba = 3a’ + 3by — y’, 

and the construction would be decidedly more difficult than that 

used by Archimedes in connexion with his cubic, which only requires 

the construction of the conics 

(a- x) y=ac; 
hence we can hardly assume that the trisection of an angle in the 

form of the subsidiary cubic eguation was solved by means of conics 

before 320 B.c. (2) The angle may have been trisected by means 

of conics in the sense that the veto.s referred to was effected by 

drawing the curves (a), ie. a rectangular hyperbola and a circle. 

This could easily have been done before the date of Aristaeus ; but 

if the assignment of the name ‘solid loci’ to conics had in view their 

applicability to the direct solution of the problem in this manner 

without any reference to the cubic equation, or simply because 

the problem had been before proved to be ‘solid’ by means of the 

reduction to that cubic, then there does not appear to be any 

reason why the Quadratrix, which had been used for the same 

purpose, should not at the time have been also regarded as a ‘solid 

locus,’ in which case Aristaews could hardly have appropriated the 

latter term, in his work, to conics alone. (3) The only remaining 

alternative consistent with Zeuthen’s view of the origin of the 

name ‘solid locus’ appears to be to suppose that conics were so 

called simply because they gave a means of solving one ‘solid 

problem,’ viz. the doubling of the cube, and not a problem of the 

more general character corresponding to a mixed cubic equation, in 
which case the justification for the general name ‘solid locus’ could 
only be admitted on the assumption that it was adopted at a time 
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when the Greeks were still hoping to be able to reduce the general 

cubic equation to the pure form. I think however that the 

traditional explanation of the term is more natural than this 

would be. Conics were the first curves of general interest for 

the description of which recourse to solid figures was necessary as 

distinct from the ordinary construction of plane figures in a plane*; 

hence the use of the term ‘solid locus’ for conics on the mere ground 

of their solid origin would be a natural way of describing the new 

class of curves in the first instance, and the term would be likely 

to remain in use, even when the solid origin was no longer thought 

of, just as the individual conics continued to be called “ sections of 

a right-angled, obtuse-angled, and acute-angled” cone respectively. 

While therefore, as I have said, the two problems mentioned 

might naturally have been called ‘solid problems’ before the dis- 

covery of ‘solid loci,’ I do not think there is sufficient evidence 

to show that ‘solid problem’ was then or later a technical term 

for a problem capable of reduction to a cubic equation in the sense 

of implying that the geometrical equivalent of the general cubic 

equation was investigated for its own sake, independently of its 

applications, and that it ever occupied such a recognised position 

in Greek geometry that a problem would be considered solved so 

soon as it was reduced to a cubic equation. If this had been so, 

and if the technical term for such a cubic was ‘solid problem,’ I 

find it hard to see how Archimedes could have failed to imply some- 

thing of the kind when arriving at his cubic equation. Instead of 

this, his words rather suggest that he had attacked it as res integra. 

Again, if the general cubic had been regarded over any length of 

time as a problem of independent interest which was solved by 

means of the intersections of conics, the fact could hardly have been 

unknown to Nicoteles who is mentioned in the preface to Book Iv. 

of the Conics of Apollonius as having had a controversy with Conon 

respecting the investigations in which the latter discussed the maxi- 

mum number of points of intersection between two conics. Now 

Nicoteles is stated by Apollonius to have maintained that no use 

* Tt is true that Archytas’ solution of the problem of the two mean propor- 

tionals used a curve of double curvature drawn on a cylinder; but this was not 

such a curve as was likely to be investigated for itself or even to be regarded as 

a locus, strictly speaking; hence the solid origin of this isolated curve would 

not be likely to suggest objections to the appropriation of the term ‘solid locus’ 

to conics. 
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could be made of the discoveries of Conon for diopipot ; but it seems 

incredible that Nicoteles could have made such a statement, even for 

controversial purposes, if cubic equations then formed a recognised 

class of problems for the discussion of which the intersections of 

conics were necessarily all-important. 

I think therefore that the positive evidence available will not 

justify us in accepting the conclusions of Zeuthen except to the 

following extent. 

1. Pappus’ explanation of the meaning of the term ‘plane 

problem’ (éréeSov mpdBAqua) as used by the ancients can hardly 

be right. Pappus says, namely, that “problems which can be 

solved by means of the straight line and circle may properly be 

called plane (A€your’ dv «ixérws émireda) ; for the lines by means of 

which such problems are solved have their origin in a plane.” The 

words “may properly be called” suggest that, so far as plane 

problems were concerned, Pappus was not giving the ancient 

definition of them, but his own inference as to why they were 

called ‘plane.’ The true significance of the term is no doubt, as 

Zeuthen says, not that straight lines and circles have their origin 

in a plane (which would be equally true of some other curves), but 

that the problems in question admitted of solution by the ordinary 

plane methods of transformation of areas, manipulation of simple 

equations between areas, and in particular the application of areas. 

In other words, plane problems were those which, if expressed 

algebraically, depend on equations of a degree not higher than the 

second. 

2. When further problems were attacked which proved to be 

beyond the scope of the plane methods referred to, it would be 

found that some of such problems, in particular the duplication 

of the cube and the trisection of an angle, were reducible to simple 

equations between volwmes instead of equations between areas; and 

it is quite possible that, following the analogy of the distinction 

existing in nature between plane figures and solid figures (an analogy 
which was also followed in the distinction between numbers as ‘plane’ 
and ‘solid’ expressly drawn by Euclid), the Greeks applied the term 
‘solid problem’ to such a problem as they could reduce to an 
equation between volumes, as distinct from a ‘plane problem’ 
reducible to a simple equation between areas. 

3. The first ‘solid problem’ in this sense which they succeeded 
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in solving was the multiplication of the cube, corresponding to the 
solution of a pure cubic equation in algebra, and it was found that 

this could be effected by means of curves obtained by making plane 

sections of a solid figure, namely the cone. Thus curves having a 

solid origin were found to solve one particular solid problem, which 

could not but seem an appropriate result; and hence the conic, ag 

being the simplest curve so connected with a solid problem, was 

considered to be properly termed a ‘solid locus,’ whether because of 
its application or (more probably) because of its origin. 

4. Further investigation showed that the general cubic equation 

could not be reduced, by means of stereometric methods, to the 

simpler form, the pure cubic; and it was found necessary to try 

the method of conics directly either (1) upon the derivative cubic 

equation or (2) upon the original problem which led to it. In 

practice, as e.g. in the case of the trisection of an angle, it was 

found that the cubic was often more difficult to solve in that 

manner than the original problem was. Hence the reduction of 

it to a cubic was dropped as an unnecessary complication, and 

the geometrical equivalent of a cubic equation stated as an in- 

dependent problem never obtained a permanent footing as the 

‘solid problem’ par excellence. 

5. It followed that solution by conics came to be regarded as 

the criterion for distinguishing a certain class of problem, and, as 

conics had retained their old name of ‘solid loci,’ the corresponding 

term ‘solid problem’ came to be used in the wider sense in which 

Pappus interprets it, according to which it includes a problem 

depending on a biquadratic as well as a problem reducible to a 

cubic equation. 

6. The terms ‘linear problem’ and ‘linear locus’ were then 

invented on the analogy of the other terms to describe respectively 

a problem which could not be solved by means of straight lines, 

circles, or conics, and a curve which could be used for solving such 

a problem, as explained by Pappus. 



CHAPTER VII. 

ANTICIPATIONS BY ARCHIMEDES OF THE INTEGRAL CALCULUS. 

Ir has been often remarked that, though the method of exhaustion 

exemplified in Euclid xu. 2 really brought the Greek geometers face 

to face with the infinitely great and the infinitely small, they 

never allowed themselves to use such conceptions. It is true that 

Antiphon, a sophist who is said to have often had disputes with 

Socrates, had stated* that, if one inscribed any regular polygon, 

say a square, in a circle, then inscribed an octagon by constructing 

isosceles triangles in the four segments, then inscribed isosceles 

triangles in the remaining eight segments, and so on, “until the 

whole area of the circle was by this means exhausted, a polygon 

would thus be inscribed whose sides, in consequence of their small- 

ness, would coincide with the circumference of the circle.” But as 

against this Simplicius remarks, and quotes Eudemus to the same 

effect, that the inscribed polygon will never coincide with the 

circumference of the circle, even though it be possible to carry 

the division of the area to infinity, and to suppose that it would 

is to set aside a geometrical principle which lays down that magni- 

tudes are divisible ad infinitum}. The time had, in fact, not come 

for the acceptance of Antiphon’s idea, and, perhaps as the result of 

the dialectic disputes to which the notion of the infinite gave rise, 

the Greek geometers shrank from the use of such expressions as 

infinitely great and infinitely small and substituted the idea of things 

greater or less than any assigned magnitude. Thus, as Hankel says t, 

they never said that a circle is a polygon with an infinite number of 

* Bretschneider, p. 101, 

+ Bretschneider, p. 102. 

¢ Hankel, Zur Geschichte der Mathematik im Alterthum und Mittelalter, 
p. 123. 
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infinitely small sides ; they always stood still before the abyss of the 
infinite and never ventured to overstep the bounds of clear con- 

ceptions. They never spoke of an infinitely close approximation or 

a limiting value of the sum of a series extending to an infinite 

number of terms. Yet they must have arrived practically at such 

a conception, e.g., in the case of the proposition that circles are to 

one another as the squares on their diameters, they must have been 

in the first instance led to infer the truth of the proposition by the 

idea that the circle could be regarded as the limit of an inscribed 
regular polygon with an indefinitely increased number of corre- 

spondingly small sides. They did not, however, rest satisfied with 

such an inference ; they strove after an irrefragable proof, and this, 

from the nature of the case, could only be an indirect one. <Ac- 

cordingly we always find, in proofs by the method of exhaustion, 

a demonstration that an impossibility is involved by any other 

assumption than that which the proposition maintains. Moreover 

this stringent verification, by means of a double reductio ad ab- 

surdum, is repeated in every individual instance of the use of the 

method of exhaustion ; there is no attempt to establish, in lieu of 

this part of the proof, any general propositions which could be 

simply quoted in any particular case. 

The above general characteristics of the Greek method of 

exhaustion are equally present in the extensions of the method 

found in Archimedes. To illustrate this, it will be convenient, 

before passing to the cases where he performs genuine integrations, 

to mention his geometrical proof of the property that the area of a 

parabolic segment is four-thirds of the triangle with the same base 

and vertex. Here Archimedes exhausts the parabola by continually 

drawing, in each segment left over, a triangle with the same base 

and vertex as the segment. If A be the area of the triangle so 

inscribed in the original segment, the process gives a series of areas 

A, 44, (Q)'4, 
and the area of the segment is really the sum of the infinite series 

A {1434+ QP} 
But Archimedes does not express it in this way. He first proves 

that, if A,, 4,,...4, be any number of terms of such a series, so that 

A, =44A,, A,=4A,, ..., then 

A, +A, + Ag+... +4Ayt+44n= 34 

or Aletta (Ey tee £G) aaa) = 34: 
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Having obtained this result, we should nowadays suppose » to 

increase indefinitely and should infer at once that (})"~* becomes 

indefinitely small, and that the limit of the sum on the left-hand side 

is the area of the parabolic segment, which must therefore be equal 

to 44. Archimedes does not avow that he inferred the result in 

this way; he merely states that the area of the segment is equal 

to 4A, and then verifies it in the orthodox manner by proving that 

it cannot be either greater or less than $A. 

I pass now to the extensions by Archimedes of the method 

of exhaustion which are the immediate subject of this chapter. It 

will be noticed, as an essential feature of all of them, that 

Archimedes takes both an inscribed figure and a circumscribed 

figure in relation to the curve or surface of which he is investigating 

the area or the solid content, and then, as it were, compresses the 

two figures into one so that they coincide with one another and 

with the curvilinear figure to be measured; but again it must 

be understood that he does not describe his method in this way or 

say at any time that the given curve or surface is the limiting form 

of the circumscribed or inscribed figure. I will take the cases 

in the order in which they come in the text of this book. 

1. Surface of a sphere or spherical segment. 

The first step is to prove (On the Sphere and Cylinder 1. 21, 22) 

that, if in a circle or a segment of a circle there be inscribed 

polygons, whose sides AB, BC, CD, ... are all equal, as shown 

in the respective figures, then 

(a) for the circle 

(BB 4.00 SAA SAB BA; 

(6) for the segment 

(BB'+CC'+...+ KK'+ IM): AM=A'B: BA. 

Next it is proved that, if the polygons revolve about the 
diameter AA’, the surface described by the equal sides of the 
polygon in a complete revolution is [1. 24, 35] 

(a) equal to a circle with radius <i AB CAP SLCG Pe STR ies ) 

or (b) equal to a circle with radius JAB (BB ACC wee LM), 

Therefore, by means of the above proportions, the surfaces 
described by the equal sides are seen to be equal to 
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(a) a circle with radius / Ad’. A’B, 

and (b) a circle with radius ,/ AM. A'B ; 

they are therefore respectively [1. 25, 37] less than 

(a) acircle with radius 4A’, 

(6) a circle with radius AL. 

Archimedes now proceeds to take polygons circumscribed to the 

circle or segment«of a circle (supposed in this case to be less than a 

semicircle) so that their sides are parallel to those of the inscribed 

polygons before mentioned (cf. the figures on pp. 38, 51); and he 

proves by like steps [1. 30, 40] that, if the polygons revolve about the 

diameter as before, the surfaces described by the equal sides during 

a complete revolution are greater than the same circles respectively. 

Lastly, having proved these results for the inscribed and 

circumscribed figures respectively, Archimedes concludes and proves 

{1. 33, 42, 43] that the surface of the sphere or the segment of the 

sphere is equal to the first or the second of the circles respectively. 

In order to see the effect of the successive steps, let us express 

the several results by means of trigonometry. If, in the figures on 

pp. 33, 47 respectively, we suppose 4n to be the number of sides in 

the polygon inscribed in the circle and 27 the number of the equal 

sides in the polygon inscribed in the segment, while in the latter 

case the angle AOZ is denoted by a, the proportions given above 

are respectively equivalent to the formulae * 

Qa in = + si in (2n—1) =~ = cot > sin —— + sin — +... + sin (2n—1) = = cot —— 
2n 2n iG 2n 4n?” 

a 

1) a 
and ———————rrrrro = tt . 

l—cosa Qn 

ae er ; : 
2 sin +sin —+...+sin(n— 1) } sina 

n n 

Thus the two proportions give in fact a summation of the series 

sin 6+ sin 26+ ...+sin (n—1)@ 

both generally where 76 is equal to any angle a less than 7, and in 

the particular case where 7 is even and 6=7/n. 

Again, the areas of the circles which are equal to the surfaces 

described by the revolution of the equal sides of the iseribed 

* These formulae are taken, with a slight modification, from Loria, Il periodo 

aureo della geometria greca, p. 108. 

H. A. k 
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polygons are respectively (if a be the radius of the great circle 

of the sphere) 

= OF . Lor ; T A T 
47a? sin —- 4sin +sin +... +sin (2n—1)—}, or 47a’ cos — 

An, Qn In 2 May, : dn’ 

and 

LR Ar RT Wager ee Lee : a. , 
wa’. 2sin —| 2 jsin—+ sin +... +sin(m—1)—} +sina |, 

2n n n n 

2 a 

or ma’. 2 cos =— (1 — cos a). 
2n 

The areas of the circles which are equal to the surfaces described 

by the equal sides of the circumscribed polygons are obtained from 

the areas of the circles just given by dividing them by cos’ 7/47 and 

cos’ a/2n respectively. 

Thus the results obtained by Archimedes are the same as would 

be obtained by taking the limiting value of the above trigonometri- 

cal expressions when » is indefinitely increased, and when therefore 

cos 7/4n and cos a/2n are both unity. 

But the first expressions for the areas of the circles are (when 7 

is indefinitely increased) exactly what we represent by the 

integrals 

4rra” 4 \ sin 6 d6, or 47a’, 
0 

and wat [* 2 sin 6d0, or 27a’(1—cos a). 
0 

Thus Archimedes’ procedure is the equivalent of a genuine 

integration in each case. 

2. Volume of a sphere or a sector of a sphere. 

The method does not need to be separately set out in detail here, 

because it depends directly on the preceding case. The investiga- 

tion proceeds concurrently with that of the surface of a sphere or a 

segment of a sphere. The same inscribed and circumscribed figures 

are used, the sector of a sphere being of course compared with the 

solid figure made up of the figure inscribed or circumscribed to the 

segment and of the cone which has the same base as that figure and 

has its vertex at the centre of the sphere. It is then proved, 
(1) for the figure inscribed or circumscribed to the sphere, that its 
volume is equal to that of a cone with base equal to the surface of 
the figure and height equal to the perpendicular from the centre of 
the sphere on any one of the equal sides of the revolving polygon, 

(2) for the figure inscribed or circumscribed to the sector, that the 
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volume is equal to that of a cone with base equal to the surface of 
the portion of the figure which is inscribed or circumscribed to the 
segment of the sphere included in the sector and whose height is the 
perpendicular from the centre on one of the equal sides of the 

polygon. 

Thus, when the inscribed and circumscribed figures are, so 

to speak, compressed into one, the taking of the limit is practically 

the same thing in this case as in the case of the surfaces, the 

resulting volumes being simply the before-mentioned surfaces 

multiplied in each case by la. 

3. Area of an ellipse. 

This case again is not strictly in point here, because it does 

not exhibit any of the peculiarities of Archimedes’ extensions of 

the method of exhaustion. That method is, in fact, applied in 

the same manner, mutatis mutandis, as in Eucl. xi. 2. There 

is no simultaneous use of inscribed and circumscribed figures, but 

only the simple exhaustion of the ellipse and auxiliary circle by 

increasing to any desired extent the number of sides in polygons 

inscribed to each (On Conoids and Spheroids, Prop. 4). 

4. Volume of a segment of a paraboloid of revolution. 

Archimedes first states, as a Lemma, a result proved incidentally 

in a proposition of another treatise (On Spirals, Prop. 11), viz. that, 

if there be m terms of an arithmetical progression h, 2h, 3h, ..., then 

Nae Ais YAS soe eg 

and h+2h+3h+...4(n-l)h< nh 

Next he inscribes and circumscribes to the segment of the 

paraboloid figures made up of small cylinders (as shown in the figure 

of On Conoids and Spheroids, Props. 21, 22) whose axes lie along 

the axis of the segment and divide it into any number of equal 

parts. If c is the length of the axis AD of the segment, and if 

there are 7 cylinders in the circumscribed figure and their axes are 

each of length h, so that c=nh, Archimedes proves that 

1 cylinder CH _ wh 

(1) inscribed fig. h+2h+3h+...+(n—-1p)h 
> 2, by the Lemma, 

3 cylinder CH < nh 

poe (2) circumscribed fig. h+2h+3h+...+nh 

<2. 

k 2 



exlvill INTRODUCTION. 

Meantime it has been proved [Props. 19, 20] that, by increasing 

n sufficiently, the inscribed and circumscribed figure can be made 

to differ by less than any assignable volume. It is accordingly 

concluded and proved by the usual rigorous method that 

(cylinder CZ) = 2°(segment), 

so that (segment ABC) = 3 (cone ABC). 

The proof is therefore equivalent to the assertion, that if / is 

indefinitely diminished and n indefinitely increased, while nh remains 

equal to ¢, 
limit of h {fh + 2h + 3h+...+(n—-l)ht =4e; 

that is, in our notation, 
c 

| wda = 4c’. , 2 

Thus the method is essentially the same as ours when we 

express the volume of the segment of the paraboloid in the form 

c 

K yrdx, 
J0 

where «x is a constant, which does not appear in Archimedes’ result 

for the reason that he does not give the actual content of the 

segment of the paraboloid but only the ratio which it bears to the 

circumscribed cylinder. 

5. Volume of a segment of a hyperboloid of revolution. 

The first step in this case is to prove [On Conoids and Spheroids, 
Prop. 2] that, if there be a series of terms, 

ah+h’, a.2h+(2hy, a.3h+ (BA), ... a.nh+ (nh)?, 

and if (ah + h®)+ {a. 2h + (2h)} +... + fa. mh + (nh) = S,, 

then m{a.mh + (nh)%)Sy <(a+nh) / (5 + 3)| Gras ah RO (p). 

cod wlan i> or 
Next [Props. 25, 26] Archimedes draws inscribed and circum- 

scribed figures made up of cylinders as before (figure on p. 137), and 
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proves that, if AD is divided into m equal parts of length h, so that 
nh = AD, and if AA’=a, then 

cylinder HB’ sm fa. nh + (nh) 

inscribed tigure See4 

= (w+nt)/(S +), 

_gylinder HB’ n ta. nh + (nh)? 

circumscribed fig. De 

<(a+ ag (5 a =) . 

The conclusion, arrived at in the same manner as before, is that 

cylinder LB’ +=) 

segment ABB’ ~ aNCSs nh) ( 

and 

This is the same as saying that, if nh = ( and if / be indefinitely 

diminished while 7 is indefinitely increased, 

b 
limit of 7 (ab + b°)/S, = (a+ »)/ G + 5) 

or limit of es Oe G+ +a) 
n 

Now S,=a(h+2h+...+nh) + th? + (2h +... +(nh)}, 

so that AS,=ah(h+2h+...+nh)+h{h?+ (2h)? +... +(nh)}. 

The limit of the last expression is what we should write as 

b 
I (ax + «*) dx, 
0 

which is equal to b° € a3 - ; 

and Archimedes has given the equivalent of this integration. 

6. Volume of a segment of a spheroid. 

Archimedes does not here give the equivalent of the integration 

ik (axe — x”), 

presumably because, with his method, it would have required yet 

another lemma corresponding to that in which the results (8) above 

are established. 
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Suppose that, in the case of a segment less than half the spheroid 

(figure on p. 142), AA’ =a, CD=}c, AD=6; and let AD be divided 

into n equal parts of length h. 

The gnomons mentioned in Props. 29, 30 are then the differences 

between the rectangle cb +b and the successive rectangles 

chth?, ¢c.2h+(2h)’, ... ¢.(n—1l)h+{(n—-1) hy’, 

and in this case we have the conclusions that (if S,, be the sum of 

n terms of the series representing the latter rectangles) 

cylinder LB’ n (ch + b”) 

inscribed figure 7 (cb + 6’) — S;, 

>(e+0)/ (5+), 

cylinder HB’ nm (cb + b°) — 

circumscribed fig. (cb + 6°) —S,_, 

<(e+0)/(S+5), 
/ 

. J / 9) 

and in the limit tinder 28 (c + b) / (5 ~ =) : 
segment 4 BB’ — 3 

Accordingly we have the limit taken of the expression 

n (cb +b’) — 8S, Oy 

Ae ens 

and the integration performed is the same as that in the case of the 

hyperboloid above, with ¢ substituted for a. 

Archimedes discusses, as a separate case, the volume of half a 

spheroid [Props. 27, 28]. It differs from that just given in that c 

vanishes and 6= 4a, so that it is necessary to find the limit of 

h? + (2h)? + (Bh)* +... + (mh)? 
nm (nh)* z 

and this is done by means of a corollary to the lemma given on 
pp. 107—9 [On Spirals, Prop. 10] which proves that 

hi + (2h)* + ... + (nh)? > dn (mh), 

and hi + (2h)? +... + {(m—1) hl? < kn (nh)?, 

The limit of course corresponds to the integral 

b 
| x'?dx = 45%. 
/0 . 
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7. Area of a spiral. 

(1) Archimedes finds the area bounded by the first complete 

turn of a spiral and the initial line by means of the proposition just 

quoted, viz. 
i? + (2h)? + ... + (nh)? > 3n (nh, 

h? + (2h)? +... + {(a—1) AP < 40 (nh)? 

He proves [Props. 21, 22, 23] that a figure consisting of similar 

sectors of circles can be circumscribed about any arc of a spiral such 

that the area of the circumscribed figure exceeds that of the spiral 

by less than any assigned area, and also that a figure of the same 

kind can be inscribed such that the area of the spiral exceeds that 

of the inscribed figure by less than any assigned area. Then, lastly, 

he circumscribes and inscribes figures of this kind [Prop. 24]; thus 

e.g. in the circumscribed figure, if there are » similar sectors, the 

radii will be lines forming an arithmetical progression, as h, 2h, 

3h, ... nh, and nh will be equal to a, where a is the length inter- 

cepted on the initial line by the spiral at the end of the first turn. 

Since, then, similar sectors are to one another as the square of their 

radii, and 7 times the sector of radius nf or a is equal to the circle 

with the same radius, the first of the above formulae proves that 

(circumscribed fig.) > dra’. 

A similar procedure for the inscribed figure leads, by the use of the 

second formula, to the result that 

(inscribed fig.) < da’. 

The conclusion, arrived at in the usual manner, is that 

(area of spiral) = 47a’ ; 

and the proof is equivalent to taking the limit of 

= [W? + (2h)? +... + {(n—1) AP] 

or of ue [A? + (2h)? +... + {(n— 1) h}?|, 

which last limit we should express as 

a 
71% 

—| a'dx=4ra’ 
Jo 
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[It is clear that this method of proof equally gives the area 

bounded by the spiral and any radius vector of length 6 not being 

greater than a; for we have only to substitute awb/a for 7, and to 

remember that in this case nh=b. We thus obtain for the area 

4 

T b ‘ 
= | ade, or 4b?/a.| 

* & Jo 

(2) To find the area bounded by an are on any turn of the 

spiral! (not being greater than a complete turn) and the radii 

vectores to its extremities, of lengths 6 and ¢ say, where ¢>J, 

Archimedes uses the proposition that, if there be an arithmetic 

progression consisting of the terms 

b, b+h, 6+2h, ... b+(n—-1)h, 

andif = S,=09+ (b+ h)?+ (+ 2h) +... + {b+ (n—1) hy, 

then (m1) {b+ (m1) hy _ {6+ (n—1) hi? 

Sy, — 0? *6+(n— 1)hb+4h{(n-1 Were 

and (m7 --1) {b+ (m1) Ay? {b+(n—1 ) hi? 

So ~ B+ (n—lhhb+d{(m—1) hj? 

[On Spirals, Prop. 11 and note.] 
Then in Prop. 26 he circumscribes and inscribes figures consisting 

of similar sectors of circles, as before. There are n—1 sectors in 

each figure and therefore m radii altogether, including both 0 and ¢, 

so that we can take them to be the terms of the arithmetic progres- 
sion given above, where {b+(m—1)h}=c. It is thus proved, by 
means of the above inequalities, that 

sector OB'C bs (0+ (n—1)hP _ sector OBC 
circumscribed fig, ~ {b+(n—1)hib+3{(n— HAR inser. fig. 

and it is concluded after the usual manner that 

sector OB'C {b+ (n— 1h? 
spiral OBU {b+(n—1)hib+44(n—=1) h\? 

2 
Cc 

~ b+ (0-5) 

Remembering that »—1 = (c—6)/h, we see that the result is the 
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same thing as proving that, in the limit, when m becomes indefinitely 
great and h indefinitely small, while 6 + (n—1)h=c, 

limit of 4 [b°+(b +A)? +... + {0 + (m— 2) Ab] 

= (c—b) {ob + $ (c — )¥} 
=3(°— 2); 

that is, with our notation, 

A [ wae = 3 (8 -B). 

(3) Archimedes works out separately [Prop. 25], by exactly 

the same method, the particular case where the area is that described 

in any one complete turn of the spiral beginning from the initial 

line. This is equivalent to substituting (n—1)a for 6 and na for ¢, 

where a is the radius vector to the end of the first complete turn of 

the spiral. 

It will be observed that Archimedes does not use the result 

corresponding to 
¢ € b 

i wda— | ede = | ar One. 
0 b 0 

8. Area of a parabolic segment. 

Of the two solutions which Archimedes gives of the problem of 

squaring a parabolic segment, it is the mechanical solution which 

gives the equivalent of a genuine integration, In Props. 14, 15 of 

the Quadrature of the Parabola it is proved that, of two figures 

inscribed and circumscribed to the segment and consisting in each 

case of trapezia whose parallel sides are diameters of the parabola, 

the inscribed figure is less, and the circumscribed figure greater, 

than one-third of a certain triangle (ZqQ in the figure on p, 242). 

Then in Prop. 16 we have the usual process which is equivalent to 

taking the limit when the trapezia become infinite in number and 

their breadth infinitely small, and it is proved that 

(area of segment) =4A HqQ. 

The result is the equivalent of using the equation of the parabola 

referred to Qq as axis of « and the diameter through Q as axis of 

yy Viz. 
py =x (2a — x), 

which can, as shown on p. 236, be obtained from Prop. 4, and finding 

2a 

yda, 
0 
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where y has the value in terms of w given by the equation ; and of 

course : 

1 [eae — 2°) dx = ee ; 
p Jo 3p 

The equivalence of the method to an integration can also be 

seen thus. It is proved in Prop. 16 (see figure on p. 244) that, if 

gE be divided into » equal parts and the construction of the 

proposition be made, Qq is divided at O,, 0,,... into the same 

number of equal parts. The area of the circumscribed figure is then 

easily seen to be the sum of the areas of the triangles 

QqF, ORF, QFF, ... 

that is, of the areas of the triangles 

oF, Q0,R,, QOD, ... 

Suppose now that the area of the triangle Qq/’ is denoted by A, and 

it follows that 
_1\2 __ 9)2 

(circumscribed fig.) = A 1 ig a ¥ We, ‘ener + 
nv n> nv 

i ° 9 9 9 9 

= 5: A {A? + 27A? +... + 7A, 
wh? : 

Similarly we obtain 

il 
(inscribed fig.) = PAS A fA? + QAP +... + (n—1)?A7t. 

Taking the limit we have, if A denote the area of the triangle £¢Q, 
so that A=nA, 

1 4 
(area of segment) = 7 | A*dA 

Jo 
ay =4A. 

If the conclusion be regarded in this manner, the integration is 
the same as that which corresponds to Archimedes’ squaring of the 
spiral. 



“ CHAPTER VIII. 

THE TERMINOLOGY OF ARCHIMEDES. 

So far as the language of Archimedes is that of Greek geometry 

in general, it must necessarily have much in common with that of 

Euclid and Apollonius, and it is therefore inevitable that the 

present chapter should repeat many of the explanations of terms of 

general application which I have already given in the corresponding 

chapter of my edition of Apollonius’ Conics*. But I think it will 

be best to make this chapter so far as possible complete and self- 

contained, even at the cost of some slight repetition, which will 

however be relieved (1) by the fact that all the particular phrases 

quoted by way of illustration will be taken from the text of 

Archimedes instead of Apollonius, and (2) by the addition of a large 

amount of entirely different matter corresponding to the great 

variety of subjects dealt with by Archimedes as compared with the 

limitation of the work of Apollonius to the one subject of conics, 

One element of difficulty in the present case arises out of the 

circumstance that, whereas Archimedes wrote in the Doric dialect, 

the original language has been in some books completely, and in others 

partially, transformed into the ordinary dialect of Greek. Uni- 

formity of dialect cannot therefore be preserved in the quotations 

about to be made; but I have thought it best, when explaining 

single words, to use the ordinary form, and, when illustrating their 

use by quoting phrases or sentences, to give the latter as they appear 

in Heiberg’s text, whether in Doric or Attic in the particular case. 

Lest the casual reader should imagine the paroxytone words evOeiar, 

dvapérpor, recital, mecovvra., eooeitar, duvavra, dmrérat, Kkadelobat, 

xetoGa1 and the like to be misprints, I add that the quotations in 

Doric from Heiberg’s text have the unfamiliar Doric accents. 

IT shall again follow the plan of grouping the various technical 

* Apollonius of Perga, pp. clvii—elxx. 
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terms under certain general headings, which will enable the Greek 

term corresponding to each expression in the ordinary mathematical 

phraseology of the present day to be readily traced wherever such 

a Greek equivalent exists. 

Points and lines. 

A point is onpetov, the point B ro B onpetov or 7o B simply; a 

point on (a line or curve) onpetov éré (with gen.) or év; a point 

raised above (a plane) onpetov petéwpov; any two points whatever 

being taken 8v0 oypetwov apBavopévov d7rowvodv. 

At a point (e.g. of an angle) zpds (with dat.), having rts vertex at 

the centre of the sphere Kopupynv EXwV ™pos TO KEVTPw THs opaipas ; of 

lines meeting in a point, touching or dividing at a point, etc., xara 

(with acc.), thus AE is bisected at Z is a AE diya tewvérar kata 70 Z; 

of a point falling on or being placed on another émé or xara (with 

ace.), thus Z will fall on T, 76 pev Z emt 76 T rreceirat, so that B hes 

on A, date 76 pev E xara 70 A KeloOau. 

Particular points are extremity mépas, vertew xopydy, centre 

Kevtpov, point of division d.alpecis, point of meeting ovurtwors, pornt 

of section topn, point of bisection d.yotopia, the middle point ro 

pecov ; the points of division H, I, K, ta tradv diapeciwy capeta ta H, 

I, K; let B be its middle point péecov dé avtas éotw 76 B; the point of 

section in which (a circle) cuts a toud, Ka av Téuver. 

A tine is ypoppy, a curved line xayrvin ypaupa, a straight line 

evOeia with or without ypaypy. The straight line @IKA, ¢ OIKA 

ev0eia ; but sometimes the older expression is used, the straight line 

on which (éxi with gen. or dat. of the pronoun) are placed certain 

letters, thus let it be the straight line M, éotw éf & 75 M, other 

straight lines K, A, dddot ypappal, ep av ra K, A. The straight 
lines between the points at peraés tdv onpetwv edbetar, of the lines 
which have the sume extremities the straight line is the least rév ta 

_7 asta Tépara €xovoay ypappav ehaxioTny elvar THY evOelav, straight lines 

cutteng one another dOelar reuvovoar addAdAas. 
For points in relation to lines we have such expressions as the 

following: the points T, ®, M are on a straight line éx ebdelas éoti 
7 1, @, M capeta, the point of bisection of the straight line containing 
the centres of the middle magnitudes & S.xoropia tas eOelas tas 
€xovoas TO. KevTpa TOV péecwv peyeléwv. A very characteristic phrase 
for at a point which divides the straight line in such a proportion 

. Sees A > , y 4 oer that... 18 emt tas edelas dioipebeioas dore...; similarly éri tras XE 
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3 : : : : : 
Thabeicas otws, Wate. A certain point will be on the straight line... 

dividing it so that... éooeirar eri ras ciPeias...dvatpéov ovtws Tov 
> / > a A 

ELPNLEVAV ev0eiav, WOTE.... 

The middle point of a line is often elegantly denoted by an 

adjective in agreement; thus at the middle point of the segment ent 

pérov Tov THdwatos, (a line) drawn from T to the middle point of 

EB, do rot T ert péecav trav EB ayOecioa, drawn to the middle point of 

the base éri pécat trav Bdow dyopeva. 

A straight line produced is the (straight line) in the same straight 

line with it 4 em edOelas airy. In the same straight line with the 

auis ert tas attas edfeias to aov. Of a straight line falling on 

another line xaré (with gen.) is used, e.g. wimrovor kar airs; éxé 

(with acc.) is also used of a straight line placed on another, thus if 

EH be placed on BA, reOeioas tas EH eri trav BA. 

For lines passing through points we find the following ex- 

pressions: will pass through N, n&e dua tod N ; will pass through the 

centre dia Tod Kévtpov Topevoerat, will fall through @ weceirat dia Tod 

@, verging towards B vevovoa ert 76 B, pass through the same point 

éml TO avTo capetov épxovtat; the dragonals of the parallelogram fall 

(i.e. meet) at @, xara d& 76 O ai diaperpor rod mapaddynhoypappov 

mimtovte; EZ (passes) through the points bisecting AB, TA, émt 8& trav 

dtxotopiay trav AB, TA a EZ. The verb «iyi is also used of passing 

through, thus éocetras on abra dud. Tod O. 

For lines in relation to other lines we have perpendicular to 

KaBeros eri (with acc.), parallel to mapadddndos with dat. or rapa 

(with acc.); let KA be (drawn) from K parallel to TA, dro rod K 

mapa tav TA eorw a KA, 

Lines meeting one another cuprinrovoa &hAnas; the point im 

which ZH, MN produced meet one another and AT, 76 onpeiov, Ka’ 6 

oupBadrrovow éxBardopevar ai ZH, MN adAdAydais te kai rH AT; so as 

to meet the tangent wore eumeceiv Ta erupavoveg, let straight lines be 

drawn parallel to AT to meet the section of the cone axOwv cifetau 

mapa tav AV éore orl tov Tod Kovov Tomdy, to draw a straight line to 

meet its circumference moti tov mepipeperav aitod roryBadeiv edbciar, 

the line drawn to meet & roturecovaa, let AE, AA be drawn fron the 

point A to meet the spiral and produced to meet the circumference of 

the circle motumurtévtwv ard tov A oapetov moti Tay eAuka at AE, AA 

Kal éxrurTovtwy mot) Tov TOD KiKAov Tepipeperav ; wirtil it meets OA in 

O, éore Ka cupréoyn Th OA Kara. 7d O (of a circle). 
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(The straight line) wili fall outside (2.e. will eatend beyond) P, 

exros Tod P reccirac; will fall within the section of the figure évtos 

TETOVVTAL TAS TOD OXHMATOS TOMAS. 

The (perpendicular) distance between (two parallel lines) AZ, BH, 

70 Sudornua tav AZ, BH. Other ways of expressing distances are the 

following: the magnitudes equidistant from the middle one 74 ioov 

dzéyovra dd Tov péoou peyéHea, are at equal distances Jrom one 

another ica am adAXAdhuv divéotaxeyv; the segments (lengths) on AH 

equal to N, 7a év ta AH tpdpara isopeyeOea ta N; greater by one 

segment évi tpapate peilov. 

The word ciOeia itself is also often used in the sense of distance ; 

ef. the terms zpury eiGeta etc. in the book On Spirals, also a eiOeta 

G& peraéy tod Kévtpov ToD adiov Kal Tov KévTpov Tas yas the distance 

between the centre of the sun and the centre of the earth. 

The word for join is éem€evyviw or érilevyvupe ; the straight line 

joining the points of contact 4 ras ddas érevyvvovca eibeta, BA when 

joined & BA émlevyGeioa ; let EZ join the points of bisection of AA, 

BI, 4 8¢ EZ emlevyvvérw tas dixotopias tav AA, BI. In one case 

the word seems to be used in the sense of drawing simply, «t xa 

evdcia éerilevxO ypaypa év émimedw AD YRC: De 

Angles. 

An angle is ywvia, the three kinds of angles are right 6p67, acute 

dgeia, obtuse duBreia; right-angled etc. dpfoywros, d£vywvios, auBdv- 

ysvios; equiangular icoywvis; with an even number of angles 

dptiywvos or aptioywrtos. 

At right angles to 6p6ds mpds (with ace.) or zpos dpOds (with dat. 

following); thus if a line be erected at right angles to the plane ypappas 

aveotaxovcas épbas moti 7d étredov, the planes are at right angles to 

one another dpa ror aGddadd evr Ta émimeda, being at right angles 

to ABI’, zpos dpfas dv 76 ABT; KT, EA are at right angles to one 

another wor’ dpOdas évre dAAdAas ai KT, BA, to cut at right angles 

Téuvew mpos pds. The expression making right angles with is also 

used, €.g. dpfas rovotca ywvias rott trav AB. 

The complete expression for the angle contained by the lines AH, 
AD is 4 ywvia & mepiexomeva rd tav AH, AT; but there are a great 
variety of shorter expressions, ywvia itself being often understood ; 
thus the angles A, BE, A, B, ai A, E, A, B yoviar; the angle at @, & rort 
7G ®; the angle contained by AA, AZ, & ywvia & id trav AA, AZ; the 
angle AHY, 9 ixd tov AHL yovia, yj $rd AHT (with or without yovia). 
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Making the angle K equal to the angle ®, ywviav rowdoa tov K 
toav T2 @; the angle into which the sun fits and which has its vertex 
at the eye ywvia, eis av 6 aAtos évappoler tiv Kopupay €xoveav Trott Ta 

oper; of the sides subtending the right angle (hypotenuses) trav t7d 

Tav dpbav yoviav vrotewovcay, they subtend the same angle évrt ixd 
Tee , 

TAV QUTQV yowveav. 

If a line through an angular point of a polygon divides it 

exactly symmetrieally, the opposite angles of the polygon, ai drevavtiov 

ywviat ToD ToAvywvov, are those answering to each other on each side 

of the bisecting line. 

Planes and plane figures. 

A plane érimedov; the plane through BA, 76 érimedov 75 Kara 

tyv BA, or 76 dua THs BA, plane of the base érimedov tis Baoews, plane 

(i.e. base) of the cylinder érimedov tod Kvdivdpov; cutting plane éni- 

medov Téuvov, tangent plune émimedov eruvatov; the intersection of 

planes is their common section kowy Tomy. 

In the same plane as the circle év tO abt@ érimédw TO Kixho. 

Let a plane be erected on IZ at right angles to the plane in which 

AB, TA-are a6 tas IZ érimedov avectakétw épOov moti 10 ériredov 70, 

év @ évte ai AB, TA. 

The plane surface n émimedos ey a plane segment érimedov 

tTpHpa, a plane figure oxnpa. érimedov. 

A rectilineal figure ed0bypappov (oxnpya), a side rrevpd, perimeter 

n TEpiwetpos, similar opo.os, similarly situated dpoiws Keipwevos. 

To coincide with (when one figure is applied to another), 

édappdlew followed by the dative or émé (with acc.); one part 

coincides with the other ébappdle: 70 Eerepov jépos ert 7d erepov; the 

plane through NZ coincides with the plane through AV, 16 érimedov To 

kara tav NZ édappdle. 76 émimédm 7G kata trav AT. The passive is 

also used; if equal and similar plane figures coincide with one another 
/ > *¥y 4 

tov tow Kal dpolwv cynpatov eriméduv epappwolopévev ex ahdada. 

Triangles. 

A triangle is tptywvov, the triangles bounded by (their three 

sides) ra meptexdpeva tpiywva v7d TOV. A right-angled triangle 

meer éploywviov, one of the sides oe te right angle pia tov rept 

ai opOnv. The triangle through the axis (of a cone) 70 dua tod a€ovos 

Tplywvov. 
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Quadrilaterals. 

A quadrilateral is a fowr-sided figure (retpdmAevpov) as dis- 

tinguished from a fowr-angled figure, tetpaywvov, which means a 

square. A trapezium, tpamélvov, is in one place more precisely 

described as a trapezium having its two sides parallel tpaméliov tas 

Svo mAevpas exov mapadhAdovs adAaXats. 

A parallelogram rapaddAndA\Jypappov ; for a parallelogram on a 

straight line as base éi (with gen.) is used, thus the parallelograms 

on them are of equal height éortv icovyy ra Trapaddnddypappa TH er 

aitav. A diagonal of a parallelogram is didperpos, the opposite sides 

of the parallelogram at Kar’ évavtiov Tod TrapadAndoypappov mevpat. 

Rectangles. 

The word generally used for a rectangle is xwpiov (space or area) 

without any further description. As in the case of angles, the 

yectangles contained by straight lines are generally expressed more 

shortly than by the phrase ra zeprexdueva Xwpla vd; either Xwpiov 

may be omitted or both ywpfov and zreprexdpevor, thus the rectangle 

AT, TE may be any of the following, 76 urd rév AT, TE, 7d vd 

AT, TE, 76 v76 ATE, and the rectangle wnder @K, AH is 76, vrd tHs 

@K xal t7s AH. Rectangles ©, I, K, A, xwpia év ots ra (or ed’ dv 

exaotov Tov) O, I, K, A. 

To apply a rectangle to a straight line (in the technical sense) is 

rapaBaddew, and raparirtw is generally used in place of the passive; 

the participle tapaxe/uevos is also used in the sense of applied to. In 

each case applying to a straight line is expressed by zapa (with acc.). 

Examples are, areas which we can apply to a given straight line (i.e. 

which we can transform into a rectangle of the same area) xwpia, & 

duvdueba mapa trav Sobetcav cifeiav rapaBareiv, let w rectangle be 

applied to each of them raparertwxérw map éxdotav aitav ywplov ; 

of there be applied to each of them a rectangle exceeding by a square 
Jigure, and the sides of the eacesses exceed each other by an equal 
amount (i.e. form an arithmetical progression) ef ka map’ éxdorav 
avTav mapaméon te Xwpiov bmrepBddrdov €tde Tetpaywvw, ewvte S€ at 
mhevpal tov imepBAnudrov 7h low ddAdAav trepexovoat. 

The rectangle applied is rapa/3nua. 

Squares. 
ee ; ‘ es A square is retpdywvov, a square on a straight line is a square 

ee PO aa nmeeys. TRG RAN Gna e \ n (erected) from it (amd). The square on TH, 75 ard ras TH TETPAYWVOY, 
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is shortened into 10 dwo ras IH, or 76 ard TE simply. The square 

next in order to it (when there are a number of squares in a row) is 

TO Tap avTG Tetpaywvov OY Td éxduevov TeTPAywvor. 

With reference to squares, a most important part is played by 

the word dvvayis and the various parts of the verb divaya. Svvapus 

expresses a square (literally a power) ; thus in Diophantus it is used 

throughout as the technical term for the square of the unknown 

quantity in an ,algebraical equation, ie. for x. In geometrical 

language it is the dative singular dvvd¢ue. which is mostly used ; 

thus a straight line is said to be potentially equal, dvvape: ica, to a 

certain rectangle where the meaning is that the square on the straight 

line is equal to the rectangle ; similarly for the sguare on BA is less 

than double the square on AK we have 7 BA éAaoowy éoriv 7 durAaciwv 

dvvame THs AK. The verb dvvaca (with or without tcov) has the 
sense of being duvaye toa, and, when dvvacGai is used alone, it is 

followed by the accusative; thus the square (on a straight line) is 

equal to the rectangle contained by... is («dfeta) icov Sivarar To 

mepexopevw trr0...3 let the square on the-radius be equal to the 

rectangle BA, AZ, y ék tov Kévtpov dvvacOw 76 rd TaHv BAZ, (the 

difference) by which the. square on ZV is greater than the square on 

half the other diameter © petlov dvvdra & ZT ras yuuretas tas érépas 

dvaper pov. 

A gnomon is yvopwv, and its breadth (xAaros) is the breadth of 

each end; a gnomon of breadth equal to BI, yvopwv rAdros exw ivov 

7a BI, (a gnomon) whose breadth is greater by one segment than the 

breadth of the gnomon last taken away ob wdaros évi tTyadpate peiCov 
la cal A td f 

Tov mAdTEOS TOV TPO aiTov adatpovpévov yvwovos. 

Polygons. 

A polygon is modvywvov, an equilateral polygon is icdrAevpor, 

a polygon of an even number of sides or angles aptidmhevpov or 

aptiywvov ; a polygon with all its sides equal except BA, AA, ioas 

éxov Tas wAeupas xwpis TGV BAA; a polygon with its sides, excluding 

the base, equal and even in number ras tAevpas Exov Xwpis THS Bacews 

ioas kal apriovs ; an equilateral polygon the number of whose sides is 

measured by four rodvywvov iadm)evpov, ov at wAevpal bro TeTpddos 

perpovvras, let the number of its sides be measured by four ro whiOos - 

Tov TAevpay petpe(oOw b7d Terpados. A chiliagon xuaywvovr. 

The straight lines subtending two sides of the polygon (i.e. joining 

angles next but one to each other) ai id dvo mAevpas rot wohvywvov 

3h, JNp l 
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Srore(vovoa, the straight line subtending one less than half the 
hd c ater ~ c / 

number of the sides 7 vroreivovea Tas pug eKdooovas TOV NMLTEWY. 

Circles. 

A cirele is xbxXos, the circle V is 6 VY kixdos or 6 kixdos ev @ 70 V, 

let the given circle be that drawn below éotw 6 dobels KiKhos 6 

DTrOKEL[LEVOS, 

The centre is xévrpov, the circumference repipépera, the former 

word having doubtless been suggested by something stuck im and 

the jiatter by something, e.g. a cord stretched tight, carrzed round 

the centre as a fixed point and describing a circle with its other 

extremity. Accordingly zrepidépera is used for a circular are as well 

as for the whole circumference ; thus the arc BA is 7 BA wepipepeta, 

the (part of the) circumference of the circle cut off by the same 

(straight line) 7 tod KixdXov Tepipépera 7 bro THS avTHs OTOTELVOMLEVN. 

Though the circumference of a circle is also sometimes called its 

perimeter (n Tepiwerpos) in the treatises On the Sphere and Cylinder 

and on the Measurement of a Curcle, the word does not seem to have 

been used by Archimedes himself in this sense ; he speaks, however, 

in the Sand-reckoner of the perimeter of the earth (repiwetpos tas yas). 

The radius is 7 éx tod Kévtpov simply, and this expression 

without the article is used as a predicate as if it were one word ; 

thus the circle whose radius is @E is 6 KvKXos ot ék Tod KévTpoU a 

@E; BE is a radius of the circle n 8¢ BE ék tod Kévtpov éott Tod KUKXov. 

» A diameter is dudpetpos, the circle on AE as diameter 6 wept 
Pisuerpor tHv AE kukXos. 

For drawing a chord of a circle there is no special technical 

term, but we find such phrases as the following: édv eis tov KUKAov 

eveia ypoppy euréon if in a circle a straight line be placed, and the 

chord is then the straight line so placed » éurecodtoa, or quite 

commonly 7 év 76 KikAw (edGeia) simply. For the chord subtending 

one 656th part of the circumference of a circle we have the following 
interesting phrase, & vroteivovea ev tuaua Siaipebeicas Tas Too ABT 
KvKAOV TEpipepelas es XVS’. 

A segment of a circle is tuja Kikdov ; sometimes, to distinguish 
it from a-segment of a sphere, it is called a plane segment sh ee a : tTpnpa emimedov. A semicircle is yuixvKAvov ; a segment less than a 
semicircle cut off by AB, TyHpa Ehaccov HuKvKALoV 6 droréuver 
7 AB. The segments on AB, EB (as bases) are ta émt rov 

12  .* AE, EB tynpyota; but the semicircle on ZH as diameter is té 
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npxvkArLov TO mept dudpetpov tav ZH or 7d npikvKAuov 70 wep trav ZH 
simply. The expression the angle of the semicircle, & rod yyiKvkdov 
(yevia), is used of the (right) angle contained by the diameter and 
the are (or tangent) at one extremity of it. 

A sector of a circle is roueds or, when it is necessary to 
distinguish it from what Archimedes calls a ‘solid sector,’ émézredos 
Tomers KUKNov a plane sector of a circle. The sector including the 

right angle (at the centre) is 6 romeds 6 tay dépOav yoviay mepéxov. 

Either of the radii bounding a sector is called a side of it, wheupd ; 

each of the sectors (is) equal to the sector which has a side common 

(with wt) Exaotos Tav To“éwv toos TO Koway éxovte wAEvpdy Tomet; a 

sector is sometimes regarded as described on one of the bounding 

radii as a side, thus simélar sectors have been described on all (the 

straight lines) avayeypaparar ard tava ouolor ropées. 

Of polygons inscribed in or circumscribed about a circle éyypadew 

eis or év and repiypadew epi (with acc.) are used; we also find 

mepryeypaypevos used with the simple dative, thus 1d eprye- 

ypappevov oxnwa TH Towel is the figure circumscribed to the sector. 

A polygon is said to be inscribed in a segment of a circle when 

the base of the segment is one side and the other sides subtend 

arcs making up the circumference; thus let a polygon be wmscribed 

on AY in the segment ABT, émt trys AT rodvywvov eyyeypadbo 

eis TO ABT tyjua. A regular polygon is said to be inscribed in 

a sector when the two radii are two of the sides and the other sides 

are all equal to one another, and a similar polygon is said to he 

circumscribed about a sector when the equal sides are formed by the 

tangents to the arc which are respectively parallel to the equal 

sides of the inscribed polygon and the remaining two sides are the 

bounding radii produced to meet the adjacent tangents. Of a 

circle circumscribed to a polygon repropBavew is also used; thus 

ToAvywvov KUKOS TEpLYEYyPapLEvOs mepirapBaverw Tept TO abt KevTpOV 

ywopevos, as we might say let a cirewmscribed circle be drawn with 

the same centre going round the polygon. Similarly the circle ABTA 

containing the polygon 6 ABTA kvkXos éxwv 70 ToAvyowvov. 
When a polygon is inscribed in a circle, the segments left over 

between the sides of the polygon and the subtended arcs are 

mepirerromeva. TuApara; when a polygon is circumscribed to the 

circle, the spaces between the two are variously called ra zepi- 

Neuropeva THs TEprypadys TunpLaTa, Ta TepireTOopeva oXNPATA, TH 

TeptArcippara OY To aroAcippara. 

t2 
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Spheres, etc. 

In connexion with a sphere (cdaipa) a number of terms are 

used on the analogy of the older and similar terms connected with 

the circle. Thus the centre is xévrpov, the radius y ex Tod KévTpov, 

the diameter 4 Superpos. Two seyments, tynpata odaipas or 

Tyypata opaipixd, are formed when a sphere is cut by a plane; 

a hemisphere is jpuraipiov ; the segment of the sphere at T, 70 xara 70 

T tyjpa ths odaipas; the segment on the side of ABT, 76 azo ABT 

tuna; the segment including the circumference BAA, 76 xara. thv BAA 

mepipépevav tyyya. The curved surface of a sphere or segment 

is érifavera ; thus of spherical segments bounded by equal surfaces the 

hemisphere is greatest is trav TH ton eripaveia Tepiexopévov TpaipiKav 

Tunparov petlov eat. 76 nprcpaipiov. The terms base (Bacis), vertex 

(kopudy) and height (vos) are also used with reference to a segment 

of a sphere. 

Another term borrowed from the geometry of the circle is the 

word sector (rowevs) qualified with the adjective orepeds (solid). 

A solid sector (ropedts orepeds) is defined by Archimedes as the 

figure bounded by a cone which has its vertex at the centre of 

a sphere and the part of the surface of the sphere within the cone, 

The segment of the sphere included in the sector is tO tyHypa THs 

spaipas TO ev TH TOMEL OF TO KATA TOV TOME. 

A great circle of a sphere is 6 péytatos KiKAos TaV ev TH odhaipa 

and often 6 péyiortos KuKdos alone. 
Let a sphere be cut by a plane not through the centre retpncbw 

ahaipa pi) dia Tod Kévtpov érimédw ; a sphere cut by a plane through 

the centre m the circle EZH®, odaipa ériredw rerunuevn Sia Tod 
Kévtpov Kata tov EZH® kv«dov. 

Prisms and pyramids, 

A prism is rpiopa, a pyramid rupauis. As ‘usual, avaypadew ard 

is used of describing a prism or pyramid on a rectilineal figure 

-as base; thus let a prism be described on the rectilineal figure 

(as base) avayeypapOw -dxd Tod ebOvypdppov mpiopa, on the polygon 
circumscribed about the circle A let a pyramid be set wp dd tod rept 
TOV A KUKAOV TEPLYEYPapLjLevou ToAVywvov Tupaputs averTaTw dvayeypap- 

pen. A pyramid with an equilateral base ABT is rvpapts ioomAevpov 
éxovoa Baow ro ABI. 

The surface is, as usual, éripdveca and, when any particular face 
or a base is excluded, some qualifying phrase has to be used. 
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Thus the surface of the prism consisting of the parallelograms 

(i.e. excluding the bases) 7 émipaveca rod mpicparos Wy é« Tar 

rapah\yoypaypwv cvykey.evy ; the surface (of a pyramid) eaciuding 

the base or the triangle AEDT, 7 eéripavera ywpls THs Bacews or rod 

AET rprysvov. 

The triangles bounding the pyramid ta wepiéxovta tplywva tHVv 

mupauida (as distinct from the base, which may be polygonal). 

Cones and solid rhombi. 

The Elements of Euclid only introduce right cones, which are 

simply called cones without the qualifying adjective. A cone is 

there defined as the surface described by the revolution of a right- 

angled triangle about one of the sides containing the right angle. 

Archimedes does not define a cone, but generally describes a right 

cone as an wsosceles cone (Kdvos icocKedys), though once he calls it 

right (ép0ds). J. H. T. Miller rightly observes that the term 

isosceles applied to a cone was suggested by the analogy of the 

isosceles triangle, but I doubt whether such a cone was thought of 

(as he supposes) as one which could be described by making an 

isosceles triangle revolve about the perpendicular from the vertex 

on the base; it seems more natural to connect it with the use of 

the word side (zXevpa) by which Archimedes designates a generator 

of the cone, a right cone being thus directly regarded as a cone having 

all its legs equal. The latter supposition would also accord better 

with the term scalene cone (kévos oKxadyvds) by which Apollonius 

denotes an oblique circular cone; such a cone could not of course 

be described by the revolution of a scalene triangle. An oblique 

circular cone is simply a cone for Archimedes, and he does not 

define it; but, while he speaks of finding a cone with a given 

vertex and passing through every point on a given ‘section of an 

acute-angled cone’ [ellipse], he regards the finding of the cone as 
being equivalent to finding the circular sections, and we may 

therefore conclude that he would have defined the cone in 

practically the same way as Apollonius does, namely as the surface 

described by a straight line always passing through a fixed point 

and moving round the circumference of any circle not in the same 

plane with the point. 
The vertex of a cone is, as usual, copuypy, the base Bios the axis 

déwv and the height twos; the cones are of the same height cio ot 

kGvo. tro 70 adrd thos. A generator is called a side (wevpa); of a 
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cone be cut by a plane meeting all the generators of the cone «i xa 

kGvos érimédw Tuabh cuuminrovts TATaLS Tails TOD Kuvov mAEupais. 

The surface of the cone excluding the base n émipavera Tod Kovov 

xopls THs Bacews ; the conical surface between (two generators) AA, AB, 

Kwviky eripavera y peTtags Tov AAB, * 

There is no special name for what we call a frustwm of a cone 

or the portion intercepted between two planes parallel to the base ; 

the surface of such a frustum is simply the surface of the cone 

between the parallel planes 4 eripdve tod Kwvov petags Tov 

TapadAnhwv érurédwv. 

A curious term is segment of a cone (arétpapya Kwvov), which is 

used of the portion of any circular cone, right or oblique, cut off 

towards the vertex by any plane which makes an elliptic and not a 

circular section. With reference to a segment of a cone the amis 

(agwv) is defined as the straight line drawn from the vertex of the 

cone to the centre of the elliptic base. 

As usual, dvaypadew amd is used of describing a cone on a circle 

as base. Similarly, a very common phrase is ad Tov KvkAov Kdvos 

éorw let there be a cone on the circle (as base). 

A solid rhombus (pouBos orepeds) is the figure made up of two 

cones having their base common, their vertices on opposite sides of 

it, and their axes in one straight line. A rhombus made up of 

isosceles cones pouBos e€ icookehav Kwvov ovyKeievos, and the two 

cones are spoken of as the cones bounding the rhombus ot Kavor ot 

Teplexovres TOV pou.ov. 

Cylinders. 

A right cylinder is xtiw8pos é6pO0s, and the following terms 

apply to the cylinder as to the cone: base Bdous, one base or the 

other » érépa Badous, of which the circle AB is a base and TA opposite 

to it ob Baows pev 6 AB kdxXos, arevavriov 885 TA; axis akwv, height 

vos, generator mhevpa. The cylindrical surface cut off by (two 

generators) AT, BA, aTrorepvomevy KudAwopiKy erupavera v7d tov AT, 

BA ; the surface of the cylinder adjacent to the circumference ABI, 4 
eripavera Tod Kvivdpov y Kata tiv ABT mepipéepecav denotes the 
surface of the cylinder between the two generators drawn through 
the extremities of the are. 

A frustum of a cylinder topos kvdtvSpov is a portion of a 
cylinder intercepted between two parallel sections which are elliptic 
and not circular, and the awis (déwv) of it is the straight line 
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Joining the centres of the two sections, which is in the same straight 
line with the axis of the cylinder. 

Conic Sections, 

General terms are kwviKd otouxela, elements of conics, Ta Kwvikd 

(the theory of) ‘conics. Any conic section Keévov Toph dmovaody. 

Chords are simply edOeéar év 74 10d Kuvov Toug aypévar. Archimedes 

never uses the word axis (a€wv) with reference to a conic; the axes 

are with him diameters (didperpor), and diutpetpos, when it has 

reference to a complete conic, is used in this sense exclusively. A 

tangent is éruyavovoa or épartopevy (with gen.). 

The separate conic sections are still denoted by the old names ; 

a parabola is a section of a right-angled cone épboywviov Kivov Topy, 

a hyperbola a section of an obtuse-angled cone auBdAvywviov Kavov 

town, and an ellipse a section of an acute-angled cone dévywviov Kavov 

TOMY. 

The parabola. 

Only the axis of a complete parabola is called a diameter, and 

the other diameters are simply lines parallel to the diameter. Thus 

parallel to the diameter or itself the diameter is rapa trav duaperpov 7 

atta didpetpos; AZ ts parallel to the diameter & AZ rapa tav 

Suipetpov éotr. Once the term principal or original (diameter) is 

used, apyixa (sc. didperpos). 

A segment of a parabola is tyujya, which is more fully described 

as the segment bounded by a straight line and a section of a right- 

angled cone Tapa TO Treptexopevov 76 Te evOelas Kal dpHoywviov Kwvov 

touas. The word diperpos is again used with reference to a 

segment of a parabola in the sense of our word aais ; Archimedes 

defines the diameter of any segment as the line bisecting all the 

straight lines (chords) drawn parallel to its base trav dixa téuvovoav 

Tas evOelas mdcas Tas Tapa Tav Baowy adrod ayouéevas. 

The part of a parabola included between two parallel chords is 

called a frustum tépos (ard dpboywviov Kuévov Topas apaipovpevos), 

the two chords are its lesser and greater base (éA\acowv and pegwv 

Baous) respectively, and the line joining the middle points of the 

two chords is the diameter (diaperpos) of the frustum. 

What we call the Jatus rectwm of a parabola is in Archimedes 

the line which is double of the line drawn as far as the amis & durdacia 

7ds péxpt Tov déovos. In this expression the axis (dgwv) is the axis 
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of the right-angled cone from which the curve was originally derived 

by means of a section perpendicular to a generator*. Or, again, the 

equivalent of our word parameter (rap’ dv duvavrat ai dad Tas Touas) 

is used by Archimedes as by Apollonius, meaning the straight line 

to which the rectangle which has its breadth equal to the abscissa 

of a point and is equal to the square of the ordinate must be 

applied as base. The full phrase states that the ordinates have 

their squares equal to the rectangles applied to the line equal to N (or 

the parameter) which have as their breadth the lines which they (the 

ordinates) cut off from AZ (the diameter) towards the extremity A, 

Suvdvra. Ta Tapa Tov toav Ta N wapamirrovra wAatos éxovta, as airat 

aToAapBavovre amd tas AZ roti 76 A zrépas. 

Ordinates are the lines drawn from the section to the diameter 

(of the segment) parallel to the base (of the segment) ai aro tas Topas 

éxt trav AZ dyouevar rapa tav AE, or simply ai amd ras rouds. Once 

also the regular phrase drawn ordinate-wise tetaypévws Katyypnevn 1S 

used to describe an ordinate, as in Apollonius. 

The hyperbola. 

What we call the asymptotes (ai dovurrwro in Apollonius) are 

in Archimedes the lines (approaching) nearest to the section of the 

obtuse-angled cone ai éyyrota Tas Tod duBdvywviov Kwvov To_ASs. 

The centre is not described as such, but it is the point at which 

the lines nearest (to the curve) meet 76 capeiov, Kaf 6 ai eyyra 
, 

OUPTUTTOVTL, 

This 1s a property of the sections of obtuse-angled cones todro yap 

éorw év tals Tod duBAvywviov Kwvov Touals cUpTTWmA. 

The ellipse. 

The major and minor axes are the greater and lesser diameters 
peilov and é\doowv Sidmerpos. Let the greater diameter be AT, 
dtdpetpos 5€ (adtas) & pev peilov ~otw ef ds 72 AT. The rectangle 
contained by the diameters (axes) 76 Teptexopevov brd Tav Siaperpwv. 
One axis is called conjugate (cvfvyjs) to the other: thus let the 
straight line N be equal to half of the other diameter which is 
conjugate to AB, & 8? N etOcta ica éorw TE Nuuoeia Tas Erepas Siapérpor, 
a& éore cvdvyis 4 AB, 

The centre is here xévtpov. 

PeChs Apollonius of Perga, pp. xxiv, xxy. 
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Conoids and Spheroids, 

There is a remarkable similarity between the language in which 

Archimedes describes the genesis of his solids of revolution and that 

used by Euclid in defining the sphere. Thus Euclid says: when, the 

diameter of a semicircle remaining fiwed, the semicircle revolves and 

returns to the same position from which it began to move, the included 

Jigure is a sphere &paipa éorww, dtav yuixvkdlov pevovons THs Siawérpov 

meprevexOev TO yuixvKAvoy eis TO adTd Taw aroKkatactaby, bev HpEaTo 

Pepecbar, 7d weprnpbev cx#ua; and he proceeds to state that the 

axis of the sphere is the fixed straight line about which the semicircle 

turns agwv dé THs ohaipas éoriv n péevovea Weta, Tepl yy TO HuLKUKALOV 

otpéepera. Compare with this e.g. Archimedes’ definition of the 

right-angled conoid (paraboloid of revolution): 7f a section of a 

right-angled cone, with its diameter (axis) remaining fixed, revolves 

and returns to the position from which it started, the figure included 

by the section of the right-angled cone is called a right-angled conoid, 

and its axis is defined as the diameter which has remained fixed, 

€l Ka 6pGoywviov KOVOU TOMA pevovoas TOS dtaprerpov eprevexeioa. 

aroxatactaby madw, lev dppacev, TO wepradbey cynwa bd Tas TOD 

dpHoywviov Kwdvov Topas dpHoywviov Kwvoedes Karefoba1, Kal a€ove. 

pev avTod Tav pepevaxodoay Oudpetpov KaAcioGa1, and it will be seen 

that the several phrases used are practically identical with those of 

Euclid, except that dpyacev takes the place of npéatro pépecOar; and 

even the latter phrase occurs in Archimedes’ description of the 

genesis of the spiral later on. 

The words conoid kwvoeadés (oxjua) and spheroid odaipoedes 

(cxjya) are simply adapted from xévos and c¢aipa, meaning that 

the respective figures have the appearance (etdos) of, or resemble, 

cones and spheres; and in this respect the names are perhaps more 

satisfactory than paraboloid, hyperboloid and ellipsoid, which can 

only be said to resemble the respective conics in a different sense. 

But when xwvoedés is qualified by the adjective right-angled 

épHoyaviov to denote the paraboloid of revolution, and by apfrv- 
ysviov obtuse-angled to denote the hyperboloid of revolution, the 

expressions are less logical, as the solids do not resemble riyht- 

angled and obtuse-angled cones respectively; in fact, since the 

angle between the asymptotes of the generating hyperbola may be 

acute, a hyperboloid of revolution would in that case more resemble 

an acute-angled cone. The terms right-angled and obtuse-angled 
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were merely transferred to the conoids from the names for the 

respective conics without any more thought of their meaning. 

It is unnecessary to give separately the definition of each 

conoid and spheroid; the phraseology is in all cases the same 

as that given above for the paraboloid. But it may be remarked 

that Archimedes does not mention the conjugate axis of a hyperbola 

or the figure obtained by causing a hyperbola to revolve about that 

axis; the conjugate axis of a hyperbola first appears in Apollonius, 

who was apparently the first to conceive of the two branches of a 

hyperbola as one curve. Thus there is only one obtuse-angled 

conoid in Archimedes, whereas there are two kinds of spheroids 

according as the revolution takes place about the greater diameter 

(axis) or lesser diameter of the generating section of an acute- 

angled cone (ellipse); the spheroid is in the former case oblong 

(mapapakes odapoeidés) and in the latter case flat (émurdary 

opatpoeidés). 

A special feature is, however, to be observed in the description 

of the obtuse-angled conoid (hyperboloid of revolution), namely that 

the asymptotes of the hyperbola are supposed to revolve about the 

axis at the same time as the curve, and Archimedes explains that 

they will include an isosceles cone (kdvov icooxedea repiiaovvtat), 

which he thereupon defines as the cone enveloping the conoid 

(weptexwv 7d Kwvoedés). Also in a spheroid the term diameter 

(Suderpos) is appropriated to the straight line drawn through 

the centre at right angles to the avis (a 8a tod Kévtpov Tor dpbas 

dyonéva TO agovr). The centre of a spheroid is the middle point of 

the avis td péoov tod a€ovos. 

The following terms are used of all the conoids and spheroids. 

The verte (kopudy) is the point at which the axis meets the surface rd 

gapetov, Kal? 6 arrérar 6 agwv tas émipaveias, the spheroid having of 

course two vertices. A segment (tudua) is a part cut off by a plane, 

and the base (Gdous) of the segment is defined as the plane ( figure) 

imeluded by the section of the conoid (or spheroid) in the cutting 
plane 76 érimedov 10 repthapOev ixd Tas TOD Kwvoedéos (or odarpoeidéos) 

Topas ev TH drrotéuvovts emumédw. The vertex of a segment is the point 
at whach the tangent plane parallel to the base of the segment meets 
the surface, 75 capetov, Kal 8 amrérar tO éxireSov 1d erupavtov (tod 
kovoeidéos). The amis (agwv) of a segment is differently defined for 
the three surfaces ; (a) in the paraboloid it is the straight line cut off 
within the segment from the line drawn through the vertex of the 
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segment parallel to the amis of the conoid & évarodadbeian cibeia ev 76 

THdpate. Grd Tas aybeioas dua Tas Kopuypas Tod Tpdparos mapa Tov 

d£ova Tod Kwvoedéos, (b) in the hyperboloid it is the straight line cut 

off within the segment from the line drawn through the vertex of the 

segment and the vertex of the cone enveloping the conoid dro tas 

axGeicas dia Tas Kopupas Tod Tudpatos Kal Tas Kopudds Tod Kwvov TOD 

TeEplexovTos TO Kwvoedes, (¢) in the spheroid it is the part similarly 

cut off from the straight line joining the vertices of the two segments 

into which the base divides the spheroid, dé tas eifefas tas tas 

Kopudas aitav (trav tuanatwv) éemevyvvoicas. 

Archimedes does not use the word centre with respect to the 

hyperboloid of revolution, but calls the centre the vertex of the 

enveloping cone. Also the axis of a hyperboloid or a segment is 

only that part of it which is within the surface. The distance 

between the vertex of the hyperboloid or segment and the vertex 

of the enveloping cone is the line adjacent to the axis & moteotca 

T® a€ovt. 

The following are miscellaneous expressions. Zhe part inter- 

cepted within the conoid of the intersection of the planes a évaro- 

Aadbecioa ev TE kwvoedel Tas yevopévas Topas TAY éruréduv, (the plane) 

will have cut the spheroid through its axis tetpaxos éooettar 70 

odhaipoedes dia tod a€ovos, so that the section it makes will be a 

conic section Gote Tav Topav romnoe: Kwvov Tomar, let two segments be 

cut off in any manner aroretpacbw dio tyapata ws ervxe or by 

planes drawn in any manner érirédois brwcoiv aypévors. 

Half the spheroid 76 Gpiceov tod odapoedéos, half the line 

joining the vertices of the segments (of a spheroid), i.e. what we should 

call a semi-diameter, 4 quicéa aitas tas éxilevyvvovuas Tas Kopupas 
~ o: 

TOV THAULATWV. 

The spiral. 

We have already had, in the conoids and spheroids, instances of 

the evolution of figures by the motion of curves about an axis. The 

same sort of motion is used for the construction of solid figures 

inscribed in and circumscribed about a sphere, a circle and an 

inscribed or circumscribed polygon being made to revolve about 

a diameter passing through an angular point of the polygon and 

dividing it and the circle symmetrically. In this case, in Archimedes’ 

phrase, the angular points of the polygon will move along the cvrewm- 

Serences of circles, ai ywviar xara KUkXwv trepibeperdv evexOqoovrar (or 
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oicOnoovrat) and the sides will move on certain cones, or on the surface 

of @ cone Kara Twev Kovev évexOjoovTal OY KAT" éxidaveias Kwvov ; and 

sometimes the angular points or the points of contact of the sides of 

a circumscribed polygon are said to describe circles ypapovet xvxdovs. 

The solid figure so formed is 75 yevnbev orepedy oxHpa, and let the 

sphere by its revolution make a figure mrepievexGcioa 4 ohatpa TotetTw 

oXAMA Te. 

For the construction of the spiral, however, we have a new 

element introduced, that of time, and we have two different uniform 

motions combined; if a straight line in a plane turn uniformly 

about one extremity which remains fixed, and return to the position 

from which it started and if, at the same time as the line is revolving, 

a point move at a uniform rate along the line starting from the fixed 

extremity, the point will desoribe a spiral in the plane, <i xa ebfeia...€v 

érimédw...evovtos Tod érépov mépatos aitas icoraxéws meprevexbeioa 

droxatactabj. radw, dbev appacer, ana S€ Ta ypappa Tepiayoueva 

hepytar Te capetov ivotaxéws aitd éavT@ Kata Tas edOeias apSapevov aro 

TOD MEVOVTOS TEpatos, TO Tapelov EAiKa ypawer ev TH ériTédu., 

The spiral (described) in the first, second, or any turn is & eg a év 

Ta mpuwra, devrépa, or droigoty Tepipopa yeypaymeva, and the turns 

other than any particular ones are the other spirals at adXau €Aukes. 

The distance traversed by the point along the line in any time is 

é eddela a SiavvcGecioa, and the times in which the point moved over the 

distances ot xpévo1, év ols TO capelov Tas ypappas eropevOn ; in the time 

in which the revolving line reaches AT from AB, év & xpovw & Tepiayouéva 

ypappa ard Tas AB él trav AT dduxvetrac. 

The oragin of the spiral is dpya tas €dixos, the initial line dpa tas 

mepipopas. The distance described by the point along the line in 

the first complete revolution is ei@eta zpwra (first distance), that 

described during the second revolution the second distance edOeta 

devrépa, and so on, the distances being called by the number of the 

revolutions duwvipus tais Tepupopais. The first area, xwplov mparov, 
is the area bounded by the spiral described in the first revolution and 
by the ‘furst distance’ rd xwpiov rd reprhapOev b76 Te Tas Eikos Tas ev 

TG Tpura. Tepipopa ypapeloas Kat ras ebOelas, & éorwv mpwta; the second 
area is that bounded by the spiral in the second turn and the ‘second 

7 ? . . . distance,’ and so on. The area added by the spiral in any turn is 76 
/ \ nw ¢ Xwplov 70 rotiAadbey bd tas edukos ev tut Tepipopa. 
The first circle, kixhos mpdros, is the circle described with the 

a 7 ? * AD . : first distance’ as radius and the origin as centre, the second circle 
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that with the origin as centre and twice the ‘first distance’ as 
radius, and so on. 

Together with as many times the whole of the circumference of the 
circle as (is represented by) the number less by one than (that of ) 

the revolutions pel odas Tas Tod KiKhov mepipepelas TooavTdKis Lap- 

Bavopévas, ogos éotiv 6 évi —AKaoowy apiuds Tav wepipopay, the circle 

called by the number corresponding to that of the revolutions 6 KiKXos 

6 Kata TOV adTov apiOov Neyopevos Tats mepupopais. 

With reference to any radius vector, ‘the side which 3 is in the 

direction of the revolution is forward 14 mpoayovpeva, the other 

backward rau éromeva. 

Tangents, etc. 

Though the word arroua: is sometimes used in Archimedes of a 

line touching a curve, its general meaning is not to touch but simply 

to meet; e.g. the axis of a conoid or spheroid meets (amrerar) the 

surface in the vertex. (The word is also often used elsewhere than 

in Archimedes of points lying on a locus; e.g. in Pappus, p. 664, the 

point will lie on a straight line given in position aperar 7d onpetov 

Gécer Sedopevys €dOeias.) 

To touch a curve or surface is generally épartec Oar or érupavew 

(with gen.). A tangent is éparropevyn or éxupatovoa (sc. edfeta) and 

a tangent plane érufpatov érimedov. Let tangents be drawn to the circle 

ABI, tod ABT kixXovu éharropevar 7xGwcav; if straight lines be drawn 

touching the circles éov axOdciv tives erupadvovoo tav Kikrov. The 

full phrase of touching without cutting is sometimes found in 

Archimedes; if a plane touch (any of) the conoidal figures 

without cutting the conoid & xa trav Kwvoedéwv oxynpatwv émiredov 

eharrytar pn téuvov TO Kwvoedes. The simple word yavew is 

occasionally used (participially), the tangent planes ta érimeda ta 

Wavovra. 

To touch at a point is expressed by xaré (with acc.) ; the points 

at which the sides...towch (or meet) the circle onpeia, xaf & arrovrac 

Tod KvKAov ai wXevpai.... Let them touch the circle at the middle 

points of the circumferences cut off by the sides of the inscribed 

polygon érujavérwcay tod KiKhov Kati péoa Tov mepipeperdv THY 

dmorepvopevov id Tod eyyeypappévov Torvydvou meupar. 

The distinction between érwfavew and drropa is well brought 

out in the following sentence; but that the planes touching the 

spheroid meet its surface at one point only we shall prove ori dé 
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ra erupatovra énlreda Tod oparpoerdéos Kal év povov amTovTal capelov 

ras éripaveias airod deLodpes. 

The point of contact n apy. 

Tangents drawn from (a point) éypévar amd; we find also the 

elliptical expression dw rot & éfarréobw 7 OFT, let OEI be the 
=) tangent from =, where, in the particular case, & is on the circle. 

Constructions. 

The richness of the Greek language in expressions for con- 

structions is forcibly illustrated by the variety of words which 

may be used (with different shades of meaning) for drawing a 

line. Thus we have in the first place ayw and the compounds 

dudéyw (of drawing a line through a figure, with <is or év following, 

of producing a plane beyond a figure, or of drawing a line im a 

plane), xarayw (used of drawing an ordinate down from a point on 

a conic), mpoodyw (of drawing a line to meet another). As an 

alternative to mpocayw, zpocBurdw is also used; and zpoorirrw 

may take the place of the passive of either verb. To produce is 

éxBaddw, and the same word is also used of a plane drawn through a 

point or through a straight line; an alternative for the passive is 

supplied by éxrimtw. Moreover zpdckewar is an alternative word 

for being produced (literally being added). 

"Tn the vast majority of cases constructions are expressed by the 

elegant use of the perfect imperative passive (with which may be 

classed such forms as yeyovérw from yiyvouo, éotw from eciui, and 

ke(oOw from xeipor), or occasionally the aorist imperative passive. 

The great variety of the forms used will be understood from the 

following specimens. Let BI’ be made (or supposed) equal to A, 

keioOw TO A ioov 76 BY; let rt be drawn HYG, let a straight line be 

drawn wm it (a chord of a circle) duyOw tis is aitov edOeta, let KM be 

drawn equal to... ton KatiyOw 7 KM, let it be joined éreledyOu¥ let 

KA be drawn to meet rpooBeBryjobw 7 KA, let them be produced 

exBeBAjoOucay, suppose them found ebpyobwcar, let a circle be set owt 

éxxeiaOw KvKXos, let it be taken cihjpOw, let K, H be taken éotwoav 

<ihnppevar ai K, H, let a circle W be taken dehdhOw xvxdos ev & 70 W, let 
ut be cut retpno Ow, let it be divided Svarpyjobw (Sinpyobw) ; let one cone be 
cut by a plane parallel to the base and produce the section EZ, tunOirw 6 
ETEPOS KOVOS eruTedw rapahdyrAw TH Pacer Kat roveirw tounv tHv EZ, let 
TZ be cut off arohehadbw & TZ; let (such an angle) be left and let it 
be NHT, AcdeihOw kat éorw x) vd NHI, let a figure be made yeyevno Ow 
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oxnua, let the sector be made éorw yeyevnuévos 6 Topmeds, let cones be 

described on the circles (as bases) avayeypapOwoav amd rdv KiKdwv 

KOVOL, GTO TOD KUKAOV KOVvoS éoTw, let it be inscribed or circumscribed 

eyyeypadbw (or éyyeypaupévov eotw), mepryeypadOw ; let an area (equal 

to that) of AB be applied to AH, rapaBeBdjoOw rapa trav AH 75 yxwplov 

tod AB; let aw segment of a circle be described on @K, émt ras OK 

KvKAov Tunpa épertacbe, let the circle be completed avarerAnpdcbw 5 

KvkXos, let NE (a parallelogram) be completed cuprerdypicbw 76 NE, 

let it be made reroijoOa, let the rest of the construction be the same as 

before ra addXa Kateckevacbw Tov avTov TpdTov Tots mporepov. Suppose 

ut done yeyoverw. 

Another method is to use the passive imperative of voéw (Jet it be 

conceived). Let straight lines be conceived to be drawn voeicbwcav 

eveiar yypévar, let the sphere be conceived to be cut voeicOw 4 odaipa 

tetpnuevyn, let a figure (generated) from the inscribed polygon be 

conceived as inscribed in the sphere ard rod rodvywvov tod éyypado- 

pévov vocicOw Tu eis THY Thaipav eyypadéey cyjua. Sometimes the 

participle for drawn is left out; thus az’ atrod voeiobw émidavera let 

a surface be conceived (generated) from it. 

The active is much more rarely used; but we find (1) édy with 

subjunctive, if we cut éav téuwpev, of we draw éav ayaywpev, if you 

produce éav ékBadys ; (2) the participle, 2 7s possible to inscribe...and 

(ultimately) to leave Svvardv éotw éyypadovra...r<irew, if we con- 

tinually circwmscribe polygons, bisecting the remaining circumferences 

and drawing tangents, we shall (ultimately) leave det 8) reprypadovres 

Todbywva. dixa Teuvomevov TAY TEpirerTOMeVOY TEpLPEPELOV Kal GyojLévev 

éharrtopevwv Aeiomev, it 28 possible, if we take the area..., to wmscribe 

AaBovra (or AapBavovra) 75 xwpiov...dvvarov éotw...eyypdiat; (3) the 

first person singular, 7 take two straight lines opBavw dvo edGeias, 

I took a straight line daBov twa dOciav ; I draw ©M from ® parallel 

to AZ, a&yw dé 700 © trav @M wapaddAnAov ra AZ, having drawn TK 

perpendicular, I cut off AK equal to TK ayaydv xdberov trav TK ra 

TK toay arédaBov trav AK, I inscribed a solid figure...and circwm- 

scribed another évéypauya oxjpa orepedv...xal addo mepréypawa. 

The genitive of the passive participle is used absolutely, 

cipebévtos 5 it being supposed found, eyypapévros dy (the figure) 

being imscribed. 

To make a figure similar to one (and equal to another) bpowcar, 

to find experimentally épyavixas AaBeiv, to cut into unequal parts «is 
la / 

aviTa TELVELY. 
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Operations (addition, subtraction, etc.). . 

1. Addition, and sums, of magnitudes. 

To add is rpooriOyu, for the passive of which rpecxeyat is often 

used; thus one segment being added évos tpdpatos rotitebevtos, the 

added (straight line) & rortuceipéva, let the common HA, ZV be added 

Kowal mpooxeicOwoav ai HA, ZI; the words are generally followed 

by zpés (with acc. of the thing added ¢o), but sometimes by the 

dative, that to which the addition was made @ roreréOy. 

For being added together we have ovvrifecGa1; thus being added 

to itself. cvvt Béuevov aitd éavtd, added together és 76 att ovvtebevta, 

added to itself (continually) érvrvvtiéwevov éEavte. 

Sums are commonly expressed for two magnitudes by ocvvapydo- 

tepos used in the following different ways; the swm of BA, AA 

ovvapdotepos 7 BAA, the sum of AT, T'B cvvapdorepos ny AT, TB, the 

sum of the area and the circle ro ovvapdotepov 6 Te KvKos Kal TO 

xwplov. Agam for swms in general we have such expressions as the 

line which is equal to both the radii ny ton apydorépas tats ek tod 

Kevtpov, the line equal to (the sum of) all the lines joining y ion 

macais Tats émilevyvvovaas. Also all the circles oi wavtes KiKXor 

means the swum of all the circles; and ovyxevrar éx is used for is 

equal to the sum of (two other magnitudes). 

To denote plus pera (with gen.) and ovv are used ; together with 

the bases peta. tov Bacewv, together with half the base of the segment 

adv TH Yuioeia THS TOD TuNnpmatos Baoews; Te and Kai also express the 

same thing, and the participle of rpocAayBavw gives another way of 

describing having something added to it; thus the squares on (all) 

the lines equal to the greatest together with the square on the greatest... 

is Ta TeTpGywva TA Ard Tay icav TA peyioTa ToTWWapBavovta TO TE amd 

TAS peyloTas TETPAyWVOV.... 

2. Subtraction and differences. 

To subtract from is apampeiv ard ; if (the rhombus) be conceived as 

taken away édav vonb4y adypnuévos, let the segments be subtracted 

apapelévrov To Tyypara. Terms common to each side in an 

equation are Kowa ; the squares are common to both (sides) Kowd evr 

éxarépwv 7a tTetpaywva. Then let the common area be subtracted 
is kowov adypycOw 76 ywpiov, and so on; the remainder is denoted 
by the adjective Aourds, e.g. the conical surface remaining our) 7% 
KwviK) emupavera. 

The difference or eacess is trepoyxy, or more fully the eacess by 



THE TERMINOLOGY OF ARCHIMEDES. elxxvil 

. Which (one magnitude) exceeds (another) txrepox, % trepéxe... or 

Umepoxa, d peiLwv éori.... The eacess is also expressed by means of 

the verb vmepéxew alone ; let the difference by which the said triangles 

exceed the triangle AAT be ®, & dy vrepéxer Ta cipnuéva tpiywva Tod 

AAT tprydvov ect 76 ®, to exceed by less than the eacess of the cone 

W over the half of the spheroid srepexew eAdooov 7} @ (or GAtkw) 

Umepéxer 6 VY KGvos Tod juices Tod cpaipoeidéos (where & vrepéxer may 

also be omitted). Again the eacess may be @ peiLov éori. The 

opposite to vaepexer is Aeirerar (with gen.) 

Equal to twice a certain excess toa dvatv vaepoxais, with which 

equal to one excess, toa pid vrepoxa, is contrasted. 

The following sentence practically states the equivalent of an 

algebraical equation ; the rectangle under ZH, BA eaceeds the rect- 

angle under ZE, EA by the (swm of) the rectangle contained by BA, 

EH and the rectangle under ZE, BE, vrepéxer 76 vd tav ZH, BA tod 

tro tav ZE, EA 7@ te rd trav BA, EH repiexopévw kai 7 rd tay ZE, 

EE. Similarly twice PH together with Il is (equal to) the sum of 

SP, PII, dvo pev at PH pera tras WX cvvapddrepds éeorw & SPI. 

3. Multiplication. 

To multiply is rohAaTAacralw; multiply one another (of numbers) 

ro\AarAacalew dAdddovs ; to multiply by a number is expressed by 

the dative ; let A be multiplied by © reroAXardaciacbw 6 A 76 ®. 

Multiplied into is sometimes émié (with acc.); thus the rectangle 

HO, A into @A (ie. a solid figure) is 7d dx tév HO, OA emi 

Thy OA. 

4. Dwision. 

To divide S.aipeiv ; let it be divided into three equal parts at the 

points K, ®@, SinpjoOw cis tpia toa kata Ta K, @ capeta; to be divisible 

by petpetobar vre. 

Proportions. 

A ratio is Aéyos, proportional is expressed by the phrase in 

proportion dvddoyov, and a proportion is dvadoyia. We find in 

Archimedes some uses of the verb Aéyw which seem to throw light 

on the definition found in Euclid of the relation or ratio between 

two magnitudes. One passage (On Conoids and Spheroids, Prop. 1) 

says if the terms similarly placed have, two and two, the sume ratio 

and the first magnitudes are taken in relation to some other mag- 

nitudes in any ratios whatever «i xa Kata dbo Tov abrov Adyov EXwvTe 

H, A, m 
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ra Spotws teraypéva, eyyrar S 7a mpdta peyefea moti twa GAXa 

peyeea...ev NO-yous drovoicorv, if A, B... be in relation to N, Ee... Out 

Z, be not in relation to anything (i.e. has no term corresponding to 

it) ef xa... ra pv A, B,... Aeysvrar wort 7a N, By... 70 dé Z prde 

wo? ev Neynra. ‘ 

A mean proportional between is éon avadoyov Tav..., 18 a mean 

proportional between pecov Oyov éxeu THS...KaL THS..., two mean pro- 

portionals S80 pécou avadoyov with or without xara 7o cuvexes mm 

continued proportion. 

If three straight lines be proportional ev tpeis ebOeiar avadoyov 

dat, a fourth proportional retapta avadoyov, if four straight lines be 

proportional in continued proportion €i Ka Técoapes ypappat avddoyov 

éwvte ev Ta ovvexe avadoyia, at the point dividing (the line) in the 

said proportion Kata Tov dvadoyov Toway TE eipymeva. 

The ratio of one straight line to another is e.g. 0 THs PA mpos AX 

Aoyos or 6 (Adyos), dv exer 7 PA pds ryv AX ; the ratio of the bases 6 

tov Baciwv Adyos; has the rativ of 5 to 2 Noyov exer, dv wévte pds 

dvo. 

For, having the same ratio as we find the following constructions. 

Have the same ratio to one another as the bases tov avrov éxovte Aoyov 

mot dAAdAous tats Baceow, as the squares on the radi dv at éx tdv 

Kevtpwv duvane; TA has to PZ the (linear) ratio which the square on 

TA has to the square on H, dv éxe Aoyov 7 TA mpos tiv H dvuvaper, 

Tovtov zxer Tov Adyov 7 TA pos PZ pace. Ls dwided in the same 

ratio «is Tov avrov Aoyov TétunTaL, Or Simply duotws ; will divide the 

diameter in the proportion of the successive odd numbers, unity 

corresponding to the (part) adjacent to the vertex of the segment rav 

dudpreTpov Temodvte eis Tovs Tav ESAs TEepicoav apLOnav Aoyous, €v0s 

Neyouévov roti TA Kopupa Tod Tuaparos. 

To have a less (or greater) ratio than is éxew dyov eAacoova (or 

peilova) with the genitive of the second ratio or a phrase introduced 

by 7; to have @ less ratio than the greater magnitude has to the less, 

exe Adyov éhaacova 7) TO werCov péyeOos mpds 76 EAaccov. 

For duplicate, triplicate ete. ratios we have the following 
expressions: has the triplicate ratio of the same ratio tpirdaciova 
Adyov €xet Tod avrod Adyov, has the duplicate ratio of BA to AK 
durAaciova Adyov éxeu rep ) HA mpos AK, are in the triplicate ratio 
of the diameters in the bases év tpitdaciove AOyw cial tdv ev tats 
Bdceor diopérpwv, sesquialterate ratio rudd0s déyos. With these 
expressions must be contrasted the use of double, quadruple ete. 
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ratio in the sense of a simple multiple by 2, 4 etc, eg. if any 

number of areas be placed in order, each being four times the neat «i 

Ka Xwpia TeHéwvte ffs Srocaoty ev TO TeTparhaciovt Oyo. 

The ordinary expression for a proportion is as A is to B so is T 

to A, ws 7 A mpos THV B, otrws 7) I xpds tiv A. Let AB be made so 
that AE is to TE as the sum of @A, AE is to AE, reroujobw, os 

ouwvau.potepos 7 OA, AE zpos tiv AE, ovtws 7 AE zpos TE. The 

antecedents are ta yyovpmeva, the consequents ta érdpeva. 

For reciprocally proportional the parts of dvrurérova are used ; 

the bases are reciprocally proportional to the heights avrimerdvOacw 

at Baceas tats vWeow, to be reciprocally in the same proportion 

avrirerovOéuev Kata tov adtov odyov. 

A ratio compounded of is doyos cvvyypevos (or cvyxeipevos) ek TE 

TOv...Kal TOv...; the ratio of PA to AX is equal to that compounded of 

6 THs PA zpos AX Adyos cuvyrta éx.... Two other expressions for 

compounded ratios are 6 tod ard A® mpos to azo BO kai 6 (or 

mpocAaBav tov) ras A® zpos OB, the ratio of the square on A® to 

the square on BO multiplied by the ratio of A®@ to @B. 

The technical terms for transforming such a proportion as 

a:b=c:d are as follows: 

1. évadAaé alternately (usually called permutando or alternando) 

means transforming the proportion into a:c=6: d. 

2. avaradw reversely (usually invertendo), b:a=d :c. 

3. atvOecrs Adyou is composition of a ratio by which the ratio 

a:b becomes a+6:6. The corresponding Greek term to com- 

ponendo is cvvOév7, which means no doubt literally “to one who 

has compounded,” i.e. “if we compound,” the ratios. Thus ovv@évre 

denotes the inference that a+b:b=c+d:d. kata cvvOecw is also 

used in the same sense by Archimedes. 

4, 8vatpeois Adyov signifies the division of w ratio in the sense of 

separation or subtraction by which a : b becomes a—b: 6. Similarly 

SueAdvte (or Kata dvaipeov) denotes the inference that a— N= 

c—d:d. The translation dividendo is therefore somewhat mis- 

leading. 
, e 2 oe t 

5. avacrpopiy AGyov conversion of a ratio and avacrpejavre 

correspond respectively to the ratio a :4—b and to the inference 

that a:a—b=c:c—d. 
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6. 8v cov ex aequali (sc. distantia) is applied e.g. to the 

inference from the proportions 

Gio ce A ee— Ash Uy) etc 

that G20 naw), 

When this dividing-out of ratios takes place between proportions 

with corresponding terms placed crosswise, it is described as 8’ icou 

év TH TeTapaypevn avadoyia, ex aequali in disturbed proportion or 

dvopoiws tév hoywv tetaypevov the ratios being dissimilarly placed ; 

. this is the case e.g. when we have two proportions 

Gh? We IB 3 Gr 

iy wes Al 2 1B. 

’ and we infer that Gic=A we. 

Arithmetical terms. 

Whole multiples of any magnitude are generally described as the 

double of, the triple of etc., 6 diaAdovos, 6 tprrdacwos k.7.A., following 

the gender of the particular magnitude; thus the (surface which is) 

Sour times the greatest circle in the sphere 74 tetpardacia Tod peyiotou 

KvkAov Tov év TH opaipa ; five times the swum of AB, BE together with 

ten times the sum of TB, BA, & revrarAacia cvvapgorépov tas AB, BE 

peta Tas SexarAacias cvvaydorépov Tas TB, BA. The same multiple 

as tocavtarAaciwv...dcatAaciov éori, Or ioakis toAAaTAaciwv...Kal. 

The general word for a multiple of is toAXatAadowos or toAAaTAaciwv, 

which may be qualified by any expression denoting the number of 

times multiplied ; thus multiplied by the same number mrodd\atAactos 

TO avTd apiOuad, multiples according to the successive numbers 

modAathacia Kata Tovs é&Hs apiOuors. 

Another method is to use the adverbial forms twice &és, thrice 

tpis, etc., which are either followed by the nominative, e.g. fevice EA 

dis 7 EA, or constructed with a participle, e.g. twice taken Sis Nap- 

Bavopevos or dis eipypévos ; together with twice the whole circumference 

of the circle we? Ohas tas Tod KiKroV Tepiepelas Sis Aap Pavopévas. 

Similarly the same number of times (the said circwmference) as is 

expressed by the number one less than (that of) the revolutions 

tocavTaKis AapBavopevas, doos eotw 6 él eXdoowv apios Tav 

mepipopav. An interesting phrase is the following, as many times as 
the line DA ts contained (literally added together) in AA, so many times 

let the time ZH be contained in the time AH, bcdxts ovykeirar ad DA 
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yeappa ev rg AA, tooavtdkis cvyKeicbw 6 xpdvos 6 ZH év 7d xpovw 76 
AH. 

Submultiples are denoted by the ordinal number followed by 

Hépos ; one-seventh is €Bdouov p€pos and so on, one-half being however 

juwovs. When the denominator is a large number, a circumlocutory 

phrase is used ; thus less than ~},th part of a right angle édartov 7 

diaipeeioas tas dpOas cis péd TovTwv ev pépos. 

When the numerator of a fraction is not unity, it is expressed 

by the ordinal number, and the denominator by a compound 

substantive denoting such and such a submultiple; e.g. two-thirds 

dv0 tpitapopia, three-fifths tpia weurrapopia. 

There are two improper fractions which have special names, 

thus one-and-a-half of is yjpiodos, one-and-a-third of érirpitos. 

Where a number is partly integral and partly fractional, the integer 

is first stated and the fraction follows introduced by xat éru or kai 

and besides. The phrases used to express the fact that the eir- 

cumference of a circle is less than 34 but greater than 34% times its 

diameter deserve special notice ; (1) wavrds KikAov 7 Tepimetpos THs 

diaperpov tpirAaciwv éori, Kat ere brepéxer CAadooov pev 7 EBdouw j€per 

THs Suaperpov, peilove 5¢ 7 déxa EBdSounkooropovors, and (2) tpitAaciwv 

éort Kal éXadooovn pev 7) EBdopw péper, peiove 6&7} U 0a” peilov. We 

also have the phrase for the first part €Aacowy 7) tpitAaciwy Kal 

EBdouw pepe peilov. 

To measure petpetv, common measure Kowov pétpov, commensurable, 

incommensurable cippetpos, GovppeTpos. 

Mechanical terms. 

Mechanics ti pnyavixa, weight Bapos; centre of gravity KEVTPOV 

tov Bapeos with another genitive of the body or magnitude; in the 

plural we have either ra xévtpa atrav tod Bapeos or Ta KevTpa TaV 

Bapéwv. xévrpov is also used alone. 

A lever Cuyds or Giyov, the horizon 6 bpilwv ; im a vertical line is 

represented by perpendicularly xara xaberov, thus the point of 

suspension and the centre of gravity of the body suspended are in a 

vertical line cata kdberov éote TO TE Tapelov TOD KpEacTOD Kal TO 

Kévtpov Tov Bapeos Tov Kpewapevov. Of suspension from or at é« or 

kata (with acc.) is used. Let the triangle be suspended from the 

points B, T, xpepacOw 76 tpiywvov ék tov B, TP capeiwv ; if the 

suspension of the triangle BAT at B, T be set free, and it be suspended 

at BE, the triangle remains in its position « xa tod BAT rprysvou 4 
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pev kata 7a B, T xpeuacis AvOg, Kata dé ro E xpepaoby, péver to 

Tpiywvov, ws vdv exe. 

To incline towards pérev emi (acc.); to be im equihbrium 

icopporetv, they will be in equilibrium with A held fast xatexopévov 

tod A isoppornoe, they will be in equilibrium at A (i.e. will balance 

about A) cata 7d A icoppornootvte; AB ws too great to balance T° 

peitov éor. 76 AB i dote icopporeiv 79 T. The adjective for am 

equilibrium is iooppemns ; let it be in equilibriwm with the triangle 

TAH, icopperés éorw 76 TAH tprysve. To balance at certain 

distances (from the point of support or the centre of gravity of a 

system) is dé twwv pakewv icopporeiv. 

Theorems, problems, etc. 

A theorem Oeopnyua (from Oewpety to investigate); a problem 

mpoBrnpa, with which the following expressions may be compared, 

the (questions) propounded concerning the figures ta mpoBeBrAnpuEva 

mept Tov oxnpatwv, these things are propounded for investigation 

mpoBadrr€rar tade Gewpnoor; also mpoxemar takes the place of the 

passive, which it was proposed (or required) to find orep mpoéKeto 

evpetv. 

Another similar word is ézirtayya, direction or requirement ; 

thus the theorems and durections necessary for the proofs of them ra 

Ocwpypara kat Ta emiTaypata Td Xpelav exovTa eis Tas Amodeklas adTar, 

in order that the requirement may be fulfilled drws yévytar tO émt- 

taxGev (or éritaypa). To satisfy the requirement is roveiv 76 éxitaypa 

(either e.g. of lines in a figure, or of the person solving the 

problem). 

After the setting out (ek#ec.s) in any proposition there follows 

the short statement of what it is required to prove or to do. In 

the former case (that of a theorem) Archimedes uses one of three 

expressions deuxréov wt is required to prove, eyw or apt 874 T assert 

or say; and in the second case (that of a problem) det 89 it ts 
required (to do so and so), 

In a problem the analysis dvadvois and synthesis otvOeorrs are 

distinguished, the latter being generally introduced with the words 

the synthesis of the problem will be as follows’ owreOjoerar 7d 

mpoBAnpa ovrws. The parts of the verb dvadvew are similarly 

used ; thus the analysis and synthesis of each of these ( problems) will 

be gwen at the end éxarepa S€ tavra emt téXe dvadvOnoeral Te Kal 
ouvteOnoetat, 
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A notable term in connexion with problems is the d:opiopds 
(determination), which means the determination of the limits within 

which a solution is possible*. If a solution is always possible, the 

problem does not involve a dtoptapos, oik exer diopicpov ; otherwise 

it does involve it, éyer duopurpov. 

Data and hypotheses. 
y 

For given some part of the verb d/dwps is used, generally the 

participle do6e/s, but sometimes dedou€évos and once or twice dddpevos. 

Let a circle be given b€d606w Kixdos, given two unequal magnitudes 

dvo0 peyeOav avicwy do6évtwv, each of the two lines TA, EZ is given 

éotiv dofeica éxatépa tév TA, EZ, the same ratio as the given one 

Aoyos 6 atros TO SoHevTt. Similar expressions are the assigned ratio 

6 TaxGels Adyos, the given area ro tporebev (or TpoKeipevov) Ywpiov. 

Given in position béoea simply (sc. dedop€v7). 

Of hypotheses the parts of the verb vaor(@euar and (for the 

passive) vroxear are used; with the same swppositions tav abrév 

vrokepevo, let the said swppositions be made vroxeicbw ra eipnpeva, 

we make these suppositions vrorbéneba ta0€. 

Where in a reductio ad absurdum the original hypothesis is 

referred to, and generally where an earlier step is quoted, the past 

tense of the verb is used ; but it was not (so) odk jv 8é, for it was less 

jv yop edacowv, they were proved equal aredeixOnoayv too, for this has 

been proved to be possible dedeixtar yap todro duvarov édv. Where a 

hypothesis is thus quoted, the past tense of vzdxepar has various 

constructions after it, (1) an adjective or participle, AZ, BH were 

supposed equal ica: vréxewto at AZ, BH, it is by hypothesis a tangent 

drékeito erupavovca, (2) an infinitive, for by hypothesis it does not 

cut iméxeito yap pa téuvewv, the ams is by hypothesis not at right 

angles to the parallel planes vréxeto 6 a€wv pa eipev dpOds moti ra 

mapahdaXa érireda, (3) the plane is supposed to have been drawn 

through the centre 70 érimedov vmdKertar dia TOD KévTpov axGaL. 

Supposing it fownd eipefevtos absolutely. Suppose it done 

yeyovéro. 

The usual idiomatic use of ei de yy after a negative statement 

may be mentioned ; it will not meet the surface in another point, 

otherwise... ob yap éiérar Kat GAAO capetov tas éripaveias: ei O€ 

i eee 

* Cf. Apollonius of Perga, p. 1xx, note. 
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Inferences, and adaptation to different cases. 

The usual equivalent for therefore is dpa; otv and rotivey are 

generally used in a somewhat weaker sense to mark the starting- 

point of an argument, thus ézei ody may be translated as since, then. 

Since is éret, because ditt. 

TOAXG padrAov much more then is apparently not used in Archi- 

medes, who has zoAA@ alone; thus much less then is the ratio of the 

circumscribed figure to the inscribed than that of K to H woAko@ 

apa To TEeprypadev mpos TO eyypapev eAdaoova Adyov éxer TOd, dv exer 4 

K zpos H. 

dua with the accusative is a common way of expressing the 

reason why; because the cone is isosceles da 15 ioooKeAH €tvar Tov 

xovov, for the same reason dia Taira. 

da with the genitive expresses the means by which a proposition 

is proved ; by means of the construction die tis KatacKevns, by the 

same means du tv abtav, by the same method ba Tod avtod Tpdrov., 

Whenever this is the case, the surface is greater orav tovto 7, 

peiluv yiverar  emipdvea..., if this is the case, the angle BA® ts 

equal..., ei d€ TodvTo, toa éotiv 4 b7d BA® ywvia..., which is the same 

thing as showing that... 6 radrév éore TG SetEat, Ort... 

Similarly for the sector dpoiws sé kal ért tod tomews, the proof 

is the same as (that used to show) that & aira drddeéis amep Kal ott, 

the proof that...is the same & atta darddekis evte kal didte..., the same 

argument holds for all rectilineal figures inscribed in the segments in 

the recognised manner (see p. 204) em ravtwv eifvypappwv tadv 

eyypadopevun és Ta Tuapata yvwpiws 6 aitds Mdyos ; it will be possible, 

having proved wt for a circle, to transfer the same argument in 

the case of the sector éorar ért Kvcdov deiEavta petayayeiv TOV GpoLtov 

Noyov Kai eri Tod Topéws ; the rest will be the same, but it will be the 

lesser of the diameters which will be intercepted within the spheroid 

(instead of the greater) ra pev adda ra abra eooeirar, Tav Sé Siapérpwv 

@ éhagowv éoceitar & évarodadbeioa ev TO chapoedet; it will make 

no difference whether...or...duoiaer Se oddév, €tre...€UTE.... 

Conclusions. 

The proposition is therefore obvious, or is proved Shrov obv éore 

(or dédexrar) 76 mporebeér ; similarly gavepdv ody éeorw, d eu de(Ear, 
4 a rs, . e 5 . 9 

and éde dé totro deifa. Which is absurd, or impossible drep drorov, 

or advvarov. 

A curious use of two negatives is contained in the following: 
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ovK apa OvK ete KevTpov Tod Bapeos ToD AEZ tprywvov 76 N capeiov. 

éorw apa, therefore tt is not possible that the point N should not be the 

centre of gravity of the triangle ABZ. It must therefore be so. 

Thus @ rhombus will have been formed éarar 8) yeyovds poufos ; 

two unequal straight lines have been found satisfying the requirement 
€ / IN: »” Ov Ma a »” lal in ear (- 

EUPYMEVAL ELOLY APA OVO EVVELAL AVLOOL TOLOVO AL TO € LTAY[LG. 

Direction, concavity, convexity. 

In the same direction ért ta aita, in the other direction ért 

Ta Erepa, concave in the same direction éri 7a. adta Koihy ; in the same 

direction as ért ta atta with the dative or éf a, thus in the same 

direction as the vertex of the cone ért ra aita Ta Tod Kwvov Kopvdé, 

drawn in the same direction as (that of) the convex side of it émi ra 

atta dyopévat, ep a evte Ta KupTa adtod. For on the same side of ént 

Ta avta is followed by the genitive, they fall on the same side of the 

line éri ta. adta rirtovar THS ypaypns. 

On each side of ef Exarepa (with gen.); on each side of the plane 

of the base ép Exarepa Tod émimédov THs Bacews. 

Miscellaneous. 

Property otprtwpa. Proceeding thus continually, ae rodro 

TOLOvVTES, Gel TovVTOV yevouevov, OY TovTov éENs ywouevov. In the 

elements év TH ororxewwioer. 

One special difference between our terminology and the Greek is 

that whereas we speak of any circle, any straight line and the like, 

the Greeks say every circle, every straight line, etc. Thus any 

pyramid is one third part of the prism with the same base as the 

pyramid and equal height raéca rupapis tpitov pépos éorl Tov mpio patos 

Tod Tav aitav Baow éexovros Ta mupapids Kat vos icov, TI define the 

diameter of any segment as S.petpov Kadéw ravtds Tyapatos. To 

exceed any assigned (magnitude) of those which are comparable with 

one another trepéxew Tmavtds tod mpotebévtos Tav mpdos GAAnAG 

Aeyopevenv. 

Another noteworthy difference is illustrated in the last sentence. 

The Greeks did not speak as we do of a@ given area, a given ratic 

etc., but of the given area, the given ratio, and the like. Thus /¢ is 

possible...to leave certain segments less than a given area Svvarov 

éotw...Aeirew Twa Tynpata, amep EoTar elagoova TOD TpoKEIpEevov 

xoplov ; to divide a given sphere by a plane so that the segments have 

to one another an assigned ratio trav d00etcav opaipav émimédw Tepeiv, 
lal / / a 

Wore TA TUduaTA avTas ToT aAAaXa TOV TAX GévTa AOYyoV ExELV. 

1315 NG ” 
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Magnitudes in arithmetical progression are said to exceed each 

other by an equal (amount) ; uf there be any number of magnitudes in 

arithmetical progression el xo. éwvtt peyélea brocactv Th tow GAAGAwV 

vmepexovta. The common difference is the excess imepoxa, and the 

terms collectively are spoken of as the magnitudes exceeding by the 

equal (difference) Ta T@ tow vrepéxovta. The least term is 76 €Adxuorov, 

the greatest term 75 péyotov. The sum of the terms is expressed by 

TavTaA Ta TO low VIrEpexovTa. 

Terms of a geometrical progression are simply im (continued) 

proportion avddoyov, the serves is then 9 avadoyia, the proportion, 

and a term of the series is tis tav év 74 aira avadoyia. Mumbers in 

geometrical progression beginning from unity are apiO.ol avadoyov 

amo povados. Let the term A of the progression be taken which 

is distant the same number of terms from © as A is distant from 

unity \ehapOw ék tas avadoyias 6 A aréxwv dd tod © toc ovrovus, doous 
c 2 \ V4 > / 6 A amd povados améxet. 
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ON THE SPHERE AND CYLINDER. 

BOOK I. 

‘“ ARCHIMEDES to Dositheus greeting. 

On a former occasion I sent you the investigations which 

I had up to that time completed, including the proofs, showing 

that any segment bounded by a straight line and a section of a 

right-angled cone [a parabola] is four-thirds of the triangle 

which has the same base with the segment and equal height. 

Since then certain theorems not hitherto demonstrated (ave- 

Aéy«Tov) have occurred to me, and I have worked out the proofs 

of them. They are these: first, that the surface of any sphere 
is four times its greatest circle (rod weyiorov KUKXov); next, 

that the surface of any segment of a sphere is equal to a circle 

whose radius (7 é« tod xévtpov) is equal to the straight line 

drawn from the vertex (ckopuv¢y) of the segment to the circum- 

ference of the circle which is the base of the segment; and, 

further, that any cylinder having its base equal to the greatest 

circle of those in the sphere, and height equal to the diameter 

of the sphere, is itself [7.e. in content] half as large again as the 

sphere, and its surface also [including its bases] is half as large 

again as the surface of the sphere. Now these properties were 

all along naturally inherent in the figures referred to (av7j 77 

pices TpovTipyev Tepi Ta cipnueva oxnpata), but remained 

unknown to those who were before my time engaged in the 

study of geometry. Having, however, now discovered that the 

properties are true of these figures, I cannot feel any hesitation 

HEA 
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in setting them side by side both with my former investiga- 

tions and with those of the theorems of Eudoxus on solids 

which are held to be most irrefragably established, namely, 

that any pyramid is one third part of the prism which has the 

same base with the pyramid and equal height, and that any 

cone is one third part of the cylinder which has the same 

base with the cone and equal height. For, though these 

properties also were naturally inherent in the figures all along, 

yet they were in fact unknown to all the many able geometers 

who lived before Eudoxus, and had not been observed by any 

one. \Now, showever; it will be open to those who possess the 

requisite ability to examine these discoveries of mine. They 

ought to have been published while Conon was still alive, 

for I should conceive that he would best have been able to 
grasp them and to pronounce upon them the appropriate 

verdict ; but, as I judge it well to communicate them to those 

who are conversant with mathematics, I send them to you with 

the proofs ES out, which it will be open to mathematicians 

to examine. » ), Farewell. 

I first set out the axioms* and the assumptions which I 

have used for the proofs of my propositions. 

DEFINITIONS. 

1. There are in a plane certain terminated bent lines 

(kapmvrAat ypapmal TeTEepacuévar)i, which either lie wholly on 

the same side of the straight lines joining their extremities, or 
have no part of them on the other side. 

2. I apply the term concave in the same direction 
to a line such that, if any two points on it are taken, either 

all the straight lines connecting the points fall on the same 

side of the line, or some fall on one and the same side while 

others fall on the line itself, but none on the other side. 

* Though the word used is déduara, the axioms” are more of the nature 

of definitions ; and in fact Eutocius in his notes speaks of them as such (8pou). 
t Under the term bent line Archimedes includes not only curved lines of 

continuous curvature, but lines made up of any number of lines which may be 

either straight or curved. 
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3. Similarly also there are certain terminated surfaces, not 
themselves being in a plane but having their extremities in a 
plane, and such that they will either be wholly on the same 
side of the plane containing their extremities, or have no part 
of them on the other side. 

4. I apply the term concave in the same direction 
to surfaces such that, if any two points on them are taken, the 
straight lines connecting the points either all fall on the same 
side of the surface, or some fall on one and the same side of 
it while some fall upon it, but none on the other side. 

5. I use the term solid sector, when a cone cuts a sphere, 

and has its apex at the centre of the sphere, to denote the 

figure comprehended by the surface of the cone and the surface 

of the sphere included within the cone. 

6. I apply the term solid rhombus, when two cones with 
the same base have their apices on opposite sides of the plane 

of the base in such a position that their axes lie in a straight 
line, to denote the solid figure made up of both the cones. 

ASSUMPTIONS. 

1. Of all lines which have the same extremities the straight 

line is the least*. 

* This well-known Archimedean assumption is scarcely, as it stands, a 

definition of a straight line, though Proclus says [p. 110 ed. Friedlein] “ Archi- 

medes defined (wpicaro) the straight line as the least of those [lines] which have 

the same extremities. For because, as Euclid’s definition says, é& tcov Ketrat rots 

ef éauris onpelo.s, it is in consequence the least of those which have the same 

extremities.” Proclus had just before [p. 109] explained Euclid’s definition, 

which, as will be seen, is different from the ordinary version given in our text- 

books; a straight line is not ‘‘that which lies evenly between its extreme points,” 

but ‘‘that which é£ toov rots é¢’ éaurijs onuelos keira.” The words of Proclus 

are, ‘He [Euclid] shows by means of this that the straight line alone [of all 

lines] occupies a distance (karéxew dudornua) equal to that between the points 

onit. For, as far as one of its points is removed from another, so great is the 

length (uéye0os) of the straight line of which the points are the extremities ; 

and this is the meaning of 76 é& tcov KeloOat Tots ép’ Eauriis onuetos. But, if you 

take two points on a circumference or any other line, the distance cut off 

between them along the line is greater than the interval separating them; and 

this is the case with every line except the straight line.” It appears then from 

this that Euclid’s definition should be understood in a sense very like that of 

1—2 
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2. Of other lines in a plane and having the same extremi- 

ties, [any two] such are unequal whenever both are concave in 

the same direction and one of them is either wholly included 

between the other and the straight line which has the same 

extremities with it, or is partly included by, and is partly 

common with, the other; and that [line] which is included is 

the lesser [of the two]. 

3. Similarly, of surfaces which have the same extremities, 

if those extremities are in a plane, the plane is the least [in 

area]. 

4. Of other surfaces with the same extremities, the ex- 

tremities being in a plane, [any two] such are unequal when- 
ever both are concave in the same direction and one surface 

is either wholly included between the other and the plane which 

has the same extremities with it, or is partly included by, and 

partly common with, the other; and that [surface] which is 
included is the lesser [of the two in area]. 

5. Further, of unequal lines, unequal surfaces, and unequal 

solids, the greater exceeds the less by such a magnitude as, 

when added to itself, can be made to exceed any assigned 

magnitude among those which are comparable with [it and 
with] one another*, 

These things being premised, if a polygon be inscribed in a 

circle, rt 1s plain that the perimeter of the inscribed polygon is 
less than the circwmference of the circle; for each of the sides 

of the polygon is less than that part of the circumference of the 
circle which is cut off by it.” 

Archimedes’ assumption, and we might perhaps translate as follows, “A straight 
line is that which extends equally (é tcou xe?rac) with the points on it,’ or, to 
follow Proclus’ interpretation more closely, ‘‘A straight line is that which 
represents equal extension with [the distances separating] the points on it.” 

* With regard to this assumption compare the Introduction, chapter a1, § 2. 
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Proposition 1. 

If a polygon be circwmscribed about a circle, the perimeter 
of the circumscribed polygon is greater 
than the perimeter of the circle. 

Let any two adjacent sides, meet- 

ing in A, touch the circle at P, Q 
respectively. 

Then [Assuwmptions, 2] 

PA+AQ> (are PQ). 

A similar inequality holds for each 

angle of the polygon; and, by ad- 
dition, the required result follows. 

Proposition 2. 

Given two unequal magnitudes, it is possible to find two un- 

equal straight lines such that the greater straight line has to the 
less a ratio less than the greater magnitude has to the less. 

Let AB, D represent the two unequal magnitudes, AB being 

the greater. 

Suppose BC measured along BA equal to D, and let GH be 

any straight line. e 

Then, if CA be added to itself a sufficient ‘ 
number of times, the sum will exceed D. Let 1 

AF be this sum, and take # on GH produced ‘ 

such that GH is the same multiple of H# that 

AF is of AC, 

Thus eee Ty ae OA 

But, since AF'> D (or CB), | 

AC: AF<AC: CB. is | 
Therefore, componendo, 

EG:GH<AB: D. 

Hence EG, GH are two lines satisfying the given condition. 
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Proposition 3S. 

Given two unequal magnitudes and a circle, it 1s possible to 

inscribe a polygon in the circle and to describe another about at 

so that the side of the circumscribed polygon may have to the side 

of the inscribed polygon a ratio less than that of the greater 

magnitude to the less. 

Let A, B represent the given magnitudes, A being the 

greater. 

Find [Prop. 2] two straight lines #, KL, of which F is the 

greater, such that 

i M 

Draw LM perpendicular to LK and of such length that 

KM=F. 

In the given circle let CH, DG be two diameters at right 

angles. Then, bisecting the angle DOC, bisecting the half 

again, and so on, we shall arrive ultimately at an angle (as 
NOC) less than twice the angle LAM. 

Join NC, which (by the construction) will be the side of a 
regular polygon inscribed in the circle. Let OP be the radius 
of the circle bisecting the angle NOC (and therefore bisecting 
NC at right angles, in H, say), and let the tangent at P meet 
OC, ON produced in S, 7’ respectively. 

Now, since ZCON <2z2LKM, 

ZHOC<ZLKM, 
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and the angles at H, L are right; 

therefore MK: LK >OC : OH 

SOL Ul. 

Hence ST: ON < MK: LK 

es 

therefore, a fortior, by (1), 

ide CN <A ores 

Thus two polygons are found satisfying the given condition. 

Proposition 4. 

Again, given two unequal magnitudes and a sector, it is 

possible to describe a polygon about the sector and to inscribe 
another in it so that the side of the circwmscribed polygon may 

have to the side of the inscribed polygon a ratio less than the 

greater magnitude has to the less. 

[The “inscribed polygon” found in this proposition is one 
which has for two sides the two radii bounding the sector, while 

the remaining sides (the number of which is, by construction, 

some power of 2) subtend equal parts of the arc of the sector ; 

the “circumscribed polygon” is formed by the tangents parallel 

to the sides of the inscribed polygon and by the two bounding 

radu produced. ] 

In this case we make the same construction as in the last 

proposition except that we bisect the angle COD of the sector, 

instead of the right angle between two diameters, then bisect 

the half again, and so on. The proof is exactly similar to the 

preceding one. 
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Proposition 5. 

Given a circle and two unequal magnitudes, to describe a 

polygon about the circle and inscrabe another in tt, so that the 

circumscribed polygon may have to the inscribed a ratio less than 

the greater magnitude has to the less. 

Let A be the given circle and B, C the given magnitudes, B 

being the greater. 

F 

Take two unequal straight lines D, H, of which D is the 

greater, such that D: #<B:C [Prop. 2], and let / be a mean 

proportional between D, H, so that D is also greater than F. 

Describe (in the manner of Prop. 3) one polygon about the 

circle, and inscribe another in it, so that the side of the former 

has to the side of the latter a ratio less than the ratio D : F. 

Thus the duplicate ratio of the side of the former polygon 
to the side of the latter is less than the ratio D? : F?. 

But the said duplicate ratio of the sides is equal to the 

ratio of the areas of the polygons, since they are similar ; 

therefore the area of the circumscribed polygon has to the 
area of the inscribed polygon a ratio less than the ratio D? : F?, 
or D: E, and a fortiori less than the ratio B : C0. 
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Proposition 6. 

“Similarly we can show that, given two wnequal magnitudes 
and a sector, it is possible to circumscribe a polygon about the 
sector and inscribe in rt another similar one so that the circum- 
scribed may have to the inscribed a ratio less than the greater 
magnitude has to the less. 

And it is likewise clear that, if a circle or a sector, as well 

as a certain area, be given, it is possible, by inscribing regular 

polygons in the circle or sector, and by continually inscribing 

such in the remaining segments, to leave segments of the circle or 

sector which are {together} less than the given area. For this is 

proved in the Hlements [Eucl. x1. 2]. 

But it is yet to be proved that, given a circle or sector and 

an area, tt is possible to describe a polygon about the circle or 

sector, such that the area remaining between the circumference 
and the circumscribed figure is less than the given area,” 

CVE 
The proof for the circle (which, as Archimedes says, can be 

equally applied to a sector) is as follows. 

Let A be the given circle and B the given area. 

Now, there being two unequal magnitudes A + B and A, let 

a polygon (C) be circumscribed about the circle and a polygon 

(J) inscribed in it [as in Prop. 5], so that 

OPT eA TA, Genesstastoets cere nes (1). 

The circumscribed polygon (C) shall be that required. 
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For the circle (A) is greater than the inscribed polygon (Z). 

Therefore, from (1), a fortior, 

C+ A< ABA; 

whence C<A+B, 

or C-A<B. 

Proposition 7. 

Lf in an isosceles cone [i.e. a right circular cone] a pyramid 
be inscribed having an equilateral base, the surface of the 
pyramid excluding the base is equal to a triangle having its 

base equal to the perimeter of the base of the pyramid and its 
height equal to the perpendicular drawn from the apex on one 

side of the base. 

Since the sides of the base of the pyramid are equal, it 

follows that the perpendiculars from the apex to all the sides 
of the base are equal; and the proof of the proposition is 
obvious. 

Proposition 8. 

If a pyramid be circumscribed about an isosceles cone, the 

surface of the pyramid excluding its base is equal to a triangle 

having its base equal to the perimeter of the base of the pyramid 
and tts height equal to the side [1.e. a generator] of the cone. 

The base of the pyramid is a polygon circumscribed about 

the circular base of the cone, and the line joining the apex of 

the cone or pyramid to the point of contact of any side of the 

polygon is perpendicular to that side. Also all these perpen- 
diculars, being generators of the cone, are equal; whence the 
proposition follows immediately, 
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Proposition 9.¥V 

Lf in the circular base of an isosceles cone a chord be placed, 
and from its extremities straight lines be drawn to the apem of 
the cone, the triangle so formed will be less than the portion of 
the surface of the cone intercepted between the lines drawn to the 
apex. 

Let ABC be the circular base of the cone, and OQ its apex. 

Draw a chord AB in the circle, and join OA, OB. Bisect 

the arc ACB in C, and join AC, BC, OC. 

Then A OAC + A OBC> A OAB. 

Let the excess of the sum of the first two triangles over the 

third be equal to the area D. 

Then D is either less than the sum of the segments AC, 

CFB, or not less. 

I. Let D be not less than the sum of the segments referred 

to. 

We have now two surfaces 

(1) that consisting of the portion OAEC of the surface 

of the cone together with the segment AEC, and 

(2) the triangle OAC; 

and, since the two surfaces have the same extremities (the 

perimeter of the triangle OAC), the former surface is greater 

than the latter, which is included by it [Asswmptions, 3 or 4]. 
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Hence (surface OAEC)+ (segment AEC) >A OAC. 

Similarly (surface OCFB) + (segment CFB) > A OBC. 

Therefore, since D is not less than the sum of the segments, 

we have, by addition, 

(surface OAECFB)+D>A OAC + AOBC 

>A OAB+D, by hypothesis. 

Taking away the common part D, we have the required 

result. 

II. Let D be less than the sum of the segments ALC, 

CFB. 

If now we bisect the arcs AC, CB, then bisect the halves, 

and so on, we shall ultimately leave segments which are 

together less than JD. [Prop. 6] 

Let AGH, EHC, CKF, FLB be those segments, and join 

OE, OF. 

Then, as before, 

(surface OAG) + (segment AGEL) >A OAE 

and (surface OH HC) + (segment LHC) > A OEC. 

Therefore (surface OAGHC) + (segments AGE, EHC) 

>AOAE+A0EC 

> AOAC, a fortiori. 

Similarly for the part of the surface of the cone bounded by 
OC, OB and the arc CFB. 

Hence, by addition, 

(surface OAGHHCKFLB)+(segments AGE, EHO, CKF, FLB) 

>AOAC+ AOBC 

> AOAB + D, by hypothesis. 

But the sum of the segments is less than D, and the re- 
quired result follows. 



ON THE SPHERE AND CYLINDER I. 13 

Proposition 10. 

If in the plane of the circular base of an isosceles cone two 
tangents be drawn to the circle meeting in a point, and the points 

of contact and the point of concourse of the tangents be respectively 

joined to the apex of the cone, the sum of the two triangles 

formed by the joining lines and the two tangents are together 

greater than the included portion of the surface of the cone. 

Let ABC be the circular base of the cone, O its apex, AD, 

BD the two tangents to the circle meeting in D. Join OA, 

OB, OD. 

Let ECF be drawn touching the circle at C, the middle 

point of the are ACB, and therefore parallel to AB. Join 

OE, OF. 

Then ED+DF> EF, 

and, adding A# + FB to each side, 

AD+DB>AE+ EF + FB. 

Now OA, OC, OB, being generators of the cone, are equal, 

and they are respectively perpendicular to the tangents at A, 

C, B. 
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It follows that 

AOAD+ AODB>AOAE+A OEF +A OFB. 

Let the area G be equal to the excess of the first sum over 

the second. 

G is then either less, or not less, than the sum of the spaces 

EAHC, FCKB remaining between the circle and the tangents, 

which sum we will call LZ. 

T. Let G be not less than L. 

We have now two surfaces 

(1) that of the pyramid with apex O and base AHFB, 

excluding the face OAB, 

(2) that consisting of the part OACB of the surface of the 
cone together with the segment ACB. 

These two surfaces have the same extremities, viz. the 

perimeter of the triangle OAB, and, since the former includes 

the latter, the former is the greater [Asswmptions, 4]. 

That is, the surface of the pyramid exclusive of the face 

OAB is greater than the sum of the surface OACB and the 
segment ACB. 

Taking away the segment from each sum, we have 

AOAE+A 0EF+A O0FB+I >the surface OA HCKB. 

And G is not less than L. 

It follows that 

AOAE+A OFF +A OFB+ G, 

which is by hypothesis equal to AOAD+A ODB, is greater 
than the same surface. 

II. Let G be less than LZ. 

If we bisect the arcs AO, CB and draw tangents at their 
middle points, then bisect the halves and draw tangents, and 
so on, we shall lastly arrive at a polygon such that the sum 
of the parts remaining between the sides of the polygon and 
the circumference of the segment is less than G. 
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Let the remainders be those between the segment and the 
polygon APQRSB, and let their sum be M. Join OP, OQ, 
etc. 

Then, as before, 

AOAE+ A OEF+A OFB>AOAP+AOPQ+...+A OSB. 

Also, as before, 

(surface of pyramid OA PQRSB excluding the face OAB) 

>the part OACB of the surface of the 

cone together with the segment ACB. 

Taking away the segment from each sum, 

AOAP+ AOPQ+...+M> the part OACB of the 

surface of the cone. 
Hence, a fortiori, 

AOAE+ AOEF+ A OFB+G, 

which is by hypothesis equal to 

AOAD+A ODB, 

is greater than the part OACB of the surface of the cone. 

Proposition 11. 

If a plane parallel to the axis of a right cylinder cut the 

cylinder, the part of the surface of the cylinder cut off by the 

plane ts greater than the area of the parallelogram in which the 

plane cuts tt. 

Proposition 12. 

If at the extremities of two generators of any right cylinder 

tangents be drawn to the circular bases in the planes of those 
bases respectively, and if the pairs of tangents meet, the 
parallelograms formed by each generator and the two corre- 

sponding tangents respectively are together greater than the 

included portion of the surface of the cylinder between the two 

generators. 

[The proofs of these two propositions follow exactly the 

methods of Props. 9, 10 respectively, and it is therefore un- 

necessary to reproduce them.] 
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“From the properties thus proved it is clear (1) that, ef a 

pyramid be inscribed in an isosceles cone, the surface of the 
pyramid excluding the base is less than the surface of the cone 

[eacluding the base], and (2) that, if a pyramid be circumscribed 

about an isosceles cone, the surface of the pyramid excluding the 

base is greater than the surface of the cone eacluding the base. 

“Tt is also clear from what has been proved both (1) that, 

of a prism be inscribed in a right cylinder, the surface of the 
prism made up of its parallelograms [i.e. excluding its bases] is 

less than the surface of the cylinder excluding its bases, and 

(2) that, of a prism be circumscribed about a right cylinder, the 

surface of the prism made up of rts parallelograms is greater 

than the surface of the cylinder excluding its bases.” 

Proposition 13. 

The surface of any right cylinder excluding the bases is equal 
to a circle whose radius is a mean proportional between the side 
[.e. @ generator] of the cylinder and the diameter of its base. 

Let the base of the cylinder be the circle A, and make CD 

equal to the diameter of this circle, and HF equal to the height 
of the cylinder. 
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Let H be a mean proportional between CD, HF, and B 
a circle with radius equal to H. 

Then the circle B shall be equal to the surface of the 

cylinder (excluding the bases), which we will call S. 

For, if not, B must be either greater or less than S. 

I. Suppose B< 8. 

Then it is possible to circumscribe a regular polygon about 

B, and to inscribe another in it, such that the ratio of the 

former to the latter is less than the ratio S : B. 

Suppose this done, and circumscribe about A a polygon 
similar to that described about B; then erect on the polygon 

about A a prism of the same height as the cylinder. The 

prism will therefore be circumscribed to the cylinder. 

Let KD, perpendicular to CD, and FL, perpendicular to 

EF, be each equal to the perimeter of the polygon about A. 
Bisect CD in M, and join MK. 

Then A KDM =the polygon about A. 

Also OC EL = surface of prism (excluding bases). 

Produce FE to N so that FE = EN, and join NL. 

Now the polygons about A, B, being similar, are in the 

duplicate ratio of the radii of A, B. 

Thus 

A KDM : (polygon about B) = MD*: H* 

=MD?:CD.EF 

= MDeNE 

SNK OM EEN 

(since DK = FL). 

Therefore (polygon about B)=A LFN 

=f EL 

= (surface of prism about A), 

from above. 

But (polygon about B) : (polygon in B)<S: B. 

H, A. 2 
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Therefore 

(surface of prism about A): (polygon in B)<S :B, 

and, alternately, 

(surface of prism about A): S< (polygon in B): B; 

which is impossible, since the surface of the prism is greater 

than S, while the polygon inscribed in B is less than B. 

Therefore B¢8. 

II. Suppose B>S. 

Let a regular polygon be circumscribed about B and another 

inscribed in it so that 

(polygon about B): (polygon in B)< B:8. 

Inscribe in A a polygon similar to that inscribed in B, and 

erect a prism on the polygon inscribed in A of the same height 

as the cylinder. 

Again, let DK, FL, drawn as before, be each equal to the 

perimeter of the polygon inscribed in A. 

Then, in this case, 

A KDM > (polygon inscribed in A) 

(since the perpendicular from the centre on a side of the 
polygon is less than the radius of A). 

Also ALFN = C1 EL =surface of prism (excluding bases). 

Now 

(polygon in A) : (polygon in B)= MD’: H®, 

= AKDM: ALFN, as before. 

And A KDM > (polygon in A), 

Therefore 

A LFN, or (surface of prism) > (polygon in B). 

But this is impossible, because 

(polygon about B) : (polygon in B)< B: S, 

< (polygon about B): 8, a fortiori, 
so that (polygon in B) > 8, 

> (surface of prism), a fortior?. 

Hence B is neither greater nor less than S, and therefore 
B=, 
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Proposition 14. 

The surface of any isosceles cone excluding the base is equal 
to a circle whose radius is a mean proportional between the side 
of the cone [a generator] and the radius of the circle which ts the 
base of the cone. 

Let the circle A be the base of the cone; draw C equal to 
the radius of the circle, and D equal to the side of the cone, and 

let # be a mean proportional between OC, D. 

a 
ae, 

D 

Draw a circle B with radius equal to £. 

Then shall B be equal to the surface of the cone (excluding 

the base), which we will call S. 

If not, B must be either greater or less than 8. 

I. Suppose B< S. 

Let a regular polygon be described about B and a similar 

one inscribed in it such that the former has to the latter a ratio 

less than the ratio S: B. 

Describe about A another similar polygon, and on it set up 

a pyramid with apex the same as that of the cone. 

Then (polygon about A) : (polygon about B) 

SRO TH 

=e) 

= (polygon about A) : (surface of pyramid excluding base). 

9-9 
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Therefore 

(surface of pyramid) = (polygon about B). 

Now (polygon about B) : (polygon in B)<S: B. 

Therefore 

(surface of pyramid) : (polygon in B) <S: B, 

which is impossible, (because the surface of the pyramid is 

-greater than S, while the polygon in B is less than B). 

Hence B¢€S. 

II. Suppose B> 5S. 

Take regular polygons circumscribed and inscribed to B such 

that the ratio of the former to the latter is less than the ratio 

BES: 

Tnscribe in A a similar polygon to that inscribed in B, and 

erect a pyramid on the polygon inscribed in A with apex the 

same as that of the cone. 

In this case 

(polygon in A): (polygon in B) = C? : E” 

=C:D 

> (polygon in A) : (surface of pyramid excluding base). 

This is clear because the ratio of C to D is greater than the 

ratio of the perpendicular from the centre of A on a side of the 

polygon to the perpendicular from the apex of the cone on the 
same side*, 

Therefore 

(surface of pyramid) > (polygon in B). 

But (polygon about B) : (polygon in B)< B: 8. 

Therefore, a fortiort, 

(polygon about B) : (surface of pyramid) < B: 8; 

which is impossible. 

Since therefore B is neither greater nor less than S, 

B=. 

“ This is of course the geometrical equivalent of saying that, if a, 8 be two 
angles each less than a right angle, and a>, then sin a>sin 8, 
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Proposition 15. 

The surface of any isosceles cone has the same ratio to tts 
base as the side of the cone has to the radius of the base. 

By Prop. 14, the surface of the cone is equal to a circle 

whose radius is a mean proportional between the side of the 

cone and the radius of the base. 

Hence, since circles are to one another as the squares of 
their radu, the proposition follows. 

Proposition 16. 

If an isosceles cone be cut by a plane parallel to the base, the 

portion of the surface of the cone between the parallel planes is 
equal to a circle whose radius is a mean proportional between (1) 

the portion of the side of the cone intercepted by the parallel 

planes and (2) the line which is equal to the sum of the radi of 

the curcles in the parallel planes. 

Let OAB be a triangle through the axis of a cone, DE its 

intersection with the plane cutting off the 
frustum, and OFC the axis of the cone. e 

Then the surface of the cone OAB is 

equal to a circle whose radius is equal to 

VOA.AC. [Prop. 14.] 

Similarly the surface of the cone ODE 9, F . 
is equal to a circle whose radius is equal 

to VOD. DF. f 5 . 

And the surface of the frustum is 

equal to the difference between the two circles. 

Now 

DAD ACS OD sDE = DA, ACs OD.AC=0D SDF. 

But OD.AC=O0A.DF, 

since OA: AC=OD: DF. 
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Hence OA. AC-—OD.DF=DA.AC+DA.DF 

= DA.(AC + DF). 

And, since circles are to one another as the squares of their 

radii, it follows that the difference between the circles whose 

radii are VOA. AC, VOD. DF respectively is equal to a circle 

whose radius is VDA .(AC + DF). 

Therefore the surface of the frustum is equal to this circle. 

Lemmas. 

“1. Cones having equal height have the same ratio as their 

bases; and those having equal bases have the same ratio as their 

heights*. 

2. If a cylinder be cut by a plane parallel to the base, then, 

as the cylinder is to the cylinder, so is the axis to the axis F. 

3. The cones which have the same bases as the cylinders [and 

equal height| are in the same ratio as the cylinders. 

4. Also the bases of equal cones are reciprocally proportional 

to their heights; and those cones whose bases are reciprocally 

proportional to their heights are equal t. 

5. Also the cones, the diameters of whose bases have the same 
ratio as their axes, are to one another in the triplicate ratio of the 

diameters of the bases §. 

And all these propositions have been proved by earlier 

geometers.” 

* Kuclid xm, 11. ‘Cones and cylinders of equal height are to one another 

as their bases.” 

Euclid x1. 14. “Cones and cylinders on equal bases are to one another as 

their heights.” 

+ Euclid xu. 13. “If a cylinder be cut by a plane parallel to the opposite 

planes [the bases], then, as the cylinder is to the cylinder, so will the axis be 
to the axis.” 

+ Euclid xi. 15. ‘The bases of equal cones and cylinders are reciprocally 
proportional to their heights; and those cones and cylinders whose bases are 
reciprocally proportional to their heights are equal.” 

§ Huclid xm. 12. ‘Similar cones and cylinders are to one another in the 
triplicate ratio of the diameters of their bases.” 
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Proposition 17. 

Tf there be two isosceles cones, and the surface of one cone be 
equal to the base of the other, while the perpendicular from the 

centre of the base [of the first cone] on the side of that cone is 

equal to the height [of the second], the cones will be equal. 

Let OAB, DEF be triangles through the axes of two cones 

respectively, C, G the centres of the respective bases, GH the 

A 

E 

Cc fo) C= 5 

H 
F 

B 

perpendicular from G on FD; and suppose that the base of the 

cone OAB is equal to the surface of the cone DEF, and 

that OC = GH. 

Then, since the base of OAB is equal to the surface of 

DEF, 

(base of cone OAB) : (base of cone DEF) 

=(surface of DEF) : (base of DEF) 

= DF VG [Prop. 15] 

= DG : GH, by similar triangles, 

= DG OC. 

Therefore the bases of the cones are reciprocally propor- 

tional to their heights; whence the cones are equal. [Lemma 

4.] 
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Proposition 18. 

Any solid rhombus consisting of isosceles cones is equal to 
the cone which has its base equal to the surface of one of the 
cones composing the rhombus and its height equal to the perpen- 
dicular drawn from the apex of the second cone to one side of 

the first cone. 

Let the rhombus be OABD consisting of two cones with 

apices O, D and with a common base (the circle about AB as 

diameter). 

P 

j i. 
N 

Let FHK be another cone with base equal to the surface of 
the cone OAB and height FG equal to DE, the perpendicular 

from D on OB. 

Then shall the cone FHK be equal to the rhombus. 

Construct a third cone LMN with base (the circle about 

MN) equal to the base of OAB and height LP equal to OD. 

Then, since LP= OD; 

LP: CD = 0D GD, 

But [Lemma 1] OD: CD=(rhombus 0ADB) : (cone DAB), 

and IP: CD =(cone LMN): (cone DAB). 

It follows that 

(rhombus OA DB)=(cone DMN).............c0c0000. CL); 
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Again, since AB= MN, and 

(surface of OA B) = (base of FHK), 

(base of FHK) : (base of LM N) 

= (surface of O.AB): (base of OAB) 

=OB BG [Prop. 15] 

= OD: DE, by similar triangles, | 

: = LP : FG, by hypothesis. 

Thus, in the cones FHK, LMN, the bases are reciprocally 
proportional to the heights. 

Therefore the cones FHK, LMN are equal, 

and hence, by (1), the cone FHK is equal to the given 
solid rhombus. 

Proposition 19. 

If an isosceles cone be cut by a plane parallel to the base, 

and on the resulting circular section a cone be described having 

as its apex the centre of the base [of the first cone], and if the 

rhombus so formed be taken away from the whole cone, the part 

remaining will be equal to the cone with base equal to the surface 

of the portion of the first cone between the parallel planes and 

with height equal to the perpendicular drawn from the centre of 
the base of the first cone on one side of that cone. 

Let the cone OAB be cut by a plane parallel to the base in 

the circle on DE as diameter. Let C be the centre of the base 
of the cone, and with C as apex and the circle about DE as base 

describe a cone, making with the cone ODE the rhombus 

ODCE. 

Take a cone FGH with base equal to the surface of the 

frustum DABE and height equal to the perpendicular (CK) 

from C on AO. 

Then shall the cone FGH be equal to the difference between 

the cone OAB and the rhombus ODCE. 

Take (1) a cone LMN with base equal to the surface of the 

cone OAB, and height equal to CK, 
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(2) a cone PQR with base equal to the surface of the cone 

ODE and height equal to CX. 

{e) 

— 

M N Q R 

Now, since the surface of the cone OAB is equal to the 
surface of the cone ODE together with that of the frustum 

DABE, we have, by the construction, 

‘(base of DMN) = (base of FGH) + (base of PQR) 

and, since the heights of the three cones are equal, 

(cone LMN)=(cone FGH) + (cone PQR). 

But the cone LMN is equal to the cone OAB [Prop. 17], 

and the cone PQR is equal to the rhombus ODCE [Prop. 18]. 

Therefore (cone OA B)=(cone FGH)+ (rhombus ODCE), 

and the proposition is proved. 

Proposition 20. 

If one of the two isosceles cones forming a rhombus be cut 

by a plane parallel to the base and on the resulting circular 

section a cone be described having the same apex as the second 

cone, and wf the resulting rhombus be taken from the whole 
rhombus, the remainder will be equal to the cone with base equal 

_to the surface of the portion of the cone between the parallel 
planes and with height equal to the perpendicular drawn from 
the apew of the second* cone to the side of the first cone. 

“ There is a slight error in Heiberg’s translation ‘“ prioris coni” and in the 
corresponding note, p. 93. The perpendicular is not drawn from the apex of 
the cone which is cut by the plane but from the apex of the other. 
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Let the rhombus be OAOB, and let the cone OAB be cut 
by a plane parallel to its base in the circle about DE as diameter. 
With this circle as base and C as apex describe a cone, which 
therefore with ODE forms the rhombus ODCE. 

M N 

Take a cone FGH with base equal to the surface of the 

frustum DABE and height equal to the perpendicular (CK) 
from C on OA. 

The cone FGH shall be equal to the difference between the 

rhombi OACB, ODCE. 

For take (1) a cone ZMN with base equal to the surface of 

OAB and height equal to CK, 

(2) a cone PQR, with base equal to the surface of ODE, 

and height equal to CK. 

Then, since the surface of OAB is equal to the surface of 

ODE together with that of the frustum DABZ#, we have, by 

construction, 

(base of LMN)=(base of PQR) + (base of FGH), 

and the three cones are of equal height ; 

therefore (cone LMN)=(cone PQR) + (cone FGH). 

But the cone LMN is equal to the rhombus OACB, and the 

cone PQR is equal to the rhombus ODCE [Prop. 18]. 

Hence the cone GH. is equal to the difference between the 

two rhombi OACB, ODCE. 
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Proposition 21. 

A regular polygon of an even number of sides being inscribed 

in a circle, as ABC...A’...C’B’A,.so that AA’ 1s a diameter, 

if two angular points next but one to each other, as B, B’, be 

joined, and the other lines parallel to BB’ and joining pairs 
of angular points be drawn, as CO’, DD’..., then 

(BB. CC' + 032) AA =A BBA 

het BB. CC. DD... meet AAC ing /,. (Gat. enieles 

CB’, DC’,... be joined meeting AA’ in K, L,... respectively. 

Then clearly CB’, DO’,... are parallel to one another and to 

AB. 

Hence, by similar triangles, 

DW Ava ee ie 

ey 
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and, summing the antecedents and consequents respectively, we 
have 

(BB 400+.) AA SBF FA 
= A'B: BA. 

Proposition 22. 

If aw polygon. be inscribed in a segment of a circle LAL’ so 
that all its sides excluding the base are equal and their number 
even, as LK...A...K'L’, A being the middle point of the segment, 
and if the lines BB’, CO’,... parallel to the base LL’ and joining 

pairs of angular points be drawn, then 

(BB’ +00’ +...+ LM): AM=A'B: BA, 
where M is the middle point of LL’ and AA’ is the diameter 
through M. 

Joining CB’, DC’,...LK’, as in the last proposition, and 

supposing that they meet AWM in P, Q,...R, while BB’, CO 

KK’ meet AM in F, G,... H, we have, by similar triangles, 

BF: FA=B'F: FP 

=CG:PG 

=C’G: GQ 
est eereeseee 
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and, summing the antecedents and consequents, we obtain 

(BB’ +00’ +...+ LM): AM=BF: FA 

= AB: BA. 

Proposition 23. 

Take a great circle ABC... of a sphere, and inscribe in it 

a regular polygon whose sides are a multiple of four in number. 

Let AA’, MM’ be diameters at right angles and joining 

opposite angular points of the polygon. 

Then, if the polygon and great circle revolve together about 

the diameter AA’, the angular points of the polygon, except A, 
A’, will describe circles on the surface of the sphere at right 

angles to the diameter AA’. Also the sides of the polygon 

will describe portions of conical surfaces, e.g. BC will describe 

a surface forming part of a cone whose base is a circle about 

CC’ as diameter and whose apex is the point in which CB, 

C’B’ produced meet each other and the diameter 4A’. 

Comparing the hemisphere MAM’ and that half of the 
figure described by the revolution of the polygon which is 
included in the hemisphere, we see that the surface of the 
hemisphere and the surface of the inscribed figure have the 
same boundaries in one plane (viz. the circle on MM’ as 
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diameter), the former surface entirely includes the latter, and 

they are both concave in the same direction. 

Therefore [Asswmptions, 4] the surface of the hemisphere 

is greater than that of the inscribed figure; and the same is 

true of the other halves of the figures. 

Hence the surface of the sphere is greater than the surface 

described by the revolution of the polygon inscribed in the great 
circle about the diameter of the great circle. 

Proposition 24. 

If a regular polygon AB...A’...B’A, the number of whose 
sides is a multiple of four, be inscribed in a great circle of a 

sphere, and if BB’ subtending two sides be joined, and all the 

other lines parallel to BB’ and joining pairs of angular points 

be drawn, then the surface of the figure inscribed in the sphere 

by the revolution of the polygon about the diameter AA’ is equal 
to a circle the square of whose radius is equal to the rectangle 

BA (BB’+CC"+...). 

The surface of the figure is made up of the surfaces of parts 

of different cones. 

Now the surface of the cone ABB’ is equal to a circle whose 

radius is VBA .4 BB’. [Prop. 14] 
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The surface of the frustum BB’C’C is equal to a circle of 

radius VBC. 4(BB’ + CC’), [Prop. 16] 

and so on. 

It follows, since BA = BC=..., that the whole surface is 

equal to a circle whose radius is ,equal to 

BACB BE 4000 eeu eee ty), 

Proposition 25. 

The surface of the figure inscribed in a sphere as in the last 
propositions, consisting of portions of conical surfaces, vs less than 

four times the greatest circle in the sphere. 

Let AB...A’...B’A be a regular polygon inscribed in a 

great circle, the number of its sides being a multiple of four. 

As before, let BB’ be drawn subtending two sides, and 
CC...YY" parallel to BR’. 

Let R be a circle such that the square of its radius is equal 

to 
AB(BB’ + CC’ +...4+ YY’), 

so that the surface of the figure inscribed in the sphere is equal 
to fh. [Prop. 24] 
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Now 

ep OC EN VY) SAA = AB TAB, [Prop, 2h) 

whence AB(BB’+O0'+.,..4+ YY’)=AA’.A’B. 

Hence (radius of R)’= AA’. A’B 

<AA®, 

Therefore the surface of the inscribed figure, or the circle R, 
is less than four times the circle AMA’M’. 

Proposition 26. 

The figure inscribed as above in a sphere is equal [in volume] 

to a cone whose base is a circle equal to the surface of the figure 
wmscribed in the sphere and whose height is equal to the 

perpendicular drawn from the centre of the sphere to one side of 
the polygon. 

Suppose, as before, that AB...A’...B’A is the regular 

polygon inscribed in a great circle, and let BBE CO Rabe 

joined. 

With apex O construct cones whose bases are the circles 

on BB’, CC’,... as diameters in planes perpendicular to ATA 

rat, Ay 3 
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Then OBAB’ is a solid rhombus, and its volume is equal to 

a cone whose base is equal to the surface of the cone ABB’ and 
whose height is equal to the perpendicular from O on AB 

[Prop. 18]. Let the length of the perpendicular be p. 

Again, if CB, C’B’ produced meet in 7’, the portion of the 

solid figure which is described by the revolution of the triangle 

BOC about AA’ is equal to the difference between the rhombi 
OCTC' and OBTB’, i.e. to a cone whose base is equal to the 
surface of the frustum BB’C’C and whose height is p [ Prop. 20]. 

Proceeding in this manner, and adding, we prove that, since 

cones of equal height are to one another as their bases, the 
volume of the solid of revolution is equal to a cone with height 

p and base equal to the sum of the surfaces of the cone BAB’, 

the frustum BB’O'C, etc., i.e. a cone with height p and base 

equal to the surface of the solid. 

Proposition 27. 

The figure inscribed in the sphere as before is less than 

Jour times the cone whose base ws equal to a great circle of 

the sphere and whose height is equal to the radius of the 
sphere. 

By Prop. 26 the volume of the solid figure is equal to a cone 

whose base is equal to the surface of the solid and whose height 

is p, the perpendicular from O on any side of the polygon. Let 
R be such a cone. 

Take also a cone S with base equal to the great circle, and 
height equal to the radius, of the sphere. 

Now, since the surface of the inscribed solid is less than four 

times the great circle [Prop. 25], the base of the cone R is less 
than four times the base of the cone S. 

Also the height (p) of R is less than the height of S. 

Therefore the volume of R is less than four times that of S; 
and the proposition is proved. 
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Proposition 28. 

Let a regular polygon, whose sides are a multiple of four in 

number, be circumscribed about a great circle of a given 

sphere, as AB...A’...B’A; and about the polygon describe 

another circle, which will therefore have the same centre as the 

great circle of the sphere. Let AA’ bisect the polygon and 
cut the sphere in a, a’. 

M 

If the great circle and the circumscribed polygon revolve 

together about AA’, the great circle will describe the surface 

of a sphere, the angular points of the polygon except A, A’ will 
move round the surface of a larger sphere, the points of contact 

of the sides of the polygon with the great circle of the inner 

sphere will describe circles on that sphere in planes perpen- 

dicular to AA’, and the sides of the polygon themselves will 

describe portions of conical surfaces. The circumscribed figure 

will thus be greater than the sphere rtself. 

Let any side, as BM, touch the inner circle in K, and let A’ 

be the point of contact of the circle with B’M’. 

Then the circle described by the revolution of KK’ about 

AA’ is the boundary in one plane of two surfaces 

(1) the surface formed by the revolution of the circular 

segment Kak’, and 

3—2 
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(2) the surface formed by the revolution of the part 

KB...A...BK' of the polygon. 

Now the second surface entirely includes the first, and they 

are both concave in the same direction ; 

therefore [Asswmptions, 4] the second surface is greater 

than the first. ; 

The same is true of the portion of the surface on the opposite 

side of the circle on KK’ as diameter. 

Hence, adding, we see that the surface of the figure 
circumscribed to the given sphere is greater than that of the 

sphere itself. 

Proposition 29. 

In a figure circumscribed to a sphere in the manner shown 

im the previous proposition the surface is equal to a circle the 
square on whose radius is equal to AB(BB’ + CC’ +...). 

For the figure circumscribed to the sphere is inscribed in a 
larger sphere, and the proof of Prop. 24 applies. 

Proposition 30. 

The surface of a figure circumscribed as before about a sphere 
as greater than four times the great circle of the sphere. 
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Let AB...A'...B'A be the regular polygon of 4n sides 
which by its revolution about A.A’ describes the figure circum- 
scribing the sphere of which ama'm’ is a great circle. Suppose 
aa’, AA’ to be in one straight line. 

Let R be a circle equal to the surface of the circumscribed 

solid. 

Now (BB’+00'+...): AA’ =A'B: BA, [asin Prop. 21] 
so that AB (BB'+CC’+...)=AA’. A'B. 

Hence (radius of R)= AA’. A’B [Prop. 29] 

> A’B, 

But A’B = 20P, where P is the point in which AB touches 

the circle ama’ m’. 

Therefore (radius of R) > (diameter of circle ama'm’); 

whence &, and therefore the surface of the circumscribed solid, 

is greater than four times the great circle of the given sphere. 

Proposition 31. 

The solid of revolution circumscribed as before about a sphere 

is equal to a cone whose base is equal to the surface of the solid 
and whose height is equal to the radius of the sphere. 

The solid is, as before, a solid inscribed in a larger sphere ; 

and, since the perpendicular on any side of the revolving polygon 

is equal to the radius of the inner sphere, the proposition is 

identical with Prop. 26. 

Cor. The solid circumscribed about the smaller sphere is 
greater than four times the cone whose base is a great circle 

of the sphere and whose height is equal to the radius of the 

sphere. 

For, since the surface of the solid is greater than four times 

the great circle of the inner sphere [Prop. 30], the cone whose 

base is equal to the surface of the solid and whose height is the 
radius of the sphere is greater than four times the cone of 

the same height which has the great circle for base. [Lemma 1.] 

Hence, by the proposition, the volume of the solid is greater 

than four times the latter cone. 
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Proposition 32. 

Tf a regular polygon with 4n sides be inscribed in a great 
circle of a sphere, as ab...a’..,b’a, and a similar polygon 

AB...A’...B’A be described about the great circle, and if the 

polygons revolve with the great circle about the diameters aa’, 

AA’ respectively, so that they describe the surfaces of solid 
figures inscribed in and circumscribed to the sphere respectively, 

then 

(1) the surfaces of the circumscribed and inscribed figures 
are to one another in the duplicate ratio of their sides, and 

(2) the figures themselves [1.e. their volumes] are in the 

triplicate ratio of their sides. 

(1) Let AA’, aa’ be in the same straight line, and let 

MmOm'M’ be a diameter at right angles to them. 

Join BB’, CO’,... and bb’, cc’,... which will all be parallel 
to one another and MM’. 

Suppose R, S to be circles such that 

R= (surface of circumscribed solid), 

S=(surface of inscribed solid). 
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Then (radius of R)’ = AB(BB’ +00’ +...) [Prop. 29] 

(radius of S)’ = ab (bb’ + cc’ + ...). [Prop. 24] 

And, since the polygons are similar, the rectangles in these 

two equations are similar, and are therefore in the ratio of 

AB 00" 
Hence 

(surface of circumscribed solid) : (surface of inscribed solid) 

=AB*: ab’, 

(2) Take a cone V whose base is the circle R and whose 

height is equal to Oa, and a cone W whose base is the circle S 

and whose height is equal to the perpendicular from O on ab, 
which we will call p. 

Then V, W are respectively equal to the volumes of the 

circumscribed and inscribed figures. [Props. 31, 26] 

Now, since the polygons are similar, 

AB-ab=O0c:p 

= (height of cone V) : (height of cone W); 

and, as shown above, the bases of the cones (the circles R, S) 

are in the ratio of AB? to ab’. 

Therefore V:W=AB?: ab’. 

Proposition 33S. 

The surface of any sphere is equal to four times the greatest 

circle vn tt. 
Let C be a circle equal to four times the great circle. 

Then, if C is not equal to the surface of the sphere, it must 

either be less or greater. 

I. Suppose C less than the surface of the sphere. 

It is then possible to find two lines £, y, of which 8 is the 

greater, such that 

B : y<(surface of sphere) : C. [Prop. 2] 

Take such lines, and let 6 be a mean proportional between 

them. 
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Suppose similar regular polygons with 4n sides circum- 

scribed about and inscribed in a great circle such that the ratio 

of their sides is less than the ratio 8 : 6. [Prop. 3] 

Let the polygons with the circle revolve together about 
a diameter common to all, describing solids of revolution as 

before. 

Then (surface of outer solid) : (surface of inner solid) 

= (side of outer)’: (side of inner)’ —[Prop. 32] 

<b 008 by 

< (surface of sphere) : C, a fortiore. 

But this is impossible, since the surface of the circum- 

scribed solid is greater than that of the sphere [Prop. 28], while 

the surface of the inscribed solid is less than C [Prop. 25]. 

Therefore C is not less than the surface of the sphere. 

II. Suppose C greater than the surface of the sphere. 

Take lines 8, y, of which 8 is the greater, such that 

B:y<C: (surface of sphere). 

Circumscribe and inscribe to the great circle similar regular 

polygons, as before, such that their sides are in a ratio less than 

that of 8 to 8, and suppose solids of revolution generated in the 
usual manner. 
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Then, in this case, 

(surface of circumscribed solid) : (surface of inscribed solid) 

< C: (surface of sphere). 

But this is impossible, because the surface of the circum- 

scribed solid is greater than C [Prop. 30], while the surface of 

the inscribed solid is less than that of the sphere [Prop. 23]. 

Thus C is not greater than the surface of the sphere. 

Therefore, since it is neither greater nor less, (is equal to 
the surface of the sphere. 

Proposition 34. 

Any sphere is equal to four times the cone which has its base 
equal to the greatest circle wm the sphere and rts height equal 

to the radius of the sphere. 

Let the sphere be that of which ama’m’ is a great circle. 

If now the sphere is not equal to four times the cone 
described, it is either greater or less. 

I. If possible, let the sphere be greater than four times the 

cone. 

Suppose V to be a cone whose base is equal to four times 

the great circle and whose height is equal to the radius of the 

sphere. 

Then, by hypothesis, the sphere is greater than V; and two 

lines B, y can be found (of which @ is the greater) such that 

B :y<(volume of sphere) : V. 

Between @ and y place two arithmetic means 6, e. 

As before, let similar regular polygons with sides 4n in 

number be circumscribed. about and inscribed in the great 

circle, such that their sides are in a ratio less than 8: 6. 

Imagine the diameter aa’ of the circle to be in the same 

straight line with a diameter of both polygons, and imagine 

the latter to revolve with the circle about aa’, describing the 
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surfaces of two solids of revolution. The volumes of these solids 

are therefore in the triplicate ratio of their sides. [Prop. 32] 

Thus (vol. of outer solid) : (vol. of inscribed solid) 

< f* : &, by hypothesis, 

<P :¥, « fortiori (since B : y> 8° : &°)*, 

< (volume of sphere) : V, a fortiorz. 

But this is impossible, since the volume of the circumscribed 

* That 8: y>6*:6 > is assumed by Archimedes, Eutocius proves the 
property in his commentary as follows. 

Take x such that foe West) 8a 

Thus B-6:B=6-2:5 

and, since B>6, B-d>6-x2. 

But, by hypothesis, B-d=5-«. 

Therefore 6-—e>6 -2, 

or t>e 

Again, suppose One ys 

and, as before, we have 

so that, a fortiori, 

Therefore 

d6-x>x-y, 

d-e>u-y. 

€-y>2-Y; 
and, since x>e, y>y. 

Now, by hypothesis, 8, 5, 7, y are in continued proportion ; 

therefore (Ss? Qe yeyg yy 

=v. 
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solid is greater than that of the sphere [Prop. 28], while the 
volume of the inscribed solid is less than V [Prop. 27]. 

Hence the sphere is not greater than V, or four tiines the 
cone described in the enunciation. 

II. If possible, let the sphere be less than V. 

In this case we take 8, y (8 being the greater) such that 

8:y< V: (volume of sphere). 

The rest of the construction and proof proceeding as before, 
we have finally 

(volume of outer solid) : (volume of inscribed solid) 

< V: (volume of sphere). 

But this is impossible, because the volume of the outer 

solid is greater than V [Prop. 31, Cor.], and the volume of the 

inscribed solid is less than the volume of the sphere. 

Hence the sphere is not less than V. 

Since then the sphere is neither less nor greater than V, it 

is equal to V, or to four times the cone described in the enun- 

ciation. 

Cor. From what has been proved it follows that every 

cylinder whose base is the greatest circle in a sphere and whose 

height is equal to the diameter of the sphere 1s 3 of the sphere, 

and its surface together with its bases is 3 of the surface of the 

sphere. 

For the cylinder is three times the cone with the same 
base and height [Eucl. x11. 10], i.e. six times the cone with 
the same base and with height equal to the radius of the 

sphere. 

But the sphere is four times the latter cone [Prop. 34]. 

Therefore the cylinder is 3 of the sphere. 

Again, the surface of a cylinder (excluding the bases) is 

equal to a circle whose radius is a mean proportional between 

the height of the cylinder and the diameter of its base 

[Prop. 13]. 
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In this case the height is equal to the diameter of the base 

and therefore the circle is that whose radius is the diameter of 

the sphere, or a circle equal to four times the great circle of 

the sphere. 

Therefore the surface of the cylinder with the bases is equal 

to six times the great circle. 

And the surface of the sphere is four times the great circle 

[Prop. 33]; whence 

(surface of cylinder with bases) = 3. (surface of sphere). 

Proposition 35. 

If in a segment of a circle LAL’ (where A is the nuaddle 

pont of the arc) a polygon LK...A...K'L’ be inscribed of which 
LL’ is one side, while the other sides are 2n in number and all 

equal, and if the polygon revolve with the segment about the 

diameter AM, generating a solid figure inscribed in a segment of 

a sphere, then the surface of the inscribed solid is equal to a 
circle the square on whose radius is equal to the rectangle 

AB (BB’ +00" + < + KK +7). 

A 

A’ 

The surface of the inscribed figure is made up of portions of 
surfaces of cones, 
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If we take these successively, the surface of the cone BAB’ 
is equal to a circle whose radius is 

VAB.4 BB’ [Prop. 14] 

The surface of the frustum of a cone BCO’B’ is equal to 

a circle whose radius is 

/ / AR. rete lela [Prop. 16] 
and so on. sd 

Proceeding in this way and adding, we find, since circles 

are to one another as the squares of their radii, that the 

surface of the inscribed figure is equal to a circle whose radius 

18 

s/ 4B (BB CU RK’ + oy 

Proposition 36. 

The surface of the figure inscribed as before in the segment 

of a sphere is less than that of the segment of the sphere. 

This is clear, because the circular base of the segment is a 
common boundary of each of two surfaces, of which one, the 

segment, includes the other, the solid, while both are concave 

in the same direction [Assumptions, 4]. 

Proposition 37. 

The surface of the solid figure inscribed in the segment of the 
sphere by the revolution of LK...A...K’'L’' about AM 1s less than 

a circle with radius equal to AL. 

Let the diameter AM meet the circle of which LAL’ is a 

segment again in A’, Join A’B. 

As in Prop. 35, the surface of the inscribed solid is equal to 

a circle the square on whose radius is 

AB(BB'+(CC' +...4+KK’+LM). 



46 ARCHIMEDES 

But this rectangle = AB OAM: [Prop. 22] 

<A’A.AM 

<A 

Hence the surface of the inscribed solid is less than the 

circle whose radius is AL. 

Proposition 38. 

The solid figure described as before in a segment of a sphere 

less than a hemisphere, together with the cone whose base is the 

base of the segment and whose apex is the centre of the sphere, 
ws equal to a cone whose base is equal to the surface of the 

inscribed solid and whose height is equal to the perpendicular 
Srom the centre of the sphere on any side of the polygon. 

Let O be the centre of the sphere, and p the length of the 
perpendicular from O on AB. 

Suppose cones described with O as apex, and with the 

circles on BB’, CC’,... as diameters as bases. 

Then the rhombus OBAB' is equal to a cone whose base is 

equal to the surface of the cone BAB’, and whose height is p. 

[Prop. 18] 

Again, if CB, O’B’ meet in 7, the solid described by the 

triangle BOC as the polygon revolves about AO is the difference 
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between the rhombi OCTC’ and OBTB’, and is therefore equal 
to a cone whose base is equal to the surface of the frustum 
BCC’B' and whose height is p. [Prop. 20] 

Similarly for the part of the solid described by the triangle 

COD as the polygon revolves ; and so on. 

Hence, by addition, the solid figure inscribed in the segment 
together with the cone OLLI’ is equal to a cone whose base is 

the surface of the inscribed solid and whose height is p. 

Cor. The cone whose base is a circle with radius equal to 
AL and whose height is equal to the radius of the sphere is 
greater than the sum of the inscribed solid and the cone OLL’. 

For, by the proposition, the inscribed solid together with 
the cone OLL’ is equal to a cone with base equal to the surface 

of the solid and with height p. 

This latter cone is less than a cone with height equal to OA 

and with base equal to the circle whose radius is AL, because 

the height p is less than OA, while the surface of the solid is 

less than a circle with radius AJL. [Prop. 37] 

Proposition 39. 

Let lal’ be a segment of a great circle of a sphere, being less 

than a semicircle. Let O be the centre of the sphere, and join 

Ol, Ol’. Suppose a polygon circumscribed about the sector Olal’ 

such that its sides, excluding the two radii, are 2n in number 
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and all equal, as LK,... BA, AB’,... K’'L’; and let OA be that 

radius of the great circle which bisects the segment lal’. 

The circle circumscribing the polygon will then have the 

same centre 0 as the given great circle. 

Now suppose the polygon and the two circles to revolve 

together about OA. The two circles will describe spheres, the 

A 

angular points except A will describe circles on the outer 

sphere, with diameters BB’ etc., the points of contact of the 
sides with the inner segment will describe circles on the inner 

sphere, the sides themselves will describe the surfaces of cones 

or frusta of cones, and the whole figure circumscribed to the 

segment of the inner sphere by the revolution of the equal 

sides of the polygon will have for its base the circle on LL’ 
as diameter. 

The surface of the solid figure so circumscribed about the 

sector of the sphere [eacluding its base] will be greater than that 

of the segment of the sphere whose base is the circle on Il’ as 
diameter. 

For draw the tangents /7, l’7” to the inner segment at 1, 1’. 

These with the sides of the polygon will describe by their 

revolution a solid whose surface is greater than that of the 
segment [Assumptions, 4). 

But the surface described by the revolution of IZ is less 
than that described by the revolution of D7, since the angle TUL 
is a right angle, and therefore L7' >IT. 

Hence, a fortrort, the surface described by Wake Ao oe 
is greater than that of the segment. 



ON THE SPHERE AND CYLINDER I. 49 

Cor. The surface of the figure so described about the sector 
of the sphere is equal to a circle the square on whose radius 
as equal to the rectangle 

AB(BB'+CO'+...4 KK'+4L0’). 

For the circumscribed figure is inscribed in the outer sphere, 
and the proof of Prop. 35 therefore applies. 

Proposition 40. 

The surface of the figure circumscribed to the sector as before 

is greater than a circle whose radius is equal to al. 

Let the diameter AaO meet the great circle and the circle 

circumscribing the revolving polygon again in a’, A’, Join 

A'B, and let ON be drawn to N, the point of contact of AB 
with the inner circle. 

A’ 

Now, by Prop. 39, Cor., the surface of the solid figure 
circumscribed to the sector OJAI’ is equal to a circle the square 

on whose radius is equal to the rectangle 

oe 
AB (BB +00"+ ete he + ). 

2 

But this rectangle is equal to A’B. AM [as in Prop. 22]. 

DAG 4 
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Next, since AL’, al’ are parallel, the triangles AML’, aml’ 

are similar. And AL’>al’; therefore AM>am. 

Also A’'B =20N =a’. 

Therefore A’B. AM>am.ad 

> al. 

Hence the surface of the solid figure circumscribed to the 

sector is greater than a circle whose radius is equal to al’, or al. 

Cor. 1. The volume of the figure circumscribed about the 

sector together with the cone whose apex is O and base the circle 

on LL’ as diameter, 1s equal to the volume of a cone whose base 
is equal to the surface of the circumscribed figure and whose 

height is ON. 

For the figure is inscribed in the outer sphere which has the 

same centre as the inner. Hence the proof of Prop. 38 applies. 

Cor. 2. The volume of the circumscribed figure with the cone 

OLL’ ts greater than the cone whose base is a circle with radius 

equal to al and whose height is equal to the radius (Oa) of the 

unner sphere. 

For the volume of the figure with the cone OLLI’ is equal to 

a cone whose base is equal to the surface of the figure and 

whose height is equal to ON. 

And the surface of the figure is greater than a circle with 

radius equal to al [Prop. 40], while the heights Oa, ON are 

equal. 

Proposition 41. 

/ 0 u . . Let lal’ be a segment of a great circle of a sphere which is 
less than a semicircle. 

Suppose a polygon inscribed in the sector Olal’ such that 
the sides lk,... ba, ab’,... kU are 2n in number and all equal, 
Let a similar polygon be circumscribed about the sector so that 
its sides are parallel to those of the first polygon; and draw 
the circle circumscribing the outer polygon. 

Now let the polygons and circles revolve together about 
OaA, the radius bisecting the segment lal’. 
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Then (1) the surfaces of the outer and inner solids of revolution 
so described are in the ratio of AB? to ab®, and (2) their volumes 
together with the corresponding cones with the same base and 
with apex O in each case are as AB®* to ab’. 

(1) For the surfaces are equal to circles the squares on 
whose radu are equal respectively to 

AB (BB' +0" +... sg. coe 
7 

[Prop. 39, Cor.] 

and ab (30 +o’ +...+hkhi + 5) : [Prop. 35] 

But these rectangles are in the ratio of AB* to ab’. Therefore 

so are the surfaces. 

(2) Let OnN be drawn perpendicular to ab and AB; and 

suppose the circles which are equal to the surfaces of the outer 
and inner solids of revolution to be denoted by S, s respectively. 

Now the volume of the circumscribed solid together with 

the cone OLL’ is equal to a cone whose base is S and whose 

height is OW [Prop. 40, Cor. 1]. 

And the volume of the inscribed figure with the cone Oll’ is 

equal to a cone with base s and height On [Prop. 38]. 

But S:s= AB’: ab’, 

and ON: On=AB: ab. 

Therefore the volume of the circumscribed solid together with 

the cone OLL’ is to the volume of the inscribed solid together 

with the cone Oll' as AB?® is to ab’ [Lemma 5]. 

4—2 
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Proposition 42. 

If lal’ be a segment of a sphere less than a hemisphere and 

Oa the radius perpendicular to the base of the segment, the 

surface of the segment is equal to.a circle whose radius ws equal 

to al. 

Let R be a circle whose radius is equal to al. Then the 

surface of the segment, which we will call S, must, if it be not 

equal to R, be either greater or less than R. 

10) 

I. Suppose, if possible, S > R. 

Let lal’ be a segment of a great circle which is less than a 

semicircle. Join OJ, Ol’, and let similar polygons with 2n equal 

sides be circumscribed and inscribed to the sector, as in the 

previous propositions, but such that 

(circumscribed polygon) : (inscribed polygon) <S: RB. 

[Prop. 6] 

Let the polygons now revolve with the segment about OaA, 
generating solids of revolution circumscribed and inscribed to 

the segment of the sphere. 

Then 

(surface of outer solid) : (surface of inner solid) 

= A B* + ab" [Prop. 41] 

= (circumscribed polygon) : (inscribed polygon) 

<S: R, by hypothesis. 

But the surface of the outer solid is greater than S [Prop. 39]. 
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Therefore the surface of the inner solid is greater than R; 
which is impossible, by Prop. 37, 

II. Suppose, if possible, S< R. 

In this case we circumscribe and inscribe polygons such that 
their ratio is less than R: S; and we arrive at the result that _ 

(surface of outer solid) : (surface of inner solid) 

. lee ooe 

But the surface of the outer solid is greater than R [Prop. 40]. 

Therefore the surface of the inner solid is greater than S: which 
is impossible [Prop. 36]. 

Hence, since S is neither greater nor less than R, 

S= Kt. 

Proposition 43. 

Even if the segment of the sphere ts greater than a hemisphere, 

its surface is still equal to a circle whose radius is equal to al. 

For let lal’a’ be a great circle of the sphere, aa’ being the 

diameter perpendicular to ll’; and let 

la'l’ be a segment less than a semi- a’ 
circle. 

Then, by Prop. 42, the surface of U7 

the segment Ja’l’ of the sphere is 
equal to a circle with radius equal to 

vl. 

Also the surface of the whole 

sphere is equal to a circle with radius Y 

equal to aa’ [Prop. 33]. 

But aa’?—a/l?=al?, and circles are to one another as the 

squares on their radii. 

Therefore the surface of the segment lal’, being the difference 

between the surfaces of the sphere and of la’l’, is equal to a 

circle with radius equal to al. 
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Proposition 44. 

The volume of any sector of a sphere is equal to a cone whose 

base is equal to the surface of the segment of the sphere included 

in the sector, and whose height is equal to the radius of the 

sphere. 

Let R be a cone whose base is equal to the surface of the 

segment lal’ of a sphere and whose height is equal to the radius 

of the sphere; and let S be the volume of the sector Olal’. 

Then, if S is not equal to R, it must be either greater or 

less. 

I. Suppose, if possible, that S> R. 

Find two straight lines 8, y, of which 8 is the greater, such 
that 

Symone. 

and let 6, e be two arithmetic means between 8, ¥. 

Let lal’ be a segment of a great circle of the sphere. 
Join Ol, Ol, and let similar polygons with 2n equal sides be 
circumscribed and inscribed to the sector of the circle as before, 
but such that their sides are in a ratio less than 6: 8. 
[Prop. 4]. 
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Then let the two polygons revolve with the segment about 

OaA, generating two solids of revolution. 

Denoting the volumes of these solids by V, v respectively, 
we have 

(V+cone OLL’) : (v+cone Oll’)= AB® : ab’ [Prop. 41] 

ee 0. 

<B:¥, a fortiort*, 

<8: R, by hypothesis. 

Now (V+cone OLL’)>S8. 

Therefore also (v+cone Oll’) > R. 

But this is impossible, by Prop. 38, Cor. combined with Props. 

42, 43. 

Hence Sy aalig 

II. Suppose, if possible, that S< R. 

In this case we take 8, y such that 

Biyckh?S, 

and the rest of the construction proceeds as before. 

We thus obtain the relation 

(V+ cone OLL’'):(v+ cone Oll’)< R:S. 

Now (v+ cone Ol’) <8. 

Therefore (V+cone OLLI’) < RB; 

which is impossible, by Prop. 40, Cor. 2 combined with Props. 

42, 43. 

Since then S is neither greater nor less than A, 

p=, 

* Cf. note on Prop. 34, p. 42.. 
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BOOK. II. 

“ ARCHIMEDES to Dositheus greeting. 

On a former occasion you asked me to write out the proofs of 

the problems the enunciations of which I had myself sent to 

Conon. In point of fact they depend for the most part on the 
theorems of which I have already sent you the demonstrations, 

namely (1) that the surface of any sphere is four times the 

greatest circle in the sphere, (2) that the surface of any 

segment of a sphere is equal to a circle whose radius is equal 

to the straight line drawn from the vertex of the segment to 

the circumference of its base, (3) that the cylinder whose base 

is the greatest circle in any sphere and whose height is equal 

to the diameter of the sphere is itself in magnitude half as 

large again as the sphere, while its surface [including the two 

bases] is half as large again as the surface of the sphere, and 

(4) that any solid sector is equal to a cone whose base is the 

circle which is equal to the surface of the segment of the sphere 
included in the sector, and whose height is equal to the radius 

of the sphere. Such then of the theorems and problems as 

depend on these theorems I have written out in the book 

which I send herewith; those which are discovered by means 

of a different sort of investigation, those namely which relate 
to spirals and the conoids, I will endeavour to send you soon, 
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The first of the problems was as follows: Given a sphere, to 
find a plane area equal to the surface of the sphere. 

The solution of this is obvious from the theorems aforesaid. 
For four times the greatest circle in the sphere is both a plane 
area and equal to the surface of the sphere. 

The second problem was the following.” 

Proposition 1. (Problem.) 

Given a cone or a cylinder, to find a sphere equal to the cone 
or to the cylinder. 

If V be the given cone or cylinder, we can make a cylinder 

equal to $V. Let this cylinder be the cylinder whose base 
is the circle on AB as diameter and whose height is OD. 

Now, if we could make another cylinder, equal to the 

cylinder (OD) but such that its height is equal to the diameter 

of its base, the problem would be solved, because this latter 

cylinder would be equal to 3V, and the sphere whose diameter 

is equal to the height (or to the diameter of the base) of the 

same cylinder would then be the sphere required [I. 34, Cor.]. 

M 

Suppose the problem solved, and let the cylinder (CG) be 

equal to the cylinder (OD), while EF, the diameter of the base, 

is equal to the height CG. 
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Then, since in equal cylinders the heights and bases are 

reciprocally proportional, 

AB’: EF?’ =CG: OD 

Sr Oi ee (1) 
Suppose JLN to be such a line that ° 

Ep c= A Bie MUN os torts eae (2) 

Hence AB: HEF=EF: MN, 

and, combining (1) and (2), we have 

AB: MN =EF: OD, 

or AB 2 EE = iN OD. 

Therefore AB: HF=EF:MN=MN : OD, 

and EF, MN are two mean proportionals between AB, OD. 

The synthesis of the problem is therefore as follows. Take 

two mean proportionals EF, MN between AB and OD, and 

describe a cylinder whose base is a circle on EF as diameter 

and whose height CG is equal to EF. 

Then, since 

AB? EF=EF: MN = MN =; OD, 

EF’?=AB.MN, 

and therefore AB’: EF? =AB:MN 

= HF: OD 

= O{6 On 64 8) 

whence the bases of the two cylinders (OD), (C@) are recipro- 
cally proportional to their heights. 

Therefore the cylinders are equal, and it follows that 

cylinder (CG) = 3V. 

The sphere on HF as diameter is therefore the sphere 
required, being equal to V. 
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Proposition 2. 

If BAB’ be a segment of a sphere, BB’ a diameter of the 
base of the segment, and O the centre of the sphere, and if AA’ 

be the diameter of the sphere bisecting BB’ in M, then the volume 

of the segment is equal to that of a cone whose base is the same 
as that of the segment and whose height is h, where 

«h:AM=OA'+ A'’M: A’M. 

Measure MH along MA equal to h, and MH’ along MA’ 

equal to h’, where 

h': A’M=O0A+AM: AM. 

Suppose the three cones constructed which have O, H 

H’ for their apices and the base (BB’) of the segment for their 

common base. Join AB, A’B. 

Let C be a cone whose base is equal to the surface of the 
segment BAB’ of the sphere, ie. to a circle with radius equal 

to AB [I. 42], and whose height is equal to OA. 

Then the cone C is equal to the solid sector OBAB’ [I. 44]. 

Now, since HM: MA=OA’+ A'M: A’'M, 

dividendo, HA:AM=0OA: A’M, 

and, alternately, HA: AO=AM: MA’, 

so that 

HO: 0A=AA’': A’M 

= AB*: BM 

= (base of cone C) : (circle on BB’ as diameter). 
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But OA is equal to the height of the cone C; therefore, since 

cones are equal if their bases and heights are reciprocally 

proportional, it follows that the cone C (or the solid sector 

OBAB’) is equal to a cone whose base is the circle on BB’ as 

diameter and whose height is equal to OH. 

And this latter cone is equal to the sum of two others 

having the same base and with heights OM, MH, i.e. to the 

solid rhombus OBHB’. 

Hence the sector OBAB’ is equal to the rhombus OBHB’. 

Taking away the common part, the cone OBB’, 

the segment BAB’ = the cone HBB’. 

Similarly, by the same method, we can prove that 

the segment BA’B’ = the cone H’BB’. 

Alternative proof of the latter property. 

Suppose D to be a cone whose base is equal to the surface 

of the whole sphere and whose height is equal to OA. 

Thus D is equal to the volume of the sphere. [1. 33, 34] 

Now, since OA’+ A’M: A’M=HM: MA, 

dividendo and alternando, as before, 

OAT AH=A'M: MA. 

Again,since H’M:MA'=0A+AM: AM, 

TAS S04 =A Me MA 

= OA : AH, from above. 

Componendo, Tg ORS TOP. NOI 2 EE OC Bee enna cen CL), 

Alternately, LOS OTT ead A arene ace eae (2), 

and, componendo, HH’: HO=OH: HA, 

= H'0 : OA, from (1), 

whence foal MOV. We We AOL AOE Ren on ee (3). 

Next, since H’0: OH = 0A: AH, by (2), 

= A'M: MA, 

(H’'0 + OH) : H’0.0H =(A’M + MA)’: A’M. MA, 
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whence, by means of (3), 

PER iO A AAC ee OLA, 

or HES OA = AA BM. 

Now the cone D, which is equal to the sphere, has for its base 
a circle whose radius is equal to 4A’, and for its height a line 

equal to OA. 

Hence this cone D is equal to a cone whose base is the circle 

on BB’ as diameter and whose height is equal to HH’; 

therefore the cone D=the rhombus HBH’B’, 

or the rhombus HBH’B’ = the sphere. 

But the segment BAB' =the cone HBB’; 

therefore the remaining segment BA’B’= the cone H’BB’. 

Cor. The segment BAB’ is to a cone with the same base and 
equal height in the ratio of OA'+ A'M to A’M. 

Proposition 8. (Problem.) 

To cut a given sphere by a plane so that the surfaces of the 

segments may have to one another a given ratio. 

Suppose the problem solved. Let AA’ be a diameter of a 

great circle of the sphere, and suppose that a plane perpendicular 
to AA’ cuts the plane of the great circle in the straight 

B 

line BB’, and AA’ in M, and that it divides the sphere so that 

the surface of the segment BAB’ has to the surface of the 

segment BA’B’ the given ratio. 
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Now these surfaces are respectively equal to circles with 

radii equal to AB, A’B [I. 42, 43]. 

Hence the ratio AB*: A’B’ is equal to the given ratio, i.e. 

AM is to MA’ in the given ratio. 

Accordingly the synthesis proceeds as follows. 

If H : K be the given ratio, divide AA’ in I so that 

tA Mer MM At ee) d+ KK 

itien 4: MAv AB AB 

=(circle with radius AB) : (circle with radius A’B) 

= (surface of segment BAB’) : (surface of segment BA’B’). 

Thus the ratio of the surfaces of the segments is equal to 

the ratio H : K. 

> 

f site Abas 4, (Problem.) 
A\ 1 ve 7 

To cut a given sphere by a plane so that the volumes of the 

segments are to one another in a gwen ratio. 

Suppose the problem solved, and let the required plane cut 
the great circle ABA’ at right angles in the line BB’. Let 
AA’ be that diameter of the great circle which bisects BB’ at 

right angles (in J), and let O be the centre of the sphere. 

Take H on OA produced, and H’ on OA’ produced, such 
that 

OA'+ A'’M: A’M=HM: MA, 

and OA+AM:AM=H'M: MA’ ............. (2). 

Jom BAY BH, BH RBA”. 
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Then the cones HBB’, H’BB’ are respectively equal to the 

segments BAB’, BA’B’ of the sphere [Prop. 2]. 

Hence the ratio of the cones, and therefore of their altitudes, 

is given, 1.e. 

HM : H’M =the given ratio............... (3). 

We have now three equations (1), (2), (3), in which there 

appear three as yet undetermined points M, H, H’; and it is 

first necessary to find, by means of them, another equation in 

which only one of these points (J) appears, i.e. we have, so to 

speak, to eliminate H, H’. 

Now, from (38), it is clear that HH’: H’M is also a given 

ratio; and Archimedes’ method of elimination is, first, to find 

values for each of the ratios A’H’: H’M and HH’: H’A’ which 

are alike independent of H, H’, and then, secondly, to equate 

the ratio compounded of these two ratios to the known value 

of the ratio HH’: H’'M. 

(a) To find such a value for A’H’: H’M. 

It is at once clear from equation (2) above that 

A eM = OA OA AA M ence ae (4). 

(6) ‘To find such a value for HH’: A’H’. 

From (1) we derive 

A'M: MA=04A'+ A'M: HM 

SOA HATIR AAG, Saves cotaee ()s 

and, from (2), A’M: MA=H’M:0A+AM 

sew ALE] GNC) Avorn, gcse set Ne (6). 

Thus HA:AOQ=0A': A’H 

whence OH: OA'=0H*: AU’, 

or OH? OH = 0A AH, 

It follows that 

Tas OED = OH Al 

or HH’ {H'A’=0H”, 

Therefore HH’: HA =0H”® :H’A® 

= AA”: A’M’, by means of (6) 
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(c) To express the ratios A’H’: H’M and HH’: H’M more 

simply we make the following construction. Produce OA to D 
so that OA = AD. (D will lie beyond H, for A’M> MA, and 

therefore, by (5), OA > AH.) 

Then ACH TM = OA AOA AM 

=A Det DMs oe eee (7) 

Now divide AD at E so that 

PRT Ss HM eA ee DE aes, ea ete (8). 

Thus, using equations (8), (7) and the value of HH’: H’A’ 

above found, we have 

ADA t= elie 

= (i iHeAs) (a 

=(A AO Ar ).( AD ADE), 

But AD: DE=(DM > DE).(AD: DM). 

Therefore VED DH = AAC Age ce ee ee eee (9). 

And D is given, since AD=OA. Also AD: DE (being equal 

to HH’: H'M) is a given ratio. Therefore DE is given. 

Hence the problem reduces itself to the problem of dividing 
A'D into two parts at M so that 

MD : (a given length) = (a given area) : A’M’. 

Archimedes adds: “If the problem is propounded in this 

general form, it requires a dvopiopds [i.e it is necessary_to 

- investigate the limits of possibility], but, if there be added the 

conditions subsisting in the present case, it does not require a 
Svopicpos.” [a'¢, ~ if 

In the present case the problem is: 

Given a straight line A’A produced to D so that A'A =2AD, 

and gwen a point H on AD, to cut AA’ in a point M so that 

AAS ASM: =e eae 

“And the analysis and synthesis of both problems will be 
given at the end*.” 

The synthesis of the main problem will be as follows. Let 

R:S be the given ratio, R being less than S. AA’ being a 

* See the note following this proposition. ~ 
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diameter of a great circle, and O the centre, produce OA to Dy 
so that OA = AD, and divide AD in E go that \ 

ATED = B.S. 

Then cut AA’ in M so that 

MSDE = AAA? 

Through M erect a plane perpendicular to 4A’; this plane 
will then divide the sphere into segments which will be to one 

another as R to 8. 

Take H on A'’A produced, and H’ on AA’ produced, so that 

OAL ACM. ACM = FM 3M Aces, (1), 

OA AM AM MM Ae ee eee (2). 

We have then to show that 

a Fed = Ter 9 Ot A Lary 1). 

(a) We first find the value of HH’: H’A’ as follows. 

As was shown in the analysis (0), 

ET eH Aves OF: 

or TORT Av OH! HAG 

Swi Wiles Ne 

= MD: DE, by construction. 

(8) Next we have 

HASH M—OA- OA AM 

=A): DM, 

Therefore HH’: H’M=(HH’: H’A’),(H’A’: HM) 

=(MD: DE).(AD: DM) 

=AD* DE, 

whence HM: MH’=AE: ED 

=: ss. Q. E. D. 

Note. The solution of the subsidiary problem to which the 

original problem of Prop. 4 is reduced, and of which Archimedes 

promises a discussion, is given in a highly interesting and 

important note by Eutocius, who introduces the subject with 

the following explanation. 

He As 5 
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“He [Archimedes] promised to give a solution of this 

problem at the end, but we do not find the promise kept in any 

of the copies. Hence we find that Dionysodorus too failed to 

light upon the promised discussion and, being unable to grapple 

with the omitted lemma, approached the original problem in a 

different way, which I shall desctibe later. Diocles also ex- 

pressed in his work zrepi zrvpiov the opinion that Archimedes 

made the promise but did not perform it, and tried to supply 

the omission himself. His attempt I shall also give in its 

order. It will however be seen to have no relation to the 

omitted discussion but to give, like Dionysodorus, a construction 

arrived at by a different method of proof. On the other hand, 

as the result of unremitting and extensive research, I found in 

a certain old book some theorems discussed which, although the 

reverse of clear owing to errors and in many ways faulty as 

regards the figures, nevertheless gave the substance of what I 

sought, and moreover to some extent kept to the Doric dialect 

affected by Archimedes, while they retained the names familiar in 
old usage, the parabola being called a section of a right-angled 

cone, and the hyperbola a section of an obtuse-angled cone; 

whence I was led to consider whether these theorems might 

not in fact be what he promised he would give at the end. For 

this reason I paid them the closer attention, and, after finding 

great difficulty with the actual text owing to the multitude of 

the mistakes above referred to, I made out the sense gradually 

and now proceed to set it out, as well as I can, in more familiar 
and clearer language. And first the theorem will be treated 
generally, in order that what Archimedes says about the limits 
of possibility may be made clear; after which there will follow 
the special application to the conditions stated in his analysis 
of the problem.” 

The investigation which follows may be thus reproduced. 
The general problem is: 

Given two straight lines AB, AC and an area D, to divide 
AB at M so that 

AM? AO= DB? 
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Analysis. 

Suppose J found, and suppose AC placed at right angles to 
AB. Join CM and produce it. Draw “BN through B parallel 

to AC meeting CM in NV, and through CO draw CHE parallel to 

AB meeting HBN in LE. Complete the parallelogram CEN F, 

and through M draw PMH parallel to AC meeting FN in P. 

Measure EL along HN so that 

CH. EL (or AB. EL) = D. 

Then, by hypothesis, 

AM:AC=CE .£L: MB’. 

And 

AM:AC=CE: EN, 

by similar triangles, 

=CH. EL: EL. EN. 

lt follows that PN’?=MB*=EL.EN. 

Hence, if a parabola be described with vertex H, axis HN, and 

parameter equal to HZ, it will pass through P; and it will be 

given in position, since HL is given. 

Cc H |= 

Therefore P lies on a given parabola. 

Next, since the rectangles FH, AF are equal, 

FP.PH=AB.BE. 

Hence, if a rectangular hyperbola be described with CH, CF 

as asymptotes and passing through B, it will pass through P. 
And the hyperbola is given in position. 

Therefore P lies on a given hyperbola. 

Thus P is determined as the intersection of the parabola 

and hyperbola. And since P is thus given, M is also given. 

Stopiamos., 

Now, since AM:AC=D: MB’, 

AM. MB’? = AC.D. 

But AC. Dis given, and tt will be proved later that the maximum 

value of AM. MB? ts that which it assumes when BM = 2AM. 

5—2 
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Hence tt is a necessary condition of the possibilty of a 

solution that AC.D must not be greater than 1AB.(2AB)’, or 

frAB*. 

Synthesis. 

If O be such a point on AB that BO=2A0, we have seen 

that, in order that the solution may be possible, 

AC. D+A0.OB*. 

Thus AC. D is either equal to, or less than, AO. OB. 

(1) If AC.D=AO. OB’, then the point O itself solves the 

problem. 

(2) Let AC.D be less than AO. OB’. 

Place AC at right angles to AB. Join CO, and produce it 
to R. Draw EBR through B parallel to AC meeting CO in R, 

and through C draw CE parallel 

to AB meeting HBR in L. Com- 

plete the parallelogram CHRF, 

and through O draw QOK parallel 
to AC meeting FR in Q and CH 

in Kk. 

Then, since 

ACD AO 50B87 

measure RQ’ along RQ so that 

AG yD = AGa) he 

or AQ 4ACee De OGR* 

Measure HL along HR so that 

D=CE.EL (or AB. EL). 

Now, since AO: AC=D: Q’R?, by hypothesis, 

=CE.EL: Q’R’, 

and AO: AC=CE : ER, by similar triangles, 

=CE.EL: EL.ER, 
it follows that 

OR? =EL,ER, 
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Describe a parabola with vertex #, axis HR, and parameter 
equal to HL. This parabola will then pass through Q’. 

Again, rect. FK = rect. AL, 

or FQ.QK=AB.BE; 

and, if we describe a rectangular hyperbola with asymptotes 

CE, CF and passing through B, it will also pass through Q. 

Let the parabola and hyperbola intersect at P, and through 

P draw PMH parallel to AC meeting AB in M and CH 

in H, and GPW parallel to AB meeting CF in G and LR 

in NV. 

Then shall MW be the required point of division. 

Since PG. Pik=ABUBE, 

rect. GM = rect. ME, 

and therefore CIN is a straight line. 

Thus A BaD B= PGE = A Mic HIN viccotsies (1). 

Again, by the property of the parabola, 

PN’ = EL.EN, 

or VIS ae TLD LUN tee deleetocernccsn tert (2). 

From (1) and (2) 

AM: EL=AB.BE: MB’, 

or AM.AB:AB.EL=AB.AC: MB’. 

Alternately, 

AM.AB:AB.AC=AB.EL: MB’, 

or AME ACs De MB 

Proof of dsopiapos. 

It remains to be proved that, if AB be dinded at O so that 

BO =2A0, then AO. OB? is the maximum value of AM. MB’, 

or AO.OB2> AM MB’, 

where M is any point on AB other than O. 
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Suppose that AO: AC=CEH. HL’: OB, 

so that AO. 0B =CE. EL, AC. 

Join CO, and produce it to V; 

draw EBN through B parallel 

to AC, and complete the paral- 

lelogram CENF. 

Through O draw POH 
parallel to AC meeting FN 

in P and C# in H. 

With vertex #, axis EN, 

and parameter HL’, describe 

a parabola. This will pass 

through P, as shown in the 

analysis above, and beyond P 

will meet the diameter CF of 

the parabola in some point. 

Next draw a rectangular 
hyperbola with asymptotes CZ, 

CF and passing through B. 

This hyperbola will also pass 

through P, as shown in the 

analysis. 

Produce NE to T so that 
TE=EN. Join TP meeting 
CE in Y, and produce it to 

meet CF in W. Thus 7'P will 

touch the parabola at P. 

Then, since BO=2A0) 

TP =2PW. 

And Pree PY, 

Therefore PW=PY. 

Since, then, WY between the asymptotes is bisected at P, the 
point where it meets the hyperbola, 

WY is a tangent to the hyperbola. 

Hence the hyperbola and parabola, having a common tangent 
at P, touch one another at P. 
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Now take any point M on AB, and through M draw QMK 
parallel to AC meeting the hyperbola in Q and CZ in K. 
Lastly, draw GqQR through Q parallel to AB meeting OF in G, 
the parabola in g, and HN in R. 

Then, since, by the property of the hyperbola, the rectangles 

GK, AF are equal, CMR is a straight line. 

By the property of the parabola, 

Gh = La, Le, 

so that OR <i ER: 

Suppose OR = ELER, 

and we have AM: AC=CH: ER 

=OH EL: HL.ER 

= CH. EL: QR? 

= CH.EL : MB’, 

or AM .MB*=CE EL. AC. 

Therefore AM.MB’<CE.EL’'.AC 

ed OB. 

If AC. D< AO. OB’, there are two solutions because there 

will be two points of intersection between the parabola and the 

hyperbola. 

For, if we draw with vertex H# and axis HN a parabola 

whose parameter is equal to HZ, the parabola will pass through 

the point Q (see the last figure); and, since the parabola meets 

the diameter CF beyond Q, it must meet the hyperbola again 

(which has CF for its asymptote). 

[If we put AB=a, BM=«a2, AC =c, and D=D’, the pro- 

portion 
AM AC = Dy MB 

is seen to be equivalent to the equation 

x (a—2)=0'e, 

being a cubic equation with the term containing # omitted. 

Now suppose HN, EC to be axes of coordinates, HV being 

the axis of y. 
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Then the parabola used in the above solution is the 

parabola 

and the rectangular hyperbola is, 

y (a — 2”) =ae. 

Thus the solution of the cubic equation and the conditions 

under which there are no positive solutions, or one, or two 

positive solutions are obtained by the use of the two conics.] 

[For the sake of completeness, and for their intrinsic interest, 

the solutions of the original problem in Prop. 4 given by 

Dionysodorus and Diocles are here appended. 

Dionysodorus’ solution. 

Let AA’ be a diameter of the given sphere. It is required 
to find a plane cutting AA’ at right angles (in a pomt I, 

suppose) so that the segments into which the sphere is divided 

are in a given ratio, as CD: DE. 

Produce A’A to F' so that AF’ = OA, where O is the centre 

of the sphere. 

D 
+ Cc ; E 

Draw AH perpendicular to AA’ and of such length that 

HATA = OF “RD. 
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and produce AH to K so that 

AS set Ay ATION ret eosens coves (a). 

With vertex #’, axis FA, and parameter equal to AH 

describe a parabola. This will pass through KX, by the equa- 

tion (a). 

Draw A’K’ parallel to dA and meeting the parabola in K’ ; 
and with A’F, .A’K’ as asymptotes describe a rectangular 

hyperbola passing through H. This hyperbola will meet the 

parabola at some point, as P, between K and Kk’. 

Draw PM perpendicular to AA’ meeting the great circle in 

B, B’, and from H, P draw HL, PR both parallel to AA’ and 

meeting A’K’ in L, # respectively. 

Then, by the property of the hyperbola, 

Tel = AN ae dy, 

Le. PM. MA’= HAV AA’, 

or Eira eA A AM, 

and Dea aA Ale AMG, 

Also, by the property of the parabola, 

PM’ = FM. AH, 

Le. PM ee Meet eT AT, 

or PMA = Pie A 

= AA”: A’M”, from above. 

Thus, since circles are to one another as the squares of their 

radii, the cone whose base is the circle with A’M as radius and 

whose height is equal to FM, and the cone whose base is the 

circle with AA’ as radius and whose height is equal to AH, 

have their bases and heights reciprocally proportional. 

Hence the cones are equal; 1e., if we denote the first cone 

by the symbol c (A’I/), FM, and so on, 

e(AM), FM =c(A 4’), AH. 

Now c(AA’), FA: c(AA’), AH=FA: AH 

= UE : ED, by construction. 
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Therefore 

C(AA), FAVOAM), PM =CH ED eA): 

But (1) c(AA’), FA =the sphere. [I. 34] 

(2) c(A’M), FM can be proved equal to the segment of 

the sphere whose vertex is A’ and height A’M. 

For take G on AA’ produced such that 

GM:MA’'=FM: MA 

=O0A+AM: AM. 

Then the cone GBB’ is equal to the segment A’BB’ [Prop. 2]. 

And FM:MG=AM : MA’, by hypothesis, 

=BM": A°M*. 

Therefore 

(circle with rad. BM) : (circle with rad. A'M) 

= FM: MG, 

so that c(A M), FM =c(BM), MG 

=the segment A’BB’. 

We have therefore, from the equation (8) above, 

(the sphere) : (segmt. A’BB’) = CE : ED, 

whence (segmt. ABB’): (segmt. A’BB’)=CD: DE. 

Diocles’ solution. 

Diocles starts, like Archimedes, from the property, proved in 

Prop. 2, that, if the plane of section cut a diameter AA’ of the 
sphere at right angles in M, and if H, H’ be taken on OA, OA’ 
produced respectively so that 

OA’ + A'M: A'M=HM : MA, 

OA+AM:AM=H’'M: MA’, 

then the cones HBB’, H’BB’ are respectively equal to the 
segments ABB’, A’BB’, 
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Then, drawing the inference that 

HA : AM=0A’': A’M, 

Ale A Mee OAc: AM, 

B 

nae fe) Al 

\ : 

B' 

he proceeds to state the problem in the following form, slightly 

generalising it by the substitution of any given straight line for 

OA or OA’: 

Gwen a straight line AA’, its extremities A, A’, a ratio 0: D, 

and another straight line as AK, to divide AA’ at M and to find 
two points H, H’ on A’A and AA’ produced respectively so that 

the following relations may hold simultaneously, 

CUD eM MELE ae be ee (a), 

pe Ae AM a A KAM Ue cones (8), 

TAC ACM aA KAM ln a. Se eee (y). 

Analysis. 

Suppose the problem solved and the points M, H, H’ all 

found. 

Place AK at right angles to AA’, and draw A’K’ parallel 

and equal to AK. Jom KM, K’M, and produce them to meet 

K’'A’, KA respectively in #, F. Join KK’, draw EG through 

E parallel to A’A meeting KF in G, and through M draw QM N 

parallel to AK meeting HG in Q and KK’ in N. 

Now HA: AM=A’K : AM, by (8), 

= FA: AM, by similar triangles, 

whence HA=FfA. 

Similarly H’'A’=A’'E. 

Next, 

FA+AM: A’'K'+A’M=AM: A'M 
=AK+AM: HA’+ A’'M, by similar triangles. 
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Therefore 

(FA + AM).(BA'+ A’M)=(KA+ AM).(K'A'+ AM). 

Take AR along AH and A’R’ along A’H’ such that 

A= ARAL, 

Then, since FA + AM= HM, HA’ + A’M = ME’, we have 

AM. ME = RM Meese (8). 

(Thus, if R falls between A. and H, R’ falls on the side of dak 

remote from A’, and vice versa.) 

Now C: D=HM: MH’, by hypothesis, 

= HM.MH’: MH" 

= RM.MR’: MH”, by (8). 

Measure MV along MN so that MV=<A’M. Join A’V and 

produce it both ways. Draw RP, R’P’ perpendicular to RR’ 

meeting A’V produced in P, P’ respectively. Then, the angle 

MA'V being half a right angle, PP’ is given in position, and, 
since f, R’ are given, so are P, P’. 

And, by parallels, 

PeV ete =i Monk, 
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Therefore PV.P’V: PV*=RM.MR’: RM’. 

But PV* =2RM*. 

Therefore PV  P'V=2RM MR’. 

And it was shown that 

RM. MR: MH? =C; D. 

Hence Ua NEC eal 1 Wo Meee Yay BY 

But MH’ = A'M + A’E= VM + MQ= QV. 

Therefore QV? SPV .P’V =D: 2C, a given ratio: 

Thus, if we take a line p such that 

DEC pr ee, 

and if we describe an ellipse with PP’ as a diameter and p as 

the corresponding parameter [= DD”/PP’ in the ordinary 

notation of geometrical conics], and such that the ordinates to 

PP’ are inclined to it at an angle equal to half a right angle, 

1.e. are parallel to QV or AK, then the ellipse will pass 

through Q. 

Hence Q lies on an ellipse given in position. 

Again, since HK is a diagonal of the parallelogram GK’, 

GOON = AA CALKe 

If therefore a rectangular hyperbola be described with AG, 
KK’ as asymptotes and passing through A’, it will also pass 
through Q. 

Hence Q lies on a given rectangular hyperbola. 

Thus Q is determined as the intersection of a given ellipse 

* There is a mistake in the Greek text here which seems to have escaped the 

notice of all the editors up to the present. The words are éav dpa roijowpev, ws 

thy A mpos Thy durdactay THs TL, otrws rHv TL mpds GAAnY Tuva ws Thy ®, i.e. (with 

the lettering above) ‘‘ If we take a length p such that D: 2C= PP’: p.” This 

cannot be right, because we should then have 

QU? 3 TAY, ION TRIE” 9 Fa, 

whereas the two latter terms should be reversed, the correct property of the 

ellipse being 
ONY 2 IPA SOU 9) 6 IRIE. [Apollonius I. 21] 

The mistake would appear to have originated as far back as Kutocius, but I 

think that Eutocius is more likely to have made the slip than Diocles himself, 

because any intelligent mathematician would be more likely to make such a slip 

in writing out another man’s work than to overlook it if made by another. 
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and a given hyperbola, and is therefore given. Thus IM is 

given, and H, H’ can at once be found. 

Synthesis. 

Place AA’, AK at right angles, draw A’K” parallel and 

equal to AK, and join KK’. i 

Make AR (measured along A’A produced) and A’R’ 

(measured along AA’ produced) each equal to AK, and 

through R, R’ draw perpendiculars to RR’. 

Then through A’ draw PP’ making an angle (A A’P) with 

AA’ equal to half a right angle and meeting the perpendiculars 

just drawn in P, P’ respectively. 

Take a length p such that 

DEC =) Ll. 

and with PP’ as diameter and p as the corresponding parameter 

describe an ellipse such that the ordinates to PP’ are inclined 

to it at an angle equal to AA’P, ie. are parallel to AK. 

With asymptotes KA, KK’ draw a rectangular hyperbola 
passing through A’. 

Let the hyperbola and ellipse meet in Q, and from Q draw 

QMVN perpendicular to AA’ meeting AA’ in M, PP’ in V 

and KK'in N. Also draw GQE parallel to A.A’ meeting AK, 

A’K’ respectively in G, £. 

Produce KA, K’M to meet in F. 

Then, from the property of the hyperbola, 

GO RON ea AAs AR 

and, since these rectangles are equal, HME is a straight line. 

Measure AH along AR equal to AF, and A’H’ along A’R’ 
equal to A’E. 

From the property of the ellipse, 

OVS PV ae Vener Pr: 

=D :;20¢. 

* Here too the Greek text repeats the same error as that noted on 18 ihe 
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And, by parallels, 

PVAPVsRM RM; 

or PVE Cee Pa RM MR ie i. 

while P’V?=2R’M’, since the angle RA’P is half a right 

angle. 

Therefore EY oe Vie DR Mea 

whence OV? 22hM. MR = De 2C. 

But QV=EA'+ A’M= MA’. 

Therefore PAM MS = CoD. 

Again, by similar triangles, 

FA+AM:k’'A'’+A’M=AM:A'M 

=KA+AM: EA’ +A'M. 
Therefore 

(FA +AM).(BA’+ A'M) =(KA+AM).(K'A'+A’'N) 

or HM MiIP=RM.MR’. 

It follows that 

AMI ME © MH? = 2D, 

or EM OULD ce Ce) eee teas cere (a). 

Also HA? AM= FA AM; 

= A’k’: A’M, by similar 

triangles...(8), 
and H'A’: A'M=EA’: A'M 

Hence the points M, H, H’ satisfy the three given 

relations. ] 

Proposition 5. (Problem.) 

To construct a segment of a sphere similar to one segment 

and equal in volume to another. 

Let ABB’ be one segment whose vertex is A and whose 

base is the circle on BB’ as diameter; and let DEF’ be another 

segment whose vertex is D and whose base is the circle on LF 
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as diameter. Let 4A’, DD’ be diameters of the great circles 

passing through BB’, HF respectively, and let O, C be the 

respective centres of the spheres. 

Suppose it required to draw a segment similar to DHF and 

equal in volume to ABB’, 

Analysis. Suppose the problem solved, and let def be the 
required segment, d being the vertex and ef the diameter of 

the base. Let dd’ be the diameter of the sphere which bisects 
ef at right angles, c the centre of the sphere. 

aq’ 

Let M, G,g be the points where BB’, EF, ef are bisected 

at right angles by AA’, DD’, dd’ respectively, and produce OA, 
CD, cd respectively to H, K, k, so that 

OA'+ A'’M: A’/M=HM:MA 

CDE D'G = D'G=KG~ GD | : 

cd’ +d’g:d'g=kg: gd 

and suppose cones formed with vertices H, K, k and with the 
same bases as the respective segments. The cones will then be 
equal to the segments respectively [Prop. 2]. 

Therefore, by hypothesis, 

the cone HBB’ =the cone kef, 
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Hence 

(circle on diameter BB’) : (circle on diameter ef )=kg : HM, 

so that Beep te kg Ma ries, 58 (1). 

But, since the segments DEF, def are similar, so are the 
cones KEF, kef. 

Therefore KG: EF=kg: ef. 

And the ratio KG : HF is given. Therefore the ratio kg : ef 
is given. 

Suppose a length & taken such that 

ROC famed MOR ca duse acces ae 2). 
Thus & is given. o 

Again, since kg: HM=BB”: ef*=ef : R, by (1) and (2), 

suppose a length S taken such that 

ef’? = BB’ .8, 

or BEe Neh = DD eo. 

Thus BB’: ef=ef: S=S8: R, 

and ef, S are two mean proportionals in continued proportion 

between BB’, R. 

Synthesis. Let ABB’, DEF be great circles, AA’, DD’ 

the diameters bisecting BB’, HF at right angles in M, G 
respectively, and O, C' the centres. 

Take H, K in the same way as before, and construct the 

cones HBB’, KEF, which are therefore equal to the respective 

segments ABB’, DEF. 

Let R be a straight line such that 

KG: EF=HM -h, 

and between BB’, R take two mean proportionals ef, S. 

On ef as base describe a segment of a circle with vertex d 

and similar to the segment of a circle DHF. Complete the 

circle, and let dd’ be the diameter through d, and ¢ the centre. 

Conceive a sphere constructed of which def is a great circle, 

and through ef draw a plane at right angles to dd’. 

H. A. 6 
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Then shall def be the required segment of a sphere. 

For the segments DEF, def of the spheres are similar, like 

the circular segments DEF, def. 

Produce cd to k so that 

cd’+d'g:d'g=kq: gd. 

The cones KEF, kef are then similar. 

Therefore kg: ef =KG: EF=HM: Rk, 

whence kg: HM =ef: R. 

But, since BB’, ef, S, R are in continued proportion, 

DBP ef 2 = DB OS 

=f 

=ko 2 HM, 

Thus the bases of the cones HBB’, kef are reciprocally 

proportional to their heights. The cones are therefore equal, 

and def is the segment required, being equal in volume to the 

cone hef. [Prop. 2] 

Proposition 6. (Problem.) 

Given two segments of spheres, to find a third segment of a 

sphere sumilar to one of the gwen segments and having its 
surface equal to that of the other. 

Let ABB’ be the segment to whose surface the surface of 

the required segment is to be equal, A BA’B’ the great circle 
whose plane cuts the plane of the base of the segment ABB’ at 
right angles in BB’, Let AA’ be the diameter which bisects 
BB’ at right angles. 

Let DEF be the segment to which the required segment 
is to be similar, DE'D’F the great circle cutting the base of the 
segment at right angles in HF. Let DD’ be the diameter 
bisecting HF at right angles in G. 

Suppose the problem solved, def being a segment similar 
to DEF and having its surface equal to that of ABB’; and 
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complete the figure for def as for DEF, corresponding points 
being denoted by small and capital letters respectively. 

d' 

Join AB, DF, df. 
Now, since the surfaces of the segments def, ABB’ are equal, 

so are the circles on df, AB as diameters ; [I. 42, 43] 

that is, Of=AB. 

From the similarity of the segments DEF, def we obtain 

d'd:dg=D'D: DG, 

and dg20/—DG «DF: 

whence ad. df= DD. DF, 

or Cad2AB= DD DF, 

But AB, D'D, DF are all given; 

therefore d’d is given. 

Accordingly the synthesis is as follows. 

Take d’d such that 

DORI SHES VET DES 00 ee NAE DOP COA Ch: 

Describe a circle on d’d as diameter, and conceive a sphere 

constructed of which this circle is a great circle. 

6—2 
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Divide d’d at g so that 

d’'g:gd=D'G : GD, 
and draw through g a plane perpendicular to d’d cutting off 

the segment def of the sphere and intersecting the plane of the 

great circle in ef The segments def, DEF are thus similar, 

and dg : df= DG : DF. 

But from above, componendo, 

Cid 0g =D DG: 

Therefore, ex aequali, dd:df=D'D: DP, 

whence, by (1), df= AB. 

Therefore the segment def has its surface equal to the 

surface of the segment ABB’ [I. 42, 43], while it is also similar 

to the segment DEF. 

Proposition 7. (Problem.) 

From a gwen sphere to cut off a segment by a plane so that 

the segment may have a given ratio to the cone which has the same 

base as the segment and equal height. 

Let AA’ be the diameter of a great circle of the sphere. 
It is required to draw a plane at right angles to AA’ cutting 

off a segment, as ABB’, such that the segment ABB’ has to 
the cone ABB’ a given ratio. 

Analysis. 

Suppose the problem solved, and let the plane of section 

cut the plane of the great circle in BB’, and the diameter 

AA’ in M. Let O be the centre of the sphere. 

nn 

a 

Produce OA to H so that 

OAR SASM.: AM=AHM <A = oe (1). 
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Thus the cone HBB’ is equal to the segment ABB’. [Prop. 2] 

Therefore the given ratio must be equal to the ratio of the 
cone HBB’ to the cone ABB’, ve. to the ratio HM : MA. 

Hence the ratio OA’+ A’M: A’M is given; and therefore 
A’M is given. 

Srtopramos. 

Now ' OA’: A’M > OA': A'A, 

so that OA’+ A’M: A’M>O0A'’4+A'’A:A'A 

Sess 

Thus, in order that a solution may be possible, tt is a 
necessary condition that the given ratio must be greater than 
3: 2. 

The synthesis proceeds thus. 

Let AA’ be a diameter of a great circle of the sphere, O the 
centre. 

Take a line DE, and a point F on it, such that DH: EF is 

equal to the given ratio, being greater than 3: 2. 

Now, since OA AAs AA = 3.2 2, 

DE: EF > OA'+A’A: A’A, 

so that DEVEE>O0A: AA. 

Hence a point M can be found on AA’ such that 

HD Weebly =i) Agay AL ae csaaeee nce cees (2). 

Through M draw a plane at right angles to A A’ intersecting 

the plane of the great circle in BB’, and cutting off from the 

sphere the segment ABB’. 

As before, take H on OA produced such that 

OA’+A'M: A’M=HM: MA. 

Therefore HM: MA = DE: EF, by means of (2). 

It follows that the cone HBB’, or the segment ABB’, is to 

the cone ABB’ in the given ratio DE: EF. 
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Proposition 8. 

If a sphere be cut by a plane not passing through the centre 

into two segments A’BB’, ABB’, of which A’BB’ is the greater, 

then the ratio : 

(segmt. A’BB’) : (segmt. ABB’) 
< (surface of A’BB’)’ : (surface of ABB’) 

but > (surface of A’BB’)! : (surface of ABB’)*. 

Let the plane of section cut a great circle A’BAB’ at right 
angles in BB’, and let AA’ be the diameter bisecting BB’ at 

right angles in Df. 

Let O be the centre of the sphere. 

Join A’B, AB. 

As usual, take H on OA produced, and H’ on OA’ produced, 

so that 

OA’ + A'M: A'M = AM : MA... .ccecerees: CL), 

OA+AM:AM = A’M: MA’.........:... (2), 

and conceive cones drawn each with the same base as the two 

segments and with apices H, H’ respectively. The cones are 

then respectively equal to the segments [Prop. 2], and they 

are in the ratio of their heights HM, H’M. 

Also 

(surface of A’ BB’): (surface of ABB’) = A’B?: AB? [I. 42, 43] 

= AM AM. 

* This is expressed in Archimedes’ phrase by saying that the greater seg- 
ment has to the lesser a ratio “less than the duplicate (SurAdovov) of that which 
the surface of the greater segment has to the surface of the lesser, but greater 
than the sesquialterate (4ucddvov) [of that ratio].” 
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We have therefore to prove 

(a) that H'M : MH < A'M’ : MA’, 

(b) that A’M: MH > A’'M}: MA}. 

(a) From (2) above, 

A’M: AM=H'M:0A+AM 

=H’ A’: OA’, since OA = O04". 

Since A’M> AM, H’'A'>OA’; therefore, if we take K on 

H’A’ so that OA’=A’K, K will fall between H’ and A’. 

And, by (1), AM AM = 1M MH, 

Thus KM: MH =H'A’: A'K, since A'K = 04’, 

> H’M : MK. 

Therefore H’/M.MH< KM’. 

It follows that 

A’M.MH : MH’?< KM’: MH’, 

or A’M: MH <KM’: MH’ 

< AMNTAMesby (LD: 

(ie omee OAC 0 A) 

AM.MA <A 0:04; 

or AlIMesOAL< OA AM 

< H'A’: A’'M, by means of (2). 

Therefore A’M’< H’A’. OA’ 

He AG, Aye 

Take a point NV on A’A such that 

AgNe eA Ah 

Thus AeA, Keel NG AIS ae eb ae escent (3). 

Also He All (Nizer A Ne ATS 

and, componendo, 

HONG: ASN =a BA’ K, 

whence A'N*?: A'K*=H'N’: NK’. 
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Therefore, by (3), 

HA AK =H Ne NC. 

Now H’M: MK >H’'N: NK. 

Therefore H’M’?: MK’?>H'A’: A’K 

= HAS OA: 

> A’M: MA, by (2), as above, 

> OA’ +A’M: MH, by (1), 

>KM: MH. 

Hence $H’M’: MH’=(H’'M’: MK’). (KM: MH?) 

> (KM : MH).(KM’: MH”). 
It follows that 

H'M: MH > KM? : MH? 

> AM? : AM}, by (1). 

[The text of Archimedes adds an alternative proof of this 

proposition, which is here omitted because it is in fact neither 

clearer nor shorter than the above. ] 

Proposition 9. 

Of all segments of spheres which have equal surfaces the 
hemisphere is the greatest in volume. 

Let ABA’B’ be a great circle of a sphere, AA’ being 

a diameter, and O the centre. Let the sphere be cut by 

a plane, not passing through O, perpendicular to AA’ (at ), 
and intersecting the plane of the great circle in BB’. The 

segment ABB’ may then be either less than a hemisphere as 

in Fig. 1, or greater than a hemisphere as in Fig. 2. 

Let DED'E’ be a great circle of another sphere, DD’ 

being a diameter and C the centre. Let the sphere be cut by 

a plane through C perpendicular to DD’ and intersecting the 

plane of the great circle in the diameter LE’. 
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Suppose the surfaces of the segment ABB’ and of the 
hemisphere DEE’ to be equal. 

Since the surfaces are equal, AB = DE. [I. 42, 43] 

Now, in Fig.1, AB’>2AM? and <2A0’, 

and, in Fig. 2, AB’? <2AM’ and >2A0’. 

Hence, if R be taken on AA’ such that 

Ah*=+AB* 

FR will fall between O and M. 

Also, since AB?= DE’, AR=CD. 

Produce OA’ to K so that OA’ = A’K, and produce A’A to 
H so that 

ahora Mi ASLAM: 

or, componendo, A’K+A’M: A'M=HM: MA............ (1). 

Thus the cone HBB’ is equal to the segment ABB’. 
[Prop. 2] 

Again, produce CD to F so that CD= DF, and the cone 
FEE’ will be equal to the hemisphere DEE’. [Prop. 2] 

Now AR,RA’>AM.MA’, 

and Ah =sAb =,AMOAA = AM. AK, 
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Hence 

AR.RA’+RA’?>AM.MA’+ AM. A’K, 

or AA’,.AR>AM.MK 

> HM .A'M, by (1). 

Therefore AA’: A’M>HM: AR, 

or AB*: BM? > HM: AR, 

1.€. AR’?: BM’ >HM: 2AR, since AB? =2A4 R?, 

SHAM Cr 

Thus, since AR = CD, or CE, 

(circle on diam. HZ’) : (circle on diam. BB’)> HM: CF. 

Tt follows that 

(the cone FEE’) > (the cone HBB’), 

and therefore the hemisphere DHEZ’ is greater in volume than 

the segment ABB’. 



MEASUREMENT OF A CIRCLE. 

Proposition 1. 

The area of any circle is equal to a right-angled triangle in 
which one of the sides about the right angle is equal to the radius, 

and the other to the circumference, of the circle. 

Let ABCD be the given circle, K the triangle described. 

a 

Then, if the circle is not equal to K, it must be either 

greater or less. 

I. If possible, let the circle be greater than KX. 

Inscribe a square ABCD, bisect the arcs AB, BC, CD, DA, 

then bisect (if necessary) the halves, and so on, until the sides 

of the inscribed polygon whose angular points are the points of 

division subtend segments whose sum is less than the excess of 

the area of the circle over K. 
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Thus the area of the polygon is greater than K. 

Let AZ be any side of it, and ON the perpendicular on AX 

from the centre O. 

Then ON is less than the radius of the circle and therefore 

less than one of the sides about the right angle in K. Also the 

perimeter of the polygon is less than the circumference of the 

circle, i.e. less than the other side about the right angle in K. 

Therefore the area of the polygon is less than K; which is 

inconsistent with the hypothesis. 

Thus the area of the circle is not greater than K. 

II. If possible, let the circle be less than K. 

Circumscribe a square, and let two adjacent sides, touching 

the circle in Z, H, meet in 7. Bisect the arcs between adjacent 

points of contact and draw the tangents at the points of 

bisection. Let A be the middle point of the are HH, and FAG 

the tangent at A. 

Then the angle TAG is a right angle. 

Therefore LG > GA 

ene ak 

It follows that the triangle FTG is greater than half the area 
TEAH. 

Sunilarly, if the are AH be bisected and the tangent at the 
point of bisection be drawn, it will cut off from the area GAH 

more than one-half. 

Thus, by continuing the process, we shall ultimately arrive 

at a circumscribed polygon such that the spaces intercepted 
between it and the circle are together less than the excess of 
K over the area of the circle. 

Thus the area of the polygon will be less than K. 

Now, since the perpendicular from O on any side of the 
polygon is equal to the radius of the circle, while the perimeter 
of the polygon is greater than the circumference of the circle, 
it follows that the area of the polygon is greater than the 
triangle K; which is impossible. 
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Therefore the area of the circle is not less than KX. 

Since then the area of the circle is neither greater nor less 
than K, it is equal to it. 

Proposition 2. 

The area of a circle is to the square on its diameter as 11 
to 14. 

[The text of this proposition is not satisfactory, and Archi- 

medes cannot have placed it before Proposition 3, as the 
approximation depends upon the result of that proposition,] 

Proposition 3S. 

The ratio of the circumference of any circle to rts diameter 
is less than 3+ but greater than 319. 

[In view of the interesting questions arising out of the 

arithmetical content of this proposition of Archimedes, it is 

necessary, in reproducing it, to distinguish carefully the actual 

steps set out in the text as we have it from the intermediate 

steps (mostly supplied by Eutocius) which it is convenient to 
put in for the purpose of making the proof easier to follow. 
Accordingly all the steps not actually appearing in the text 

have been enclosed in square brackets, in order that it may be 
clearly seen how far Archimedes omits actual calculations and 

only gives results. It will be observed that he gives two 
fractional approximations to /3 (one being less and the other 

greater than the real value) without any explanation as to how 

he arrived at them; and in like manner approximations to the 

square roots of several large numbers which are not complete 

squares are merely stated. These various approximations and 

the machinery of Greek arithmetic in general will be found 

discussed in the Introduction, Chapter IV.] 

I. Let AB be the diameter of any circle, O its centre, AC 

the tangent at A; and let the angle AOC be one-third of a 

right angle. 
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Then OA - AC [Eno > 265357. eee (1), 

and OC 2 CA [= 22 1) =3002103 re care (2). 

First, draw OD bisecting the angle AOC and meeting AC 

in D. 

Now CO! OA=CD SDA; [Eucl. VI. 3] 

so that [CO+0A:O0A=CA: DA, or] 

C0+0A:CA=O0A: AD. 

Therefore [by (1) and (2)] 

OA PAD SUI LSS ac asrecenae a (3). 

Hence OD* 4A D*(=(OA- EAD) AD 

> (571? + 158%) : 1537] 
> 349450 : 23409, 

so that ODE DAS OTe U3 eamcuars ees eee (4). 

mi>on m 

Secondly, let OF bisect the angle AOD, meeting AD in LE. 

[Then DO 0A = DE EA, 

so that DO+0A:DA=0A: AE] 

Therefore OA : AH [>(591$+571) : 158, by (3) and (4)] 

> L1G 268 ae ee ee (5). 
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[It follows that 

OE? ; BA* > {(11624)? + 153%} : 153° 
> (135053483 + 23409) ; 23409 
> 1873894383 : 23409. ] 

Thus OLS BA SUG LEGS aisvcruns crews sty (6). 

Thirdly, let OF bisect the angle AO# and meet AF in F. 

We thus obtain the result [corresponding to (3) and (5) 

above] that 
OA : AF [> (11623 + 11724) : 153] 

SPOTS Ne. (7). 
[Therefore OF”: FA’ > {(23344)? + 1537} : 153? 

> 54721321, : 23409.] 
Thus OR AHA 2350% 1153 eee (8). 

Fourthly, let OG bisect the angle AOF, meeting AF in G. 

We have then 

OA : AG [> (23344 + 23394) : 153, by means of (7) and (8)] 

> 46734 : 153. 

Now the angle AOC, which is one-third of a night angle, 

has been bisected four times, and it follows that 

ZAOG= x (a right angle). 

Make the angle AOH on the other side of OA equal to the 

angle AOG, and let GA produced meet OH in H. 

Then Z GOH = 3; (a right angle). 

Thus GH is one side of a regular polygon of 96 sides cir- 

cumscribed to the given circle. 

And, since OA : AG > 46734 : 153, 

while apb=204. G4.=24G, 

it follows that 

AB : (perimeter of polygon of 96 sides) [> 46734 : 153 x 96] 

> 46734 : 14688. 
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14688 _ , _ 6674 
467384 = 46734 

at 
E B+ ii | 

< 31, 
Therefore the circumference of the circle (being less than 

the perimeter of the polygon) is a fortiori less than 3} times 

the diameter AB, 

II. Next let AB be the diameter of a circle, and let AC, 

meeting the circle in C, make the angle CAB equal to one-third 

of aright angle. Join BC. 

Then AC? CB [=1/3 21] < 1361. 780, 

First, let AD bisect the angle BAC and meet BC in d and 
the circle in D. Join BD. 

Then ZBAD=LZ0AC 

= 7 dabD, 

and the angles at D, Care both right angles. 

It follows that the triangles ADB, [ACd], BDd are similar. 

But 

O° A 

Therefore AD: DB=BD: Dd 

[= AC: Cd] 

= Abe bd [Eucl. VI. 3] 

=AB+AC: Bd+Cd 

=AB+AC: BO 
or BA+AC:BC=AD: DB. 
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[But AC : CB<1351 : 780, from above, 

while BAe = Or] 

= 1560 : 780.] 

Therefore ADORED 7.9 VA GS SOM ace ke GLY: 

[Hence AB’: BD’ < (2911? + 780°) : 780? 

< 9082321 : 608400. ] 

Thus ABS BD Z30loPN7 80 see eae (2). 

Secondly, let AE bisect the angle BAD, meeting the circle 
in £; and let BE be joined. 

Then we prove, in the same way as before, that 

AF: EB[=BA+AD: BD 

< (30132 + 2911) : 780, by (1) and (2)] 

< 59243 : 780 

< 59242 x 4 : 780 x +5 

cae or egy 4. anaes Sang ty ete (3). 

[Hence AB’: BE? < (1823? + 240°) : 240? 

< 3380929 : 57600.] 

Therefore AB: BE < 18382. 2240 2.0. sccse sees eee (4). 

Thirdly, let AF bisect the angle BALE, meeting the circle 

in F, 

Thus AF: FB[=BA+AE: BE 

< 36612, : 240, by (3) and (4)] 

< 3661.4 x 41: 240 x Ht 

<a OOT GOO st eee tae meee ey: 

[It follows that 

AB’*: BF’ < (1007? + 667) : 66" 

< 1018405 : 4356.] 

Therefore FARE ea Merce OO 0452, OO cto en antes ee scores (6). 

Fourthly, \et the angle BAF be bisected by AG meeting the 

circle in G. 

Then AG: GB[=BA+AF: BF] 

< 20164 : 66, by (5) and (6). 
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[And AB’: BG’ < {(20161) + 667} : 66° 

< 4069284,, : 4356.] 

Therefore AB BG =< 20114 2.66; 

whence BEEVAB > 66 201Tde.. ccceseme sen ee (H); 

[Now the angle BAG which is the result of the fourth bisection 

of the angle BAC, or of one-third of a right angle, is equal to 

one-fortyeighth of a right angle. 

Thus the angle subtended by BG at the centre is 

34 (a right angle),.] 

Therefore BG is a side of a regular inscribed polygon of 96 
sides. 

It follows from (7) that 

(perimeter of polygon) : AB [> 96 x 66 : 20171] 

> 6336 : 20174. 
6336 
20174 

Much more then is the circumference of the circle greater than 
342 times the diameter. 

And > 312. 

Thus the ratio of the circumference to the diameter 

< 3} but > 322. 



ON CONOIDS AND SPHEROIDS. 

Introduction*. 

“ ARCHIMEDES to Dositheus greeting. 

In this book I have set forth and send you the proofs of the 
remaining theorems not included in what I sent you before, and 

also of some others discovered later which, though I had often 

tried to investigate them previously, I had failed to arrive at 

because I found their discovery attended with some difficulty. 
And this is why even the propositions themselves were not 

published with the rest. But afterwards, when I had studied 

them with greater care, I discovered what I had failed in 

before. 

Now the remainder of the earlier theorems were propositions 

concerning the right-angled conoid [paraboloid of revolution] ; 

but the discoveries which I have now added relate to an obtuse- 

angled conoid [hyperboloid of revolution] and to spheroidal 

figures, some of which I call oblong (srapapaxea) and others flat 

(émimdatéa). 

I. Concerning the right-angled conoid it was laid down 

that, if a section of a right-angled cone [a parabola] be made to 

revolve about the diameter [axis] which remains fixed and 

* The whole of this introductory matter, including the definitions, is trans- 

lated literally from the Greek text in order that the terminology of Archimedes 

may be faithfully represented. When this has once been set out, nothing will 

be lost by returning to modern phraseology and notation. These will accordingly 

be employed, as usual, when we come to the actual propositions of the treatise. 

7—2 

Univ. of Arizona Library 
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return to the position from which it started, the figure compre- 

hended by the section of the right-angled cone is called a right- 

angled conoid, and the diameter which has remained fixed 

is called its axis, while its vertex is the point in which the 

axis meets (@mrterav) the surface of the conoid. And if a plane 

touch the right-angled conoid, and another plane drawn parallel 

to the tangent plane cut off a segment of the conoid, the base 

of the segment cut off is defined as the portion intercepted by 

the section of the conoid on the cutting plane, the vertex 

[of the segment] as the point in which the first plane touches 

the conoid, and the axis [of the segment] as the portion cut 

off within the segment from the line drawn through the vertex 

of the segment parallel to the axis of the conoid. 

The questions propounded for consideration were 

(1) why, if a segment of the right-angled conoid be cut off 
by a plane at right angles to the axis, will the segment so cut 

off be half as large again as the cone which has the same base 

as the segment and the same axis, and 

(2) why, if two segments be cut off from the right-angled 

conoid by planes drawn in any manner, will the segments so cut 

off have to one another the duplicate ratio of their axes. 

II. Respecting the obtuse-angled conoid we lay down the 

following premisses. If there be in a plane a section of an 

obtuse-angled cone [a hyperbola], its diameter [axis], and the 

nearest lines to the section of the obtuse-angled cone [ie. the 

asymptotes of the hyperbola], and if, the diameter [axis] 

remaining fixed, the plane containing the aforesaid lines be 

made to revolve about it and return to the position from which 

it started, the nearest lines to the section of the obtuse-angled 

cone [the asymptotes] will clearly comprehend an isosceles cone 

whose vertex will be the point of concourse of the nearest lines 

and whose axis will be the diameter [axis] which has remained 

fixed. The figure comprehended by the section of the obtuse- 

angled cone is called an obtuse-angled conoid [hyperboloid of 

revolution], its axis is the diameter which has remained fixed, 

and its vertex the point in which the axis meets the surface 
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of the conoid. The cone comprehended by the nearest lines to 
the section of the obtuse-angled cone is called [the cone] 

enveloping the conoid (vepiéywv 7d Kewvoedés), and the 

straight line between the vertex of the conoid and the vertex 

of the cone enveloping the conoid is called [the line] adjacent 

to the axis (roteotca 7 d£ovi). And if a plane touch the 
obtuse-angled conoid, and another plane drawn parallel to the 

tangent plane cut off a segment of the conoid, the base of 

the segment so cut off is defined as the portion intercepted by 
the section of the conoid on the cutting plane, the vertex [of 

the segment] as the point of contact of the plane which touches 

the conoid, the axis [of the segment] as the portion cut off 

within the segment from the line drawn through the vertex of 

the segment and the vertex of the cone enveloping the conoid ; 

and the straight line between the said vertices is called 

adjacent to the axis. 

Right-angled conoids are all similar; but of obtuse-angled 

conoids let those be called similar in which the cones enveloping 

the conoids are similar. 

The following questions are propounded for consideration, 

(1) why, if a segment be cut off from the obtuse-angled 

conoid by a plane at right angles to the axis, the segment so 

cut off has to the cone which has the same base as the segment 

and the same axis the ratio which the line equal to the sum 

of the axis of the segment and three times the line adjacent 

to the axis bears to the line equal to the sum of the axis of 

the segment and twice the line adjacent to the axis, and 

(2) why, if a segment of the obtuse-angled conoid be cut 

off by a plane not at right angles to the axis, the segment so 

cut off will bear to the figure which has the same base as 

the segment and the same axis, being a segment of a cone* 
(amotpapma Kevov), the ratio which the line equal to the sum 

of the axis of the segment and three times the line adjacent 
to the axis bears to the line equal to the sum of the axis of the 

segment and twice the line adjacent to the axis. 

* A segment of a cone is defined later (p. 104). 
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III. Concerning spheroidal figures we lay down the follow- 

ing premisses. If a section of an acute-angled cone [ellipse] be 

made to revolve about the greater diameter [major axis] which 

remains fixed and return to the position from which it started, 

the figure comprehended by the section of the acute-angled 

cone is called an oblong spheroid (crapapdaxes cpaspoesdes). 

But if the section of the acute-angled cone revolve about the 

lesser diameter [minor axis] which remains fixed and return 

to the position from which it started, the figure comprehended 

by the section of the acute-angled cone is called a flat spheroid 

(érurdatd odatpoeidés). In either of the spheroids the axis 
is defined as the diameter [axis] which has remained fixed, the 

vertex as the point in which the axis meets the surface of the 

spheroid, the centre as the middle point of the axis, and the 

diameter as the line drawn through the centre at mght angles 

to the axis. And, if parallel planes touch, without cutting, 

either of the spheroidal figures, and if another plane be drawn 

parallel to the tangent planes and cutting the spheroid, the 

base of the resulting segments is defined as the portion inter- 

cepted by the section of the spheroid on the cutting plane, their 

vertices as the points in which the parallel planes touch the 

spheroid, and their axes as the portions cut off within the 

segments from the straight line joining their vertices. And 

that the planes touching the spheroid meet its surface at one 

point only, and that the straight line joining the points of 

contact passes through the centre of the spheroid, we shall 

prove. Those spheroidal figures are called similar in which 

the axes have the same ratio to the ‘diameters.’ And let 

segments of spheroidal figures and conoids be called similar if 

they are cut off from similar figures and have their bases 

similar, while their axes, being either at right angles to the 

planes of the bases or making equal angles with the corre- 
sponding diameters [axes] of the bases, have the same ratio 

to one another as the corresponding diameters [axes] of the 
bases. 

The following questions about spheroids are propounded for 
consideration, 

(1) why, if one of the spheroidal figures be cut by a plane 
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through the centre at right angles to the axis, each of the 
resulting segments will be double of the cone having the same 

base as the segment and the same axis; while, if the plane of 

section be at right angles to the axis without passing through 

the centre, (a) the greater of the resulting segments will bear 

to the cone which has the same base as the segment and the 

same axis the ratio which the line equal to the sum of half the 

straight line which is the axis of the spheroid and the axis of 

the lesser segment bears to the axis of the lesser segment, and 

(b) the lesser segment bears to the cone which has the same 

base as the segment and the same axis the ratio which the line 

equal to the sum of half the straight line which is the axis 

of the spheroid and the axis of the greater segment bears to the 
axis of the greater segment ; 

(2) why, if one of the spheroids be cut by a plane passing 

through the centre but not at right angles to the axis, each of 

the resulting segments will be double of the figure having the 

same base as the segment and the same axis and consisting of a 

segment of a cone*. 

(3) But, if the plane cutting the spheroid be neither 

through the centre nor at right angles to the axis, (a) the 

greater of the resulting segments will have to the figure 

which has the same base as the segment and the same axis 

the ratio which the line equal to the sum of half the line 

joining the vertices of the segments and the axis of the lesser 

segment bears to the axis of the lesser segment, and (b) the 

lesser segment will have to the figure with the same base 

as the segment and the same axis the ratio which the line 

equal to the sum of half the line joing the vertices of the 

segments and the axis of the greater segment bears to the axis 
of the greater segment. And the figure referred to is in these 

cases also a segment of a cone*. 

When the aforesaid theorems are proved, there are dis- 

covered by means of them many theorems and problems. 

Such, for example, are the theorems 

(1) that similar spheroids and similar segments both of 

* See the definition of a segment of a cone (drdruaua Kdvov) on p. 104. 
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spheroidal figures and conoids have to one another the triplicate 

ratio of their axes, and 

(2) that in equal spheroidal figures the squares on the 

‘diameters’ are reciprocally proportional to the axes, and, if in 

spheroidal figures the squares on the ‘ diameters’ are reciprocally 

proportional to the axes, the spheroids are equal, 

Such also is the problem, From a given spheroidal figure 

or conoid to cut off a segment by a plane drawn parallel to a 

given plane so that the segment cut off is equal to a given cone 

or cylinder or to a given sphere. 

After prefixing therefore the theorems and directions (é7- 

tdywata) which are necessary for the proof of them, I will 

then proceed to expound the propositions themselves to you. 

Farewell. 

DEFINITIONS. 

If a cone be cut by a plane meeting all the sides [generators] 

of the cone, the section will be either a circle or a section of an 

acute-angled cone [an ellipse]. If then the section be a circle, 

it is clear that the segment cut off from the cone towards the 

same parts as the vertex of the cone will be a cone. But, if 

the section be a section of an acute-angled cone [an ellipse], let 

the figure cut off from the cone towards the same parts as the 

vertex of the cone be called a segment of a cone. Let the 

base of the segment be defined as the plane comprehended by 

the section of the acute-angled cone, its vertex as the point 
which is also the vertex of the cone, and its axis as the straight 

line joining the vertex of the cone to the centre of the section 

of the acute-angled cone. 

And if a cylinder be cut by two parallel planes meeting all 

the sides [generators] of the cylinder, the sections will be either 

circles or sections of acute-angled cones [ellipses] equal and 
similar to one another. If then the sections be circles, it is 
clear that the figure cut off from the cylinder between the 
parallel planes will be a cylinder. But, if the sections be 
sections of acute-angled cones [ellipses], let the figure cut off 
from the cylinder between the parallel planes be called a 
frustum (rowos) of a cylinder. And let the bases of the 
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frustum be defined as the planes comprehended by the sections 

of the acute-angled cones [ellipses], and the axis as the straight 

lime joining the centres of the sections of the acute-angled 

cones, so that the axis will be in the same straight line with 

the axis of the cylinder.” 

Lemma. 

If in an ascending arithmetical progression consisting of the 

magnitudes A,, As, ... An the common difference be equai to the 

least term A,, then 

n.An<2(A,+A.+...+A,), 

and >2(A,+A,+...+ An). 

[The proof of this is given incidentally in the treatise On 
Spirals, Prop. 11. By placing lines side by side to represent 

the terms of the progression and then producing each so as to 

make it equal to the greatest term, Archimedes gives the 

equivalent of the following proof. 

iba S,=A,+A,+...+AnrtdAn: 

we havealso S,=A,+AnitAnot..- +A). 

And Ar Ayia = As + Agog =. = Ap’ 

Therefore 254 =e + 1) a, 

whence Ror ene 

and Nh Ag DS ys 

Thus, if the progression is a, 24a, ... na, 

Sa= ee” a, 

and Wd <—25n, 

but Sao er | 

Proposition 1. 

If A,, B,, C,,...K, and A,, B,, C,,...K, be two serves of 

magnitudes such that 



106 ARCHIMEDES 

and 1f-A,, By, C,,%3. Ke-and A Bi Uj. de, be two other series 

such that 

A Apa A (8) 

Be bya be be and so on J oe Ee ; 

then (A, +B,+0,+...+K)):(Ast+ B+ +... + Ks) 

=(A,+B,4+C,+...+Ks):(Ast Bit... + Ky). 

The proof is as follows. 

Since At Ap= AseAs 

and A, Be =A b,, 

while Be Be b. oe 

we have, ex aequaln, Ae? By = Apis i Gy 

Sunilarly BC, = B,2C,, and s0,0n 

Again, it follows from equations (a) that 

A AG a) Be Bee Com Ce maa. 

Therefore 

A,:A,=(4,4+B,+0,+...4+ K)):(4,+ B+... + A), 

or (4,4+ 8,4+0,+...+ K)):4,=(4,4+ B+ C, 4+... + Ke): Ao; 

and Ari Aca Ano As 

while from equations (y) it follows in like manner that 

A;:(A4;+B;+0;+...+ Ks)=Ay:(A,+ Bp + OC, +... + Ky). 

By the last three equations, ew aequali, 

(4,+ 8, +C,+...+K)):(4,+ B+ C+... +K;) 

=(A,+ B+ C,+...4+ K,):(A,4+B,4+0,+...4+ K,). 

Cor. If any terms in the third and fourth series corre- 

sponding to terms in the first and second be left out, the 

result is the same. For example, if the last terms K;, K, are 

absent, 

(4,+8,+C,+...+K,):(4,;+ B+ 0,+... +]5) 

=(A,+3,+¢0,+...+ HK): (4,4 R40,+...4+2), 

where J immediately precedes KX in each series. 
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Lemma to Proposition 2. 

[On Spirals, Prop. 10.] 

If A,, Ay, As, ...An be n lines forming an ascending 

arithmetical progression in which the common difference vs equal 

to the least term A,, then 

(n+1)A,?+ A,(A,+ A,+ As +... + An) 

=3(4°4+A2+ AP4+...+ An). 

Ai A» An-3An-2 Ani 

ae nes area) ce cp: 

An An 4A,.-2 Ag Ae Ai 

Let the lines 4,, A,4, An, ..-4, be placed in a row 

from left to right. Produce An, An», ...A, until they are 

each equal to A,, so that the parts produced are respectively 

equalitocds Alf A. 

Taking each line successively, we have 

2A,2°=2A,?, 

(At A) = A Ae 2 AS Aa, 

(Ay ray eaeAs tA et AG An 
Pome meee ee eee ers et ee seseru serene seeeesreeseseees 

(Ana ar A) — ee iP “Ne te 2A : ase 
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And, by addition, 

(n+1)A,?=2(AP+ AP +... + An’) 

4D Ay Aya + tags Ag ab ce Pp oA 

Therefore, in order to obtain the required result, we have to 

prove that 

2(A,. An +Azg. Anot-.-tAna-4)+Ai(A14+A,+Agt... +An) 

Fay ees Sis gee Sr yr le andad A Set: (a). 

Now 2A,. An .=A,.4An_-», because A,=2A,, 

2A,.An3=A,.6An_3, because A; = 3A,, 
Seow meee ea erer ee rereeeeeeeses 

ZA ey PA Ae 2 (= bee 

It follows that 

2(A,.An1~+Ay.Anot...+An1-A1)+Ai(A, + Aot+... + An) 

= A,{An+3An 1+ 5An t+... +(2n—1) Aj}. 

And this last expression can be proved to be equal to 

| AeA oro Ane 

Hor 4) = A, A,) 

= A,{A,+(n—-1)A,} 

=A,{An+2(AniatAnot...+A,)}, 

because (n —1) An = An + Ai 

ees tera ees hs 

FP US OO DHOSOaE 

shah ade aad 

Similarly A*,, = A,{An++2(Ano+ Ans+... +A}, 
COOP e merce essere seeseresece 

A,’ = A,(A, + 24,), 

Ay Sms 

whence, by addition, 

A? +A,’+ A?+...+4,? 

= A,{|An+38An.+5An. +... +(Qn—1)Aj}. 
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Thus the equation marked (a) above is true; and it follows 
that 

(n+1)A,?+4,(4, +4, + Ast... + An) =3(AP4+ AP 4+...+4,). 

Cor. 1. From this it 1s evrdent that 

Nein <O(Ay bAy aos PAG) cosccscsstes (1). 

Also Ay =A, {Ant 2(AnitAnot...+A,)}, as above, 

so that A,’ >A,(A,+4An,it+...+A)), 

and therefore 

An’ +A,(A,4+ 4,+...+4n)< 24)’. 

It follows from the proposition that 

Were 8 (Aa cA ce mtgi TREO yan) coer nce ua eee (2). 

Cor. 2. All these results will hold if we substitute similar 

Jigures for squares on all the lines; for similar figures are in the 

duplicate ratio of their sides. 

[In the above proposition the symbols A,, A, ...A, have 

been used instead of a, 2a, 3a, ...na in order to exhibit the 

geometrical character of the proof; but, if we now substitute 
the latter terms in the various results, we have (1) 

(n+1)n’av?+a(at2a+... +na) 
= 3 {a? + (2a) + (8a) +... + (na)’t. 

Therefore a + (2a) + (8a) +... + (na)? 

= 5 {on +1)n?+ if eed wD) 

, n(n+1)(2n 41) 
=O. - ; 

6 

Also (2) V<3(V4+24 37+... 40’), 

and (3) ie 3 (120 ta3 een <a), 
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Proposition 2. 

AeA ee A a be any number of areas such that* 

A, =aa+4 2’, 

A,=a.2a@ + (22), 

A,=a. 32+ (32), 

A, =a.ne+(nz)’, 

then ne Ay? (Ay+ dat on + An) < (tne): (S45), 

and nyt (Apt Ag+ oo + Ana) > (a+ ma): (54+). 

For, by the Lemma immediately preceding Prop. 1, 

n.ann<2(ar+a.2e#+...+a.n2), 

and >2(an+a.204+...+a.n—12). 

Also, by the Lemma preceding this proposition, 

n.(nty <3 {a + (2x)? + (Ba) + ... + (na)"} 

and Sg 4. (2a) een el 
Hence 

an’a  n(nx)? i 
a a a ee [((aw 4- x") + {a. 2a 4 (2x)"} +... + fa. nx +(ne)}], 

and 

> [(aw + a”) + fa. Qe + (20)"}+...4+ fa.n-lvt(n—12)}], 

OTe EN) a 9 tg <Aitdrt... tAn, 

and >A, +A.+...+ An-3. 

It follows that 
; 2 2 

n. Ax : (A, + As “To etelerate An) <n fa ~ NX +(nx)"} C a + Bee t 

v2 

ia ne Ant (Art det. +n) < (ana): (5 +); 

also Bilin? (Ay + Ae tas. + Aya) >(a+ ne): (5+): 

* The phraseology of Archimedes here is that associated with the traditional 
method of application of areas: el ka...map’ ékdoray adray Twapatéon Te Xwplov 
UmepBaddov elder Terpayadvyw, ‘if to each of the lines there be applied a space 
[rectangle] exceeding by a square figure.” Thus 4, is a rectangle of height x ap- 
plied to a line a but overlapping it so that the base extends a distance beyond a. 
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Proposition 3. 

(1) Jf TP, TP’ be two tangents to any conic meeting in T, 

and uf Qq, Q’q be any two chords parallel respectively to TP, 

TP’ and meeting in O, then 

QO70G>. 0 0. Og=TP*: FP™ 

“ And this is proved in the elements of conics*.” 

(2) If QQ’ bea chord of a parabola bisected in V by the 

diameter PV, and if PV be of constant length, then the areas of 

the triangle PQQ’ and of the segment PQQ’ are both constant 

whatever be the direction of QQ’. 

Let ABB’ be the particular segment of the parabola whose 

vertex is A, so that BB’ is bisected perpendicularly by the axis 

at the point H, where AH= PY. 

Draw QD perpendicular to PV. 

Pa\p 

Let pq be the parameter of the principal ordinates, and let 

p be another line of such length that 

OV AOD =): p,5 

it will then follow that p is equal to the parameter of the ordi- 

nates to the diameter PV, i.e, those which are parallel to QV. 

* i.e. in the treatises on conics by Aristaeus and Euclid. 
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“ For this is proved in the conics*.” 

Thus OV Arp ke Ve 

And BH?=p,.AH, while AH=PV. 

Therefore QV’: BH’ =p: pa- 

But OV OD =o wa: 

hence BH = QD: 

Thus BH. AH = (QDEPY, 

and therefore Hii lel Be 834 if Sy) BEI 

that is, the area of the triangle PQQ’ is constant so long as PV 

is of constant length. 

Hence also the area of the segment PQQ’ is constant under 

the same conditions; for the segment is equal to 4A PQQ’. 
[Quadrature of the Parabola, Prop. 17 or 24.] 

* The theorem which is here assumed by Archimedes as known can be 

proved in Various ways. 
(1) It is easily deduced from Apollonius I. 49 (cf. Apollonius of Perga, 

pp. liii, 39). If in the figure the tangents at 4 and P be drawn, the former 

meeting PV in F#, and the latter meeting the axis in 7, and if dH, PT meet 

at C, the proposition of Apollonius is to the effect that 

CRP =p 2 Pi. 

where p is the parameter of the ordinates to PV. 

(2) It may be proved independently as follows. 

Let QQ’ meet the axis in O, and let QM, Q’M’, PN be ordinates to the axis. 

Then AM: AM’=QM?: Q'M?=0M?: OM”, 
whence AM: MM’=O0OM?: OM?- OM” 

=O0M?:(OM-OM'). MM’, 

so that OM?=AM.(OM-OM’). 

That is to say, (AM - AO)?=AM.(AM+AM'-240), 

or AO?=AM.AM’, 

And, since QM?=p,.4M, and Q’M”"?=p,. AM’, 

it foliows that OMe SMM 1p Ais cane ae te co ee ae ee (a). 

Now QV2: QD2=QP?: ae) 

= M—-Q'M'\? 
=Q) >: (eee) +QM.Q’M’ 

=QV?:(PN?+ QM. Q'M’) 

=p.PV:py.(AN+4A0), by (a). 

But PV=TO=AN+A0. 

Therefore OV2: OD2=pripa. 
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Proposition 4. 

The area of any ellipse is to that of the auailiary circle as 
the minor axis to the major. 

Let AA’ be the major and BB’ the minor axis of the 

ellipse, and let BB’ meet the auxiliary circle in 3, b’. 

Suppose O tobe such a circle that 

(circle AbA’b’): O=CA : CB. 

Then shall O be equal to the area of the ellipse. 

For, if not, O must be either greater or less than the 

ellipse. 

I. If possible, let O be greater than the ellipse. 

We can then inscribe in the circle O an equilateral polygon 

of 4n sides such that its area is greater than that of the ellipse. 
[cf. On the Sphere and Cylinder, I. 6.] 

Sf ee 

Let this be done, and inscribe in the auxiliary circle of the 
ellipse the polygon AefbghA’... similar to that inscribed in 0. 

Let the perpendiculars eM, fN,... on AA’ meet the ellipse in 

E, F,... respectively. Join AH, EF, FB..... 

Suppose that P’ denotes the area of the polygon inscribed 

in the auxiliary circle, and P that of the polygon inscribed in 

the ellipse. 

H. A. 8 
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Then, since all the lines eM, fN,... are cut in the same 

proportions at LH, F,..., 

Le. eM: EM=fN: FN=...=00C: BC, 

the pairs of triangles, as eA M, #AM, and the pairs of trapeziums, 

as eMNf, EMNF, are all in the same ratio to one another 

as b0 to BO, or as CA to CB. 

Therefore, by addition, 

Pe Pa CAZCB: 

Now P’ : (polygon inscribed in 0) 

= (circle AbA’b’): O 

= (CA: CB, by hypothesis. 

Therefore P is equal to the polygon inscribed in 0. 

But this is impossible, because the latter polygon is by 

hypothesis greater than the ellipse, and a fortiori greater 

than P. 

Hence O is not greater than the ellipse. 

II. If possible, let O be less than the ellipse. 

In this case we inscribe in the ellipse a polygon P with 4n 
equal sides such that P > 0. 

Let the perpendiculars from the angular points on the 

axis AA’ be produced to meet the auxiliary circle, and let the 

corresponding polygon (P’) in the circle be formed. 

Inscribe in O a polygon similar to P’. 

Then P’: P=CA:CB 

=(circle AbA’'b’) : O, by hypothesis, 

= P’: (polygon inscribed in OQ). 

Therefore the polygon inscribed in O is equal to the 

polygon P; which is impossible, because P > 0. 

Hence O, being neither greater nor less than the ellipse, is 

equal to it; and the required result follows. 
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Proposition 5. 

If AA’, BB’ be the major and minor axis of an ellipse 

respectively, and if d be the diameter of any circle, then 

(area of ellipse) : (area of circle)= AA’. BB’: d’. 
For 

(area of ellipse) : (area of auxiliary circle) = BB’: AA’ [Prop. 4] 

=4A bb Ane 
And 

(area of aux. circle) : (area of circle with diam. d)= AA”: d’. 

Therefore the required result follows ex aequalv. 

Proposition 6. 

The areas of ellipses are as the rectangles under their axes. 

This follows at once from Props. 4, 5. 

Cor. The areas of sinular ellipses are as the squares of 

corresponding axes. 

Proposition 7. 

Given an ellipse with centre U, and a line CO drawn per- 

pendicular to its plane, it is possible to find a circular cone 

with vertex O and such that the given ellipse is a section of a 

[or, in other words, to find the circular sections of the cone with 

vertex O passing through the circumference of the ellipse). 

Conceive an ellipse with BB’ as its minor axis and lying in 

a plane perpendicular to that of the paper. Let CO be drawn 
perpendicular to the plane of the ellipse, and let O be the 

vertex of the required cone. Produce OB, OC, OB’, and in the 

same plane with them draw BHD meeting OC, OB’ produced 

in EL, D respectively and in such a direction that 

BE. ED BOs=CA*; CO? 

where CA is half the major axis of the ellipse. 
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“ And this is possible, since 

BE ED EO = DCRCB GO x 

[Both the construction and this proposition are assumed as 

known. | 

Now conceive a circle with BD as diameter lying in a plane 

at right angles to that of the paper, and describe a cone with 

this circle for its base and with vertex O. 

We have therefore to prove that the given ellipse is a 

section of the cone, or, if P be any point on the ellipse, that P 

lies on the surface of the cone. 

Draw PN perpendicular to BB’. Join ON and produce it 

to meet BD in M, and let MQ be drawn in the plane of the 

circle on BD as diameter perpendicular to BD and meeting the 

circle in Q. Also let FG, HK be drawn through £, M respec- 

tively parallel to BB’. 

We have then 

QOM’?: HM,.MK=BM.MD:HM.MK 

=BE.ED: FE. EG 

= (BE. ED: E0*).(HO’: FE. EG) 

=(CA™s CO" (CO? BU CCR ) 

= CA 2 Cb 

er) 2 BN NDS 
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Therefore QM’: PN?’ =HM.MK : BN. NB’ 

= O0OM?: ON*; 

whence, since PN, QM are parallel, OPQ is a straight line. 

But Q is on the circumference of the circle on BD as 

diameter; therefore OQ is a generator of the cone, and hence 

P lies on the cone. 

Thus the cone passes through all points on the ellipse. 

Proposition 8. 

Given an ellipse, a plane through one of its axes AA’ and 

perpendicular to the plane of the ellipse, and a line CO drawn 

Jrom C, the centre, in the given plane through AA’ but not 
perpendicular to AA’, it 1s possible to find a cone with vertex O 

such that the gwen ellipse is a section of it [or, in other words, 
to find the circular sections of the cone with vertex O whose 
surface passes through the circumference of the ellipse]. 

By hypothesis, 0A, OA’ are unequal. Produce OA’ to D so 

that OA=OD. Join AD, and draw FG through C parallel to it. 

The given ellipse is to be supposed to le in a plane per- 

pendicular to the plane of the paper. Let BB’ be the other 

axis of the ellipse. 

Conceive a plane through AD perpendicular to the plane 

of the paper, and in it describe either (a), if CB’=FC.CG, a 

circle with diameter AD, or (6), if not, an ellipse on AD as 

axis such that, if d be the other axis, 

GC ADe= CBP CLOG, 

Take a cone with vertex 0 whose surface passes through 

the circle or ellipse just drawn. This is possible even when the 

curve is an ellipse, because the line from 0 to the middle point 
of AD is perpendicular to the plane of the ellipse, and the 

construction is effected by means of Prop. 7. 

Let P be any point on the given ellipse, and we have only 

to prove that P lies on the surface of the cone so described, 
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Draw PN perpendicular to AA’. Join ON, and produce it 

to meet AD in M. Through M draw HK parallel to A’A. 

K 

Lastly, draw MQ perpendicular to the plane of the paper 

(and therefore perpendicular to both HK and AD) meeting the 

ellipse or circle about AD (and therefore the surface of the cone) 

in Q. 

Then 

QM’?: HM.MK =(QM’: DM.MA).(DM.MA: HM.MK) 

=\(Ge ced.) (2 Gas A Gea) 

=(CB 2 FC.CG) FC CG <A'C,GA) 

= CB OA: 

= PN*:A'N.NA. 

Therefore, alternately, 

OMe APN = HMM KAN NA 

= OM. ON* 

Thus, since PN, QM are parallel, OPQ is a straight line ; 

and, Q being on the surface of the cone, it follows that P is also 

on the surface of the cone. 

Similarly all points on the ellipse are also on the cone, and 
the ellipse is therefore a section of the cone. 
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Proposition 9. 

Given an ellipse, a plane through one of its axes and perpen- 

dicular to that of the ellipse, and a straight line CO drawn from 

the centre C of the ellipse in the given plane through the axis but 

not perpendicular to that acis, it is possible to find a cylinder 

with avis OC such that the ellipse is a section of it [or, in other 

words, to find the circular sections of the cylinder with axis OC 

whose surface passes through the circumference of the given 
ellipse]. 

Let AA’ be an axis of the ellipse, and suppose the plane 

of the ellipse to be perpendicular to that of the paper, so that 

OC lies in the plane of the paper. 

Draw AD, A’E parallel to CO, and let DEH be the line 

through O perpendicular to both AD and A’E. 

We have now three different cases according as the other 

axis BB’ of the ellipse is (1) equal to, (2) greater than, or 

(3) less than, DE. 

(1) Suppose BB’ = DE. 

Draw a plane through DF at right angles to OC, and in 

this plane describe a circle on DE as diameter. Through this 

circle describe a cylinder with axis OC. 

This cylinder shall be the cylinder required, or its surface 

shall pass through every point P of the ellipse. 

For, if P be any point on the ellipse, draw PN perpendicular 

to AA’; through NV draw NM parallel to CO meeting DE in 
M, and through M, in the plane of the circle on DE as diameter, 

draw MQ perpendicular to DE, meeting the circle in Q. 
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Then, since DE =BB. 

PN ANN Ag DO ged COAG 

And DM.ME: AN.NA'=D0?: AC’, 

since AD, NM, CO, A’E are parallel. 

Therefore PN’=DM;.ME 

= QM’, 
by the property of the circle. 

Hence, since PN, QM are equal as well as parallel, PQ is 

parallel to MN and therefore to CO. It follows that PQ is a 

generator of the cylinder, whose surface accordingly passes 

through P. 

(2) If BB’> DE, we take E’ on A’E such that DE’= BB’ 

and describe a circle on DE’ as diameter in a plane perpen- 

dicular to that of the paper; and the rest. of the construction 

and proof is exactly similar to those given for case (1). 

(3) Suppose BB’ < DE. 

Take a point K on CO produced such that 

DOA — CB = OK. 

From K draw KF perpendicular to the plane of the paper 
and equal to CB. 

Thus O.R® = OK’ + CB? = OD’, 

f 

A 

In the plane containing DE, OR describe a circle on DE as 
diameter. Through this circle (which must. pass through R) 
draw a cylinder with axis OC. 
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We have then to prove that, if P be any point on the given 
ellipse, P lies on the cylinder so described. 

Draw PN perpendicular to A.A’, and through V draw VM 
parallel to CO meeting DE in M. In the plane of the circle on 
DE as diameter draw MQ perpendicular to DE and meeting 
the circle in Q. 

Lastly, draw QH perpendicular to NM produced. QH will 
then be perpendicular to the plane containing AC, DE, ie. the 
plane of the paper. 

Now QH*: QM*= KR? : OR’, by similar triangles. 

And QM’: AN.NA’=DM.ME: AN.NA’ 

= Ol eo Ad 

Hence, ex aequali, since OR = OD, 

OH ANGNA mK Re CA: 

= ODetCA, 

see Na AV NAG 

Thus QH=PN. And QH, PN are also parallel. Accordingly 

PQ is parallel to MN, and therefore to CO, so that PQ is a 

generator, and the cylinder passes through P. 

Proposition 10. 

It was proved by the earlier geometers that any two cones 
have to one another the ratio compounded of the ratios of their 

bases and of their heights*. The same method of proof will 

show that any segments of cones have to one another the ratio 

compounded of the ratios of their bases and of their heights. 

The proposition that any ‘frustum’ of a cylinder ws triple 

of the conical segment which has the same base as the frustum 

and equal height is also proved in the same manner as the 

proposition that the cylinder is triple of the cone which has 

the sume base as the cylinder and equal height. 

* This follows from Eucl. x11. 11 and 14 taken together. Cf. On the Sphere 

and Cylinder 1, Lemma 1. 

+ This proposition was proved by Eudoxus, as stated in the preface to On 

the Sphere and Cylinder tr. Cf. Hucl. xi. 10. 
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Proposition 11. 

(1) Ifa paraboloid of revolution be cut by a plane through, 

or parallel to, the axis, the section will be a parabola equal to the 

original parabola which by its revolution generates the parabolovd. 

And the amis of the section will be the intersection between the 

cutting plane and the plane through the axis of the paraboloid 

at right angles to the cutting plane. 

If the paraboloid be cut by a plane at right angles to tts 

axis, the section will be a circle whose centre 1s on the ams. 

(2) Ifa hyperboloid of revolution be cut by a plane through 

the axis, parallel to the axis, or through the centre, the section 

will be a hyperbola, (a) if the section be through the aais, equal, 

(b) if parallel to the aais, similar, (c) tf through the centre, 

not similar, to the original hyperbola which by its revolution 

generates the hyperboloid. And the aais of the section will be 

the intersection of the cutting plane and the plane through the 

axis of the hyperboloid at right angles to the cutting plane. 

Any section of the hyperboloid by a plane at right angles to 
the axis will be a circle whose centre vs on the axis. 

(3) If any of the spheroidal figures be cut by a plane through 

the axis or parallel to the axis, the section will be an ellipse, 

(a) of the section be through the amis, equal, (b) if parallel to the 

axis, semilar, to the ellipse which by its revolution generates the 

jigure. And the aais of the section will be the intersection of the 

cutting plane and the plane through the axis of the spheroid 
at right angles to the cutting plane. 

If the section be by a plane at right angles to the awis of the 

spherord, rt will be a circle whose centre is on the axis. 

(4) Lf any of the said figures be cut by a plane through the 
ams, and if a perpendicular be drawn to the plane of section 
from any point on the surface of the figure but not on the section, 
that perpendicular will fall within the section. 

“ And the proofs of all these propositions are evident.” * 

* Cf. the Introduction, chapter 11. § 4. 
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Proposition 12. 

If a paraboloid of revolution be cut by a plane neither parallel 
nor perpendicular to the axis, and if the plane through the axis 

perpendicular to the cutting plane intersect it in a straight line 

of which the portion intercepted within the paraboloid is RR, 

the section of the paraboloid will be an ellipse whose major axis 

is RR’ and whose minor axis is equal to the perpendicular 

distance between the lines through R, R’ parallel to the axis 
of the paraboloid. 

Suppose the cutting plane to be perpendicular to the plane 

of the paper, and let the latter be the plane through the axis 

ANF of the paraboloid which intersects the cutting plane at 

right angles in RR’. Let AH be parallel to the axis of the 

paraboloid, and &’H perpendicular to RH. 

Let Q be any point on the section made by the cutting 

plane, and from Q draw QM perpendicular to RR’. QM will 

therefore be perpendicular to the plane of the paper. 

Through M draw DMFE perpendicular to the axis ANF 

meeting the parabolic section made by the plane of the paper 

in D, E. Then QM is perpendicular to DE, and, if a plane be 

drawn through DE, QM, it will be perpendicular to the axis 

and will cut the paraboloid in a circular section. 

Since Q is on this circle, 

Qi? = DM. ME. 

Again, if PT be that tangent to the parabolic section in the 



124 ARCHIMEDES 

plane of the paper which is parallel to RR’, and if the tangent 

at A meet PT in O, then, from the property of the parabola, 

DM.ME: RM. MR'= AO’: OP? [Prop. 3 (1)] 

= AQ’: OT’, since AN= AT. 

Therefore QM?: RM.MR’=<0?: OF? 

=i ole, 

by similar triangles. 

Hence Q lies on an ellipse whose major axis is RR’ and 

whose minor axis is equal to A’H. 

Propositions 13, 14. 

If a hyperboloid of revolution be cut by a plane meeting all 
the generators of the enveloping cone, or if an ‘oblong’ spheroid 

be cut by a plane not perpendicular to the axis*, and of a plane 

through the awvis intersect the cutting plane at right angles in a 

straight line on which the hyperboloid or spheroid intercepts 
a length RR’, then the section by the cutting plane will be an 

ellipse whose major axis 1s RR’. 

Suppose the cutting plane to be at right angles to the 

plane of the paper, and suppose the latter plane to be that 

* Archimedes begins Prop. 14 for the spheroid with the remark that, when the 
cutting plane passes through or is parallel to the axis, the case is clear (d9Xov). 
Cf. Prop. 11 (3). 
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through the axis ANF which intersects the cutting plane 
at right angles in RR’, The section of the hyperboloid or 

spheroid by the plane of the paper is thus a hyperbola or ellipse 
having AVF for its transverse or major axis. 

Take any point on the section made by the cutting plane, 

as @, and draw QV perpendicular to RR’. QM will then 

be perpendicular to the plane of the paper. 

Through M draw DFE at right angles to the axis ANF 
meeting the hyperbola or ellipse in D, #; and through QM, 

DE \et a plane be described. This plane will accordingly be 
perpendicular to the axis and will cut the hyperboloid or 
spheroid in a circular section. 

Thus QM’?= DM. ME. 

Let PT be that tangent to the hyperbola or ellipse which 
is parallel to RR’, and let the tangent at A meet P7' in O. 

Then, by the property of the hyperbola or ellipse, 

DMSME ARM. Mie= OA OP. 

or QM’: RM, MR’ = OA’; OP’. 

Now (1) in the hyperbola OA < OP, because AT < AN*, and 

accordingly O7'< OP, while OA < OT, 

(2) in the ellipse, if A.’ be the diameter parallel to RR’, 

and BB’ the minor axis, 

BOAO BLK, CK = OA ORs 

and BC.CB’< KC.CK’, so that OA < OP. 

Hence in both cases the locus of @ is an ellipse whose major 

axis is RR’. 

Cor. 1. If the spheroid be a ‘flat’ spheroid, the section will 
be an ellipse, and everything will proceed as before except that 

RR’ will in this case be the minor axis. 

Cor. 2. In all conoids or spheroids parallel sections will be 

similar, since the ratio OA®?: OP* is the same for all the 

parallel sections. 

* With reference to this assumption cf. the Introduction, chapter 111. § 3. 
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Proposition 15. 

(1) If from any point on the surface of a conoid a line be 

drawn, in the case of the paraboloid, parallel to the amis, and, in 

the case of the hyperboloid, parallel to any line passing through 

the vertex of the enveloping cone, the part of the straight line 

which is in the same direction as the convexity of the surface will 

fall without it, and the part which ws in the other direction 

within rt. 

For, if a plane be drawn, in the case of the paraboloid, 

through the axis and the point, and, in the case of the hyperbo- 

loid, through the given point and through the given straight 
line drawn through the vertex of the enveloping cone, the 

section by the plane will be (a) in the paraboloid a parabola 

whose axis is the axis of the paraboloid, (b) in the hyperboloid 

a hyperbola in which the given line through the vertex of the 

enveloping cone is a diameter *. [ Prop. 11] 

Hence the property follows from the plane properties of the 

conics. 

(2) If a plane touch a conoid without cutting rt, rt will 

touch wt at one point only, and the plane drawn through the 

point of contact and the aais of the conoid will be at right 

angles to the plane which touches tt. 

For, if possible, let the plane touch at two points. Draw 

through each point a parallel to the axis. The plane passing 

through both parallels will therefore either pass through, or be 

parallel to, the axis. Hence the section of the conoid made by 

this plane will be a conic [Prop. 11 (1), (2)], the two points 

will lie on this conic, and the line joining them will lie within 

the conic and therefore within the conoid. But this line 

will be in the tangent plane, since the two points are in it. 

Therefore some portion of the tangent plane will be within 

the conoid; which is impossible, since the plane does not 
cut it. 

* There seems to be some error in the text here, which says that “the 
diameter”? (i.e. axis) of the hyperbola is ‘the straight line drawn in the conoid 
from the vertex of the cone.” But this straight line is not, in general, the 
axis of the section. 
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Therefore the tangent plane touches in one point only. 

That the plane through the point of contact and the axis is 

perpendicular to the tangent plane is evident in the particular 

case where the point of contact is the vertex of the conoid. 

For, if two planes through the axis cut it in two conics, the 

tangents at the vertex in both conics will be perpendicular 

to the axis of the conoid. And all such tangents will be in the 

tangent plane, which must therefore be perpendicular to the 
axis and to any plane through the axis. 

If the point of contact P is not the vertex, draw the plane 

passing through the axis AW and the point P. 
It will cut the conoid in a conic whose axis is 
AWN and the tangent plane in a line DPE 

touching the conic at P. Draw PNP’ perpen- 
dicular to the axis, and draw a plane through it 

also perpendicular to the axis. This plane will 

make a circular section and meet the tangent 

plane in a tangent to the circle, which will 

therefore be at right angles to PN. Hence the 

tangent to the circle will be at right angles to the plane 

containing PN, AN; and it follows that this last plane is 

perpendicular to the tangent plane. 

E 

Proposition 16. 

(1) Lf a plane touch any of the spheroidal figures without 

cutting it, it will touch at one point only, and the plane through 

the point of contact and the aais will be at right angles to the 

tangent plane. 

This is proved by the same method as the last proposition. 

(2) If any conoid or spheroid be cut by a plane through the 

axis, and if through any tangent to the resulting conic a plane be 

erected at right angles to the plane of section, the plane so erected 

will touch the conoid or spheroid in the same point as that in 

which the line touches the conve. 

For it cannot meet the surface at any other point. If it 

did, the perpendicular from the second point on the cutting 
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plane would be perpendicular also to the tangent to the conic 

and would therefore fall outside the surface. But it must fall 

within it. [Prop. 11 (4)] 

(3) If two parallel planes touch any of the spheroidal 

figures, the line joining the points of contact will pass through 

the centre of the spherord. 

If the planes are at right angles to the axis, the proposition 

is obvious. If not, the plane through the axis and one point of 

contact is at right angles to the tangent plane at that point. 

It is therefore at right angles to the parallel tangent plane, and 

therefore passes through the second point of contact. Hence 

both points of contact lie on one plane through the axis, and 

the proposition is reduced to a plane one. 

Proposition 17. 

If two parallel planes touch any of the spheroidal figures, 

and another plane be drawn parallel to the tangent planes and 

passing through the centre, the line drawn through any point of 

the circumference of the resulting section parallel to the chord 

of contact of the tangent planes will fall outside the spheroid. 

This is proved at once by reduction to a plane proposition. 

Archimedes adds that it is evident that, if the plane 

parallel to the tangent planes does not pass through the 

centre, a straight line drawn in the manner described will 
fall without the spheroid in the direction of the smaller 
segment but within it in the other direction. 

Proposition 18. 

Any spheroidal figure which is cut by a plane through the 
centre is divided, both as regards its surface and tts volume, into 
two equal parts by that plane. 

To prove this, Archimedes takes another equal and similar 
spheroid, divides it similarly by a plane through the centre, and 
then uses the method of application. 
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Propositions 19, 20. 

Given a segment cut off by a plane from a paraboloid or 

hyperboloid of revolution, or a segment of a spheroid less than 
half the spheroid also cut off by a plane, tt is possible to inscribe 

tn the segment one solid figure and to circumscribe about it 

another solid figure, each made up of cylinders or ‘frusta’ of 

cylinders of equal height, and such that the circumscribed figure 

exceeds the insctibed figure by a volume less than that of any 
given solid. 

Let the plane base of the segment be perpendicular to the 

plane of the paper, and let the plane of the paper be the plane 

through the axis of the conoid or spheroid which cuts the base 

of the segment at right angles in BC. The section in the plane 

of the paper is then a conic BAC. [Prop. 11] 

Let HAF be that tangent to the conic which is parallel to 

BC, and let A be the point of contact. Through HAF draw 

a plane parallel to the plane through BC bounding the 

segment. The plane so drawn will then touch the conoid 

or spheroid at A. [Prop. 16] 

(1) If the base of the segment is at right angles to the 

axis of the conoid or spheroid, A will be the vertex of the 

conoid or spheroid, and its axis AD will bisect BC at right 

angles. 

(2) Ifthe base of the segment is not at right angles to the 

axis of the conoid or spheroid, we draw AD 

(a) in the paraboloid, parallel to the axis, 

(b) in the hyperboloid, through the centre (or the vertex of 

the enveloping cone), 

(c) in the spheroid, through the centre, 

and in all the cases it will follow that AD bisects BC in D. 

Then A will be the vertex of the segment, and AD will be 

its axis. 

Further, the base of the segment will be a circle or an 

ellipse with BO as diameter or as an axis respectively, and 

with centre D. We can therefore describe through this circle 

Haas 9 
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or ellipse a cylinder or a ‘frustum’ of a cylinder whose axis is 

aD): [Prop. 9] 

B D c 

Dividing this cylinder or frustum continually into equal 

parts by planes parallel to the base, we shall at length arrive 

at a cylinder or frustum less in volume than any given solid. 

Let this cylinder or frustum be that whose axis is OD, and 

let AD be divided into parts equal to OD, at L, M,.... Through 

L, M.,... draw lines parallel to BC meeting the conic in P, Q,..., 

and through these lines draw planes parallel to the base of the 

segment. These will cut the conoid or spheroid in circles or 

similar ellipses. On each of these circles or ellipses describe 

two cylinders or frusta of cylinders each with axis equal to OD, 

one of them lying in the direction of A and the other in the 

direction of D, as shown in the figure. 

Then the cylinders or frusta of cylinders drawn in the 
direction of A make up a circumscribed figure, and those in 

the direction of D an inscribed figure, in relation to the 
segment. 

Also the cylinder or frustum PG in the circumscribed figure 

is equal to the cylinder or frustum PH in the inscribed figure, 
QJ in the circumscribed figure is equal to QK in the inscribed 
figure, and so on. 

Therefore, by addition, 

(circumscribed fig.) = (inser. fig.) 

+ (cylinder or frustum whose axis is OD), 

But the cylinder or frustum whose axis is OD is less than 
the given solid figure ; whence the proposition follows. 

“Having set out these preliminary propositions, let us 
proceed to demonstrate the theorems propounded with reference 
to the figures.” 



ON CONOIDS AND SPHEROIDS. 131 

Propositions 21, 22. 

Any segment of a paraboloid of revolution is half as large 
again as the cone or segment of a cone which has the same base 
and the same axis. 

Let the base of the segment be perpendicular to the plane of 
the paper, and let the plane of the paper be the plane through 
the axis of the paraboloid which cuts the base of the segment 

at right angles in BC and makes the parabolic section BAC. 

Let HF be that tangent to the parabola which is parallel to 
BC, and let A be the point of contact. 

Then (1), if the plane of the base of the segment is 

perpendicular to the axis of the paraboloid, that axis is the 
line AD bisecting BC at right angles in D. 

(2) If the plane of the base is not perpendicular to the 

axis of the paraboloid, draw AD parallel to the axis of the 

paraboloid. AD will then bisect BC, but not at right angles. 

Draw through #F a plane parallel to the base of the seg- 
ment. This will touch the paraboloid at A, and A will be 

the vertex of the segment, AD its axis. 

The base of the segment will be a circle with diameter BC 

or an ellipse with BC as major axis. 

Accordingly a cylinder or a frustum of a cylinder can be 
found passing through the circle or ellipse and having AD for 

its axis |Prop. 9]; and likewise a cone or a segment of a cone 

can be drawn passing through the circle or ellipse and having 

A for vertex and AD for axis. [Prop. 8] 

Suppose X to be a cone equal to } (cone or segment of 

cone ABC). The cone X is therefore equal to half the cylinder 

or frustum of a cylinder HC. [Cf. Prop. 10] 

We shall prove that the volume of the segment of the 

paraboloid is equal to X. 

If not, the segment must be either greater or less than X, 

I. If possible, let the segment be greater than AG 

We can then inscribe and circumscribe, as in the last 

o==2 
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proposition, figures made up of cylinders or frusta of cylinders 

with equal height and such that 

(circumscribed fig.) — (inscribed fig.) < (segment) — X. 

Let the greatest of the cylinders or frusta forming the 

circumscribed figure be that whase base is the circle or ellipse 

about BC and whose axis is OD, and let the smallest of them be 

that whose base is the circle or ellipse about PP’ and whose 

axis is AL. 

Let the greatest of the cylinders forming the inscribed 

figure be that whose base is the circle or ellipse about RR’ and 
whose axis is OD, and let the smallest be that whose base is 

the circle or ellipse about PP’ and whose axis is LM. 

Produce all the plane bases of the cylinders or frusta to 
meet the surface of the complete cylinder or frustum EC. 

Now, since 

(circumscribed fig.) — (inser. fig.) < (segment) — X, 

it follows that (anseribed figure) XG, ~ sce eee (a). 

Next, comparing successively the cylinders or frusta with 

heights equal to OD and respectively forming parts of the 

complete cylinder or frustum HC and of the inscribed figure, 

we have 

(first cylinder or frustum in /C) : (first in inser. fig.) 

= eee 

=AD:AO 

= BD: TO, where AB meets OR in T. 

And (second cylinder or frustum in #C) : (second in inser. fig.) 

= HO : SN, in like manner, 

and so on, 
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Hence [Prop. 1] (cylinder or frustum EC) : (inscribed figure) 

=(BD+ HO+...):(T0+SN+...), 
where BD, HO,... are all equal, and BD, 70, SN,... diminish in 

arithmetical progression. 

But [Lemma preceding Prop. 1] 

BD+HO+...>2(TO+S8SN+...). 

Therefore (cylinder or frustum C) > 2 (inscribed fig.), 

or X > (inscribed fig.) ; 

which is impossible, by (a) above, 

II. If possible, let the segment be less than X. 

In this case we inscribe and circumscribe figures as before, 

but such that 

(circumser. fig.) — (inser. fig.) < X — (segment), 

whence it follows that 

(crrcumseribed figure) < X <..2000. sonnet (8). 

And, comparing the cylinders or frusta making up the 

complete cylinder or frustum CE and the circumscribed figure 
respectively, we have 

(first cylinder or frustum in CZ) : (first in circumscr. fig.) 

ID Wis Oe 

= BD BD, 

(second in CZ) : (second in circumser. fig.) 

=HOlhO? 

=A) AO 

= 1 Or) 0. 
and so on. 

Hence [Prop. 1] 

(cylinder or frustum CZ) : (circumscribed fig.) 

=(BD + HO+...): (BD TO ...), 

yd, [Lemma preceding Prop. 1] 
and it follows that 

X < (circumscribed fig.) ; 

which is impossible, by (8). 

Thus the segment, being neither greater nor less than X, is 

equal to it, and therefore to $ (cone or segment of cone ABC). 
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Proposition 23S. 

If from a paraboloid of revolution two segments be cut off, 

one by a plane perpendicular to the amis, the other by a plane not 

perpendicular to the awis, and if the axes of the segments are 
equal, the segments will be equal in volume. 

Let the two planes be supposed perpendicular to the plane 

of the paper, and let the latter plane be the plane through the 
axis of the paraboloid cutting the other two planes at right 
angles in BB’, QQ’ respectively and the paraboloid itself in the 

parabola QPQ’B'. 

Let AN, PV be the equal axes of the segments, and A, P 

their respective vertices. 

Draw QL parallel to AN or PV and Q’L perpendicular 
to QL. 

Now, since the segments of the parabolic section cut off by 

BB’, QQ’ have equal axes, the triangles A BB’, PQQ’ are equal 

[Prop. 3]. Also, if QD be perpendicular to PV, QD = BN (as 
in the same Prop. 3). 

Conceive two cones drawn with the same bases as the 
segments and with A, P as vertices respectively. The height 
of the cone PQQ’ is then PK, where PK is perpendicular to 

QQ’. 
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Now the cones are in the ratio compounded of the ratios of 
their bases and of their heights, i.e. the ratio compounded of 

(1) the ratio of the circle about BB’ to the ellipse about QQ’, 

and (2) the ratio of AN to PK. 

That is to say, we have, by means of Props. 5, 12, 

(cone ABB’) : (cone PQQ’)= (BB” : QQ’. Q’L).(AN : PR). 

And BB’ = 2BN = 2QD = QL, while QQ’ = 2QV. 

Therefore 

(cone ABB’) : (cone PQQ’) =(QD: QV).(AN: PR) 

=(PK:PV).(AN: PK) 

= AN PV, 

Since AV = PV, the ratio of the cones is a ratio of equality ; 

and it follows that the segments, being each half as large again 

as the respective cones [Prop. 22], are equal. 

Proposition 24. 

If from a paraboloid of revolution two segments be cut off by 
planes drawn in any manner, the segments will be to one another 

as the squares on their axes. 

For let the paraboloid be cut by a plane through the axis 
in the parabolic section P’PApp’, and let the axis of the 

parabola and paraboloid be ANN’. 

Measure along ANN’ the lengths AN, AN’ equal to the 

respective axes of the given segments, 

and through NV, NV’ draw planes perpen- P 

dicular to the axis, making circular 

' 

: P 
sections on Pp, P’p’ as diameters re- 

spectively. With these circles as bases 

and with the common vertex A let two 

cones be described. ‘ : lee 

Now the segments of the paraboloid 

whose bases are the circles about Pp, 

P’p’ are equal to the given segments 

respectively, since their respective axes 
are equal [Prop. 23]; and, since the P 

segments APp, AP’p’ are half as large p! 
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again as the cones APp, AP’p’ respectively, we have only 

to show that the cones are in the ratio of AN* to AN”. 

But 

(cone APp) : (cone AP’p’) =(PN*: PON PY AN ea) 

=(4N:AN’).(AN;: AW) 

=AN’: AN"; 

thus the proposition is proved. 

Propositions 25, 26. 

In any hyperboloid of revolution, if A be the vertex and AD 

the axis of any segment cut off by a plane, and if CA be the 

semidiameter of the hyperboloid through A (CA being of course 

in the same straight line with AD), then 

(segment) : (cone with same base and axis) 

=(AD+3CA): (AD + 2CA). 

Let the plane cutting off the segment be perpendicular to 

the plane of the paper, and let the latter plane be the plane 
through the axis of the hyperboloid which intersects the cutting 

plane at right angles in BB’, and makes the hyperbolic 

segment BAB’. Let C be the centre of the hyperboloid (or 
the vertex of the enveloping cone). 

Let EF be that tangent to the hyperbolic section which is 

parallel to BB’. Let HF touch at A, and join CA. Then CA 

produced will bisect BB’ at D, CA will be a semi-diameter of 

the hyperboloid, A will be the vertex of the segment, and AD 

its axis. Produce AC to A’ and H, so that AC=CA’=A/’H. 

Through HF draw a plane parallel to the base of the seg- 
ment. This plane will touch the hyperboloid at A. 

Then (1), if the base of the segment is at right angles to the 

axis of the hyperboloid, A will be the vertex, and AD the axis, 

of the hyperboloid as well as of the segment, and the base of the 
segment will be a circle on BB’ as diameter. 
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(2) If the base of the segment is not perpendicular to the 
axis of the hyperboloid, the base will be an ellipse on BB’ as 
major axis. [Prop. 13] 

H 

a| \AA’ 

Then we can draw a cylinder or a frustum of a cylinder 

EBB’'F passing through the circle or ellipse about BB’ and 

having AD for its axis; also we can describe a cone or a 

segment of a cone through the circle or ellipse and having A 

for its vertex. 

We have to prove that 

(segment ABB’): (cone or segment of cone ABB’)= HD: A’D. 
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Let V be a cone such that 

V : (cone or segment of cone ABB’) = HD: A’D....... (a) 

and we have to prove that V is equal to the segment. 

Now ’ 

(cylinder or frustum 4B’) : (cone or segmt. of cone ABB) =sre 

Therefore, by means of (a), 

(cylinder or frustum LB’): V=A’D : = fea (8). 

If the segment is not equal to V, it must either be greater 

or less. 

I. If possible, let the segment be greater than V. 

Inscribe and circumscribe to the segment figures made up 

of cylinders or frusta of cylinders, with axes along AD and all 

equal to one another, such that 

_ (circumscribed fig.) — (inser. fig.) < (segmt.) — V, 

whence (inseribed figure) > V we. Jeesccenteeenes (y). 

Produce all the planes forming the bases of the cylinders or 

frusta of cylinders to meet the surface of the complete cylinder 

or frustum LB’. 

Then, if VD be the axis of the greatest cylinder or frustum 

in the circumscribed figure, the complete cylinder will be 

divided into cylinders or frusta each equal to this greatest 

cylinder or frustum. 

Let there be a number of straight lines a equal to 4A’ and 
as many in number as the parts into which AD is divided by 

the bases of the cylinders or frusta. To each line a apply a 

rectangle which shall overlap it by a square, and let the greatest 

of the rectangles be equal to the rectangle AD. A'D and the 

least equal to the rectangle AL. A’L; also let the sides of the 

overlapping squares b, p, q,...l be in descending arithmetical 

progression. Thus b, p, q,.../ will be respectively equal to AD, 
AN, AM,...AL, and the rectangles (ab +’), (ap + p’),...(al + 2) 
will be respectively equal to AD. A’D, AN. A'N,...AL. A’L. 
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Suppose, further, that we have a series of spaces S each 

equal to the largest rectangle 4D. A'D and as many in number 
as the diminishing rectangles. 

Comparing now the successive cylinders or frusta (1) in the 

complete cylinder or frustum #B’ and (2) in the inscribed 

figure, beginning from the base of the segment, we have 

(first cylinder or frustum in #B’) : (first in inser. figure) 

= BD": PN* 

=AD.A’'D: AN. A’'N, from the hyperbola, 

=S: (ap +p’). 
Again 

(second cylinder or frustum in #B’) : (second in inser. fig.) 

is 

=A Dea DANA MM, 

=S:(aq+¢’), 
and so on. 

The last cylinder or frustum in the complete cylinder or 
frustum LB’ has no cylinder or frustum corresponding to it in 

the inscribed figure. 

Combining the proportions, we have [Prop. 1] 

(cylinder or frustum 4B’): (inscribed figure) 

= (sum of all the spaces 8): (ap + p’)+(aq+q°) +... 

eed >(a+b): E + 3) [Prop. 2] 

SAD) we sincea=AA’ b= AD, 

>(ZB’): V, by (8) above. 

Hence (inscribed figure) < V. 

But this is impossible, because, by (vy) above, the inscribed 

figure is greater than V. 
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II. Next suppose, if possible, that the segment is less 

than V. 

In this case we circumscribe and inscribe figures such that 

(circumscribed fig.) — (inscribed fig.) < V—(segment), 

whence we derive 

V > (circdmegerbed figure)... ...--scensee (6). 

We now compare successive cylinders or frusta in the 
complete cylinder or frustum and in the circumscribed figure ; 

and we have 

(first cylinder or frustum in /'B’) : (first in circumscribed fig.) 

coped! 

=S: (ab +0’), 

(second in #B’) : (second in circumscribed fig.) 

=S:(ap+p’), 

and so on. 

Hence [Prop. 1] 

(cylinder or frustum /'B’) : (circumscribed fig.) 

= (sum of all spaces S) : (ab + 6’) + (ap +p’) +... 

<(a+b): é x 3) [Prop. 2] 

EA Dies 

<(HB’): V, by (8) above. 

Hence the circumscribed figure is greater than V; which is 
impossible, by (6) above. 

Thus the segment is neither greater nor less than V, and is 

therefore equal to it. 

Therefore, by (a), 

(segment ABB’): (cone or segment of cone ABB’) 

=(AD+3CA):(AD+2CA),. 
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Propositions 27, 28, 29, 30. 

(1) In any spheroid whose centre is C, if a plane meeting 

the awis cut off a segment not greater than half the spheroid and 

having A for its vertex and AD for its axis, and if A’D be the 

axis of the remaining segment of the spheroid, then 

( first segmt.) :(cone or segmt. of cone with same base and axis) 

=CA+ AD: A’D 

[=3CA —AD: 2CA — AD]. 

(2) As a particular case, if the plane passes through the 

centre, so that the segment is half the spheroid, half the spheroid 

is double of the cone or segment of a cone which has the same 

vertex and axis. 

Let the plane cutting off the segment be at right angles to 
the plane of the paper, and let the latter plane be the plane 

through the axis of the spheroid which intersects the cutting 
plane in BB’ and makes the elliptic section ABA’B’. 

Let HF, E’F’ be the two tangents to the ellipse which are 
parallel to BB’, let them touch it in A, A’, and through the 

tangents draw planes parallel to the base of the segment. 

These planes will touch the spheroid at A, A’, which will 

be the vertices of the two segments into which it is divided. 
Also AA’ will pass through the centre C and bisect BB’ 

in D. 

Then (1) if the base of the segments be perpendicular to 

the axis of the spheroid, A, A’ will be the vertices of the 

spheroid as well as of the segments, AA’ will be the axis 

of the spheroid, and the base of the segments will be a circle on 

BB’ as diameter ; 

(2) if the base of the segments be not perpendicular to the 

axis of the spheroid, the base of the segments will be an 

ellipse of which BB’ is one axis, and AD, A’D will be the 

axes of the segments respectively. 
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We can now draw a cylinder or a frustum of a cylinder 

EBB’F through the circle or ellipse about BB’ and having AD 

for its axis; and we can also draw a cone or a segment of 

a cone passing through the circle or ellipse about BB’ and 
having A for its vertex. 

We have then to show that, if CA’ be produced to H so 

that CA’ = A’, 

(segment ABB’) : (cone or segment of cone ABB’)= HD: AD. 

Let V be such a cone that 

V : (cone or segment of cone ABB’)= HD: A’D ... (a); 

and we have to show that the segment ABB’ is equal to V. 
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But, since 

(cylinder or frustum 4B’) : (cone or segment of cone ABB’) 
oe 1 
= - di, 

we have, by the aid of (a), 

(cylinder or frustum 4B’): V =A’) : —...... (8). 

Now, if the segment ABB’ is not equal to V, it must 

be either greater or less. 

I. Suppose, if possible, that the segment is greater 
than V. 

Let figures be inscribed and circumscribed to the segment 

consisting of cylinders or frusta of cylinders, with axes along 
AD and all equal to one another, such that 

(circumscribed fig.) — (inscribed fig.) < (segment) — V, 

whence it follows that 

(anseribed) fie. \i) Vacs. cece enees (y). 

Produce all the planes forming the bases of the cylinders or 
frusta to meet the surface of the complete cylinder or frustum 

EB’. Thus, if ND be the axis of the greatest cylinder or 

frustum of a cylinder in the circumscribed figure, the complete 

cylinder or frustum #B’ will be divided into cylinders or frusta 

of cylinders each equal to the greatest of those in the circum- 

scribed figure. 

Take straight lines da’ each equal to A’D and as many in 

number as the parts into which AD is divided by the bases of 

the cylinders or frusta, and measure da along da’ equal to AD. 
It follows that aa’ =2CD. 

Apply to each of the lines a’d rectangles with height equal 
to ad, and draw the squares on each of the lines ad as in 

the figure. Let S denote the area of each complete rectangle. 

From the first rectangle take away a gnomon with breadth 

equal to AN (i.e. with each end of a length equal to AN); 

take away from the second rectangle a gnomon with breadth 
equal to AM, and so on, the last rectangle having no gnomon 

taken from it. 
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Then 

the first gnomon = A’D. AD—ND.(A’D— AN) 

= A’D.AN+ND.AN 

= AN: AW. 

Similarly, ; 

the second gnomon = AM. A’M, 

and so on. 

And the last gnomon (that in the last rectangle but one) is 

equal to AL. A’L. 

Also, after the gnomons are taken away from the successive 

rectangles, the remainders (which we will call R,, R,,... Rn, 

where n is the number of rectangles and accordingly R, =S) 

are rectangles applied to straight lines each of length aa’ and 

“exceeding by squares” whose sides are respectively equal 

tor UN, DMs. DA. 

For brevity, let DN be denoted by z, and aa’ or 2CD by c, 

so that R,=ca+a’, R,=c.2x+ (2e)’,... 

Then, comparing successively the cylinders or frusta of 
cylinders (1) in the complete cylinder or frustum #B’ and 

(2) in the inscribed figure, we have 

(first cylinder or frustum in #'B’) : (first in inscribed fig.) 

= BD? + PN? 

=AD.A'D: AN. A'N 

=8: (first gnomon) ; 

(second cylinder or frustum in #B’): (second in inscribed fig.) 

= 8 : (second gnomon), 
and so on. 

The last of the cylinders or feusta in the cylinder or 

frustum #B’ has none corresponding to it in the inscribed 

figure, and there is no corresponding gnomon. 

Combining the proportions, we have [by Prop. 1] 

(cylinder or frustum /B’) : (inscribed fig.) 

= (sum of all spaces S) : (sum of gnomons). 
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Now the differences between S and the successive gnomons 
are R,, R,,... Ra, while 

R, = cx + 2’, 

R,=c. 2x + (2e)', 
Ce i er ee ee ry 

where b=nz=AD. 

Hence [Prop. 2] 

(sum of all spaces S) : (R,+R,+...4+ Rn) < (c+): (5+ an 

It follows that 

(sum of all spaces 8): (sum of gnomons) >(c + b): 5 oA =) 

SAD: EY, 

Thus (cylinder or frustum #8’) : (inscribed Real 

Sarah ANS a 

> (cylinder or frustum £B’): V, 
from (8) above. 

Therefore 

which is impossible, by (vy) above. 

Hence the segment ABB’ is not greater than V. 

If possible, let the segment ABB’ be less than V. 

(inscribed fig.) < V ; 

Ey 

We then inscribe and circumscribe figures such that 

(circumscribed fig.) — (inscribed fig.) < V — (segment), 

whence Vi>(Ccircumseribed fig))..0. a. assent sas (8). 

In this case we compare the cylinders or frusta in (#B’) 

with those in the circumscribed figure. 

Thus 

(first cylinder or frustum in #B’) : (first in circumscribed fig.) 

=S 28: 

(second in HB’) : (second in circumscribed fig.) 

=f: (first gnomon), 
and so on. 

i¢ts IN 10 
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Lastly (last in #B’) : (last in circumscribed fig.) 

= : (last gnomon). 

Now 

{S +(all the gnomons)} = nS — (A, + Ree oe ee 

And nS:R, + R,4+...+ js (c +b): (5 +3) [Prop. 2] 

so that 
2b 

n8 : {S +(all the gnomons)} < (c +6): . ae 5) : 

It follows that, if we combine the above proportions as in 

Prop. 1, we obtain 

(cylinder or frustum 4B’) : (circumscribed fig.) 

2, 
< (+6): ($45) 

< A’ D* =o 
3 

< (EB’): V, by (8) above. 

Hence the circumscribed figure is greater than V; which is 

impossible, by (6) above. 

Thus, since the segment ABS’ is neither greater nor less 

than V, it is equal to it; and the proposition is proved. 

(2) The particular case [Props. 27, 28] where the segment 

is half the spheroid differs from the above in that the distance 

CD or c/2 vanishes, and the rectangles cb + 0’ are simply squares 

(b’), so that the gnomons are simply the differences between 0” 
and a”, b’ and (2z)’, and so on. 

Instead therefore of Prop. 2 we use the Lemma to Prop. 2, 
Cor. 1, given above [On Spirals, Prop. 10], and instead of the 

: 2b : 
ratio (c +b): 5 te =) we obtain the ratio 3 : 2, whence 

(segment ABB’) : (cone or segment of cone ABB’) =2 : 1, 

[This result can also be obtained by simply substituting 
CA for AD in the ratio (30A — AD): (204 — AD),] 
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Propositions 31, 32. 

If a plane divide a spheroid into two wnequal segments, and 
of AN, A'N be the axes of the lesser and greater segments 

respectively, while C is the centre of the spheroid, then 

(greater segmt.) : (cone or segmt. of cone with same base and axis) 

=CA+AN: AN. 

Let the ants dividing the spheroid be that through PP’ 
perpendicular to the plane of the paper, and let the latter plane 

be that through the axis of the spheroid which intersects the 

cutting plane in PP’ and makes the elliptic section PAP’A’. 

Draw the tangents to the ellipse which are parallel to PP’; 

let them touch the ellipse at A, A’, and through the tangents 

draw planes parallel to the base of the segments. These planes 
will touch the spheroid at A, A’, the line AA’ will pass 

through the centre C and bisect PP’ in NV, while AW, A’N will 

be the axes of the segments. 

Then (1) if the cutting plane be perpendicular to the axis 

of the spheroid, AA’ will be that axis, and A, A’ will be the 

vertices of the spheroid as well as of the segments. Also the 
sections of the spheroid by the cutting plane and all planes 

parallel to it will be circles. 

(2) If the cutting plane be not perpendicular to the axis, 

10—2 
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the base of the segments will be an ellipse of which PP’ is an 

axis, and the sections of the spheroid by all planes parallel 

to the cutting plane will be similar ellipses. 

Draw a plane through C parallel to the base of the segments 

and meeting the plane of the paper in BB’. 

Construct three cones or segments of cones, two having A 
for their common vertex and the plane sections through PP’, 

BB’ for their respective bases, and a third having the plane 

section through PP’ for its base and A’ for its vertex. 

Produce C'A to H and CA’ to H’ so that 

AH = A'H’ = (A. 

We have then to prove that 

(segment A’PP’) : (cone or segment of cone A’PP’) 

=CA+AN:AN 

=NH : AN. 

Now half the spheroid is double of the cone or segment of a 

cone ABB’ [Props. 27, 28]. Therefore 

(the spheroid) = 4 (cone or segment of cone A BB’). 

But 

(cone or segmt. of cone ABB’) : (cone.or segmt. of cone APP’) 

= (CA AWC = Eva) 

=(CA:AN).(CA.CA’: AN. A’N)...(a). 

If we measure AK along AA’ so that 

AK VAC =AC™ AN, 

we have AK ANAC. AN=GACAN, 

and the compound ratio in (a) becomes 

(AK ANE CALAN )is(CAVCA 4 Aacmy), 

10) AK .CAUSAN ACN. 

Thus 

(cone or segmt. of cone ABB’) : (cone or segmt. of cone APP’) 

=AK.CA’: AN.A'N. 
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But (cone or segment of cone APP’) : (segment APP’) 

= A’N : NH’ [Props. 29, 30] 

=AN.A'N: AN.NH’. 
Therefore, ex aequalt, 

(cone or segment of cone ABB’) : (segment APP’) 

=AK.CA':AN.NH’, 

so that (spheroid) : (segment APP’) 

SHH TAK vAN NGG 

since HH’ =4CA’. 

Hence (segment A’PP’) : (segment APP’) 

=(HH -AK—AN NH) AN INE’ 

=(AK.NH+NH’.NK): AN.NH. 
Further, 

(segment APP’) : (cone or segment of cone APP’) 

SNE 2 ACN, 

SAIN NE AN AGN, 
and 

(cone or segmt. of cone APP’) : (cone or segmt. of cone A’PP’) 

=AN:A'N 

SAN eA Nia Ne 

From the last three proportions we obtain, ex aequalz, 

(segment A’PP’) : (cone or segment of cone A’PP’) 

=(AK.NH+NH’.NK): A’N* 

=(AK.NH+NH’.NK) :(CA’*+NH’.CN) 

=(AK.NH+NH’.NK):(AK.AN+NH’.CN)...(8). 

But 

Ake NA AK AN = NH AN 

=CA+AN:AN 

=AK+CA:CA 

(since AK : AC=AC: AN) 
=Hk:CA 

=HK—-—NH:CA—AN 

=NK: CN 

= NH’.NK : NH’.CN. 
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Hence the ratio in (8) is equal to the ratio 

AK NH RAKE AN sor NA SAN, 

Therefore 

(segment A’PP’) : (cone or segment of cone A’PP’) 

\  =NH:AN 
=CA+AN: AN. 

[If (a, y) be the coordinates of P referred to the conjugate 

diameters A.A’, BB’ as axes of a, y, and if 2a, 2b be the lengths 

of the diameters respectively, we have, since 

(spheroid) — (lesser segment) = (greater segment), 

2a+ a” 

A+2 
4. ab? — 

z Se ae 
LY (a-—2)= Ss, (a+2); 

and the above proposition is the geometrical proof of the truth 

of this equation where «, y are connected by the equation 
2 2 

x 
ata 



ON SPIRALS. 

“ ARCHIMEDES to Dositheus greeting. 

Of most of the theorems which I sent to Conon, and of 

which you ask me from time to time to send you the proofs, the 

demonstrations are already before you in the books brought to 

you by Heracleides ; and some more are also contained in that 
which I now send you. Do not be surprised at my taking a 

considerable time before publishing these proofs. This has 

been owing to my desire to communicate them first to persons 

engaged in mathematical studies and anxious to investigate 

them. In fact, how many theorems in geometry which have 

seemed at first impracticable are in time successfully worked out! 
Now Conon died before he had sufficient time to investigate 

the theorems referred to; otherwise he would have discovered 

and made manifest all these things, and would have enriched 

geometry by many other discoveries besides. For I know well 

that it was no common ability that he brought to bear on 

mathematics, and that his industry was extraordinary. But, 

though many years have elapsed since Conon’s death, I do not 

find that any one of the problems has been stirred by a single 

person. I wish now to put them in review one by one, 

particularly as it happens that there are two included among 

them which are impossibie of realisation* [and which may 

serve aS a warning] how those who claim to discover every- 

thing but produce no proofs of the same may be confuted as 

having actually pretended to discover the impossible. 

* Heiberg reads réXos 6é rofecbueva, but F has rédovs, so that the true reading 

is perhaps 7édous 6é roridedueva. The meaning appears to be simply ‘ wrong.’ 
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What are the problems I mean, and what are those of which 
you have already received the proofs, and those of which the 

proofs are contained in this book respectively, I think it proper 
to specify. The first of the problems was, Given a sphere, to find 

a plane area equal to the surface, of the sphere; and this was 

first made manifest on the publication of the book concerning the 

sphere, for, when it is once proved that the surface of any sphere 

is four times the greatest circle in the sphere, it is clear that it 

is possible to find a plane area equal to the surface of the sphere. 
The second was, Given a cone or a cylinder, to find a sphere 

equal to the cone or cylinder ; the third, lo cut a given sphere 

by a plane so that the segments of it have to one another an 

assigned ratio; the fourth, To cut a given sphere by a plane so 

that the segments of the surface have to one another an assigned 

ratio; the fifth, To make a given segment of a sphere similar to 

a given segment of a sphere*; the sixth, Given two segments of 

either the same or different spheres, to find a segment of a sphere 

which shall be similar to one of the segments and have its 

surface equal to the surface of the other segment. The seventh 

was, From a given sphere to cut off a segment by a plane so 

that the segment bears to the cone which has the same base as 

the segment and equal height an assigned ratio greater than 

that of three to two. Of all the propositions just enumerated 

Heracleides brought you the proofs. The proposition stated 

next after these was wrong, viz. that, if a sphere be cut by a 

plane into unequal parts, the greater segment will have to the 

less the duplicate ratio of that which the greater surface has to 

the less. That this is wrong is obvious by what I sent you 

before ; for it included this proposition: If a sphere be cut into 

unequal parts by a plane at mght angles to any diameter in the 

sphere, the greater segment of the surface will have to the less 

the same ratio as the greater segment of the diameter has 

to the less, while the greater segment of the sphere has to the 

less a ratio less than the duplicate ratio of that which the 

* 70 dodev rudua opalpas To SoOevTe Tudware opalpas suowwsoat, ie. to make a 
segment of a sphere similar to one given segment and equal in content to 
another given segment. [Cf. On the Sphere and Cylinder, II. 5.] 
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greater surface has to the less, but greater than the sesqui- 

alterate* of that ratio. The last of the problems was also wrong, 
viz. that, if the diameter of any sphere be cut so that the square 

on the greater segment is triple of the square on the lesser 

segment, and if through the point thus arrived at a plane be 

drawn at right angles to the diameter and cutting the sphere, 

the figure in such a form as is the greater segment of the sphere 

is the greatest of all the segments which have an equal surface. 
That this is wrong is also clear from the theorems which I 

before sent you. For it was there proved that the hemisphere 
is the greatest of all the segments of a sphere bounded by an 
equal surface. 

After these theorems the following were propounded con- 
cerning the cone}. If a section of a right-angled cone [a 

parabola], in which the diameter [axis] remains fixed, be made to 
revolve so that the diameter [axis] is the axis [of revolution], 

let the figure described by the section of the right-angled cone 

be called a conoid. And if a plane touch the conoidal figure 

and another plane drawn parallel to the tangent plane cut off 

a segment of the conoid, let the base of the segment cut off be 

defined as the cutting plane, and the vertex as the point in which 

the other plane touches the conoid. Now, if the said figure be 
cut by a plane at right angles to the axis, it is clear that the 

section will be a circle; but it needs to be proved that the 

segment cut off will be half as large again as the cone which has 

the same base as the segment and equal height. And if two 
segments be cut off from the conoid by planes drawn in any 

manner, it is clear that the sections will be sections of acute- 

angled cones [ellipses] if the cutting planes be not at right 

angles to the axis; but it needs to be proved that the 

segments will bear to one another the ratio of the squares on 

the lines drawn from their vertices parallel to the axis to meet 

the cutting planes. The proofs of these propositions are not 

yet sent to you. 

After these came the following propositions about the spiral, 

* (Noyov) pelfova 7} qysddcov Tod, dv exer K.7.A., Le. a ratio greater than (the 

ratio of the surfaces) 2, See On the Sphere and Cylinder, II. 8. 

+ This should be presumably ‘ the conoid,’ not ‘the cone,’ 
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which are as it were another sort of problem having nothing 

in common with the foregoing; and I have written out the 

proofs of them for you in this book. They are as follows. If a 

straight line of which one extremity remains fixed be made to 

revolve at a uniform rate in a plane until it returns to the 

position from which it started, and if, at the same time as the 

straight line revolves, a point move at a uniform rate along the 

straight line, starting from the fixed extremity, the point will 

describe a spiral in the plane. I say then that the area 

bounded by the spiral and the straight line which has returned 

to the position from which it started is a third part of the circle 

described with the fixed point as centre and with radius the 

length traversed by the point along the straight line during the 

one revolution. And, if a straight line touch the spiral at the 

extreme end of the spiral, and another straight line be drawn at 

right angles to the line which has revolved and resumed its 

position from the fixed extremity of it, so as to meet the 

tangent, I say that the straight line so drawn to meet it is 

equal to the circumference of the circle. Again, if the revolving 

line and the point moving along it make several revolutions 

and return to the position from which the straight line started, 

I say that the area added by the spiral in the third revolution 

will be double of that added in the second, that in the fourth 

three times, that in the fifth four times, and generally the areas 

added in the later revolutions will be multiples of that added in 

the second revolution according to the successive numbers, 

while the area bounded by the spiral in the first revolution is a 

sixth part of that added in the second revolution. Also, if on 

the spiral described in one revolution two points be taken and 

straight lines be drawn joining them to the fixed extremity of 

the revolving line, and if two circles be drawn with the fixed 

point as centre and radii the lines drawn to the fixed extremity 

of the straight line, and the shorter of the two lines be produced, 

I say that (1) the area bounded by the circumference of the 

greater circle in the direction of (the part of) the spiral included 

between the straight lines, the spiral (itself) and the produced 

straight line will bear to (2) the area bounded by the circum- 

ference of the lesser circle, the same (part of the) spiral and the 
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straight line joing their extremities the ratio which (3) the 

radius of the lesser circle together with two thirds of the excess 
of the radius of the greater circle over the radius of the lesser 

bears to (4) the radius of the lesser circle together with one 
third of the said excess. 

The proofs then of these theorems and others relating to the 

spiral are given in the present book. Prefixed to them, after the 

manner usual in’ other geometrical works, are the propositions 

necessary to the proofs of them. And here too, as in the books 

previously published, I assume the following lemma, that, if 

there be (two) unequal lines or (two) unequal areas, the excess 

by which the greater exceeds the less can, by being [continually] 

added to itself, be made to exceed any given magnitude among 

those which are comparable with [it and with] one another.” 

Proposition 1. 

If a point move at a uniform rate along any line, and two 

lengths be taken on it, they will be proportional to the times of 

describing then. 

Two unequal lengths are taken on a straight line, and two 

lengths on another straight line representing the times; and 

they are proved to be proportional by taking equimultiples of 

each length and the corresponding time after the manner of 

Eucl. V. Def. 5. 

fe 
Proposition 2. 

If each of two points on different lines respectively move along 

them each at a uniform rate, and vf lengths be taken, one on each 

line, forming pairs, such that each pair are described in equal 

times, the lengths will be proportionals. 

This is proved at once by equating the ratio of the lengths 

taken on one line to that of the times of description, which 

must also be equal to the ratio of the lengths taken on the other 

line. 
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Proposition 3. 

Given any number of circles, it is possible to find a straight 

line greater than the sum of all their circumferences. 

For we have only to describe polygons about each and then 

take a straight line equal to the sum of the perimeters of the 

polygons. 

Proposition 4. 

Given two unequal lines, viz. a straight line and the circum- 

ference of a circle, it is possible to find a straight line less than 

the greater of the two lines and greater than the less. 

For, by the Lemma, the excess can, by being added a sufficient 

number of times to itself, be made to exceed the lesser line. 

Thus e.g., if ¢ > (where ¢ is the circumference of the circle 

and lJ the length of the straight line), we can find a number n 

such that 
n(e—l)> 1. 

Therefore c—l> ! : 

and ot et 

Hence we have only to divide J into n equal parts and add 

one of them tol. The resulting line will satisfy the condition. 

Proposition 5. 

Given a circle with centre O, and the tangent to it at a point 

A, it is possible to draw from O a straight line OPF, meeting the 
curcle in P and the tangent in F, such that, if c be the circwm- 
Serence of any given circle whatever, 

BPs OP = (area P). <6 

Take a straight line, as D, greater than the circumference c. 

[Prop. 3] 
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Through O draw OH parallel to the given tangent, and 
draw through A a line APH, meeting the circle in P and OH 

A 

Te 

Vin ane 

F 

D 

in H, such that the portion PH intercepted between the circle 

and the line OH may be equal to D*. Join OP and produce 

it to meet the tangent in F. 

Then FP: OP=AP : PH, by parallels, 

=A a) 

<(ARCRAU en. 

Proposition 6. 

Given a circle with centre O, a chord AB less than the 

diameter, and OM the perpendicular on AB from O, it is possible 

to draw a straight line OF P, meeting the chord AB in F and the 

circle in P, such that 
PUP ee 23) oa, 

where D: E is any given ratio less than BM : MO. 

Draw OH parallel to AB, and BT perpendicular to BO 

meeting OH in T. 

Then the triangles BMO, OBT are similar, and therefore 

BM MO=OBs BI, 

whence Deh < OB: BI. 

* This construction, which is assumed without any explanation as to how it 

is to be effected, is described in the original Greek thus: ‘‘let PH be placed 

(kelcOw) equal to D, verging (vevouca) towards A,” This is the usual phraseology 

used in the type of problem known by the name of vedovs. 
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Suppose that a line PH (greater than BT) is taken such 

that 
D:H=OB: PH, 

= 

and let PH be so placed that it passes through B and P lies on 

the circumference of the circle, while H is on the line OH*. 

(PH will fall outside BT, because PH > BL.) Join OP meeting 

AB in F. 

We now have 

EPS PR= OPS PH 

=O PH 

= J)) 2 Je, 

Proposition 7. 

Given a circle with centre O, a chord AB less than the 

diameter, and OM the perpendicular on it from O, it is possible 

to draw from O a straight line OPF, meeting the circle in P and 
AB produced in F, such that 

PP = ne 

where D: His any given ratio greater than BM : MO. 

Draw OT parallel to AB, and BY perpendicular to BO 
meeting OT in 7. 

* The Greek phrase is ‘‘let PH be placed between the circumference and the 
straight line (OH) through B.” The construction is assumed, like the similar 
one in the last proposition. 
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In this case, D:E>BM: MO 

> OB : BT, by similar triangles. 

E 

Take a line PH (less than B7') such that 

DoE = OB PH, 

and place PH so that P, H are on the circle and on OT respec- 
tively, while HP produced passes through B*. 

Then NAG MON ea eae k 

SN PIT, 

Proposition 8. 

Given a circle with centre O, a chord AB less than the 

diameter, the tangent at B, and the perpendicular OM from O 

on AB, it is possible to draw from O a straight line OFP, 

meeting the chord AB in F, the circle in P and the tangent in G, 

such that 
FP] BG=D EE, 

where D: E is any given ratio less than BM : MO. 

If OT be drawn parallel to AB meeting the tangent at Bin 7, 

BM SMO =0B = BL, 

so that Une BURCS (Ohara 109 

Take a point C on 7'B produced such that 

DH = OB >) BC, 

whence BC > BT. 

* PH is described in the Greek as vevoucay émi (verging to) the point B. As 

before the construction is assumed. 
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Through the points 0, 7, C describe a circle, and let OB be 

produced to meet this circle in KX. 

Q 

Then, since BO > BT, and OB is perpendicular to CT, it is 

possible to draw from O a straight line OGQ, meeting CT in G 

and the circle about OTC in Q, such that GQ = BK*. 

Let OGQ meet AB in F and the original circle in P. 

Now OG. GT =06G .GQ; 

and OF: O0G=BT: GT, 

so that OF .GT=0OG. BT. 

it follows that 

OG.GT: OF.GT=0G4.GQ: 0G. BT, 

or CG OF =GO2kT 

= BK: BT, by construction, 

= BG SOB 

= BOOP: 

Hence OP: OF = BOC 2G, 

and therefore Pi OP = BG ane. 

or PF: BG=OP: BC 

= OB eB. 

me Dok. 

* The Greek words used are: ‘it is possible to place another [straight line] 
GQ equal to KB verging (vedovcav) towards O.” This particular vedo.s is 
discussed by Pappus (p. 298, ed. Hultsch). See the Introduction, chapter v. 
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Proposition 9. 

Given a circle with centre O, a chord AB less than the 

diameter, the tangent at B, and the perpendicular OM from O 
on AB, it is possible to draw from O a straight line OPGF, 
meeting the circle in P, the tangent in G, and AB produced in F, 
such that 

FP: BG=D: #, 

where D: E is any given ratio greater than BM : MO. 

Let OT be drawn parallel to 4B meeting the tangent at B 
ae ie 

Then D:H>BM: MO 

> OB : BT, by similar triangles. 

Produce TB to C so that 

De ha OB 2 BC, 

whence Jai Wied ag 

Describe a miele through the points O, 7, C, and produce OB 

to meet this circle in K. 

Then, since 7B > BOC, and OB is perpendicular to C7, it is 

possible to draw from O a line OGQ, meeting C7’ in G, and the 

H. A. 1 
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circle about OTC in Q, such that GQ=Bk*. Let OQ meet 

the original circle in P and AB produced in F. 

We now prove, exactly as in the last proposition, that 

CGO = BiG nT 

= pO 2.0L. 
Thus, as before, 

OR OF = BCG, 

and OP: PF = BC «BG, 

whence Pie BGs OR .2nC. 

= OB ABC 

SUN IS, 

Proposition 10. 

If A,, Az, A;,...An be n lines forming an ascending arith- 

metical progression in which the common difference is equal 
to A,, the least term, then 

(n+1)A,2+ A, (A, + A,+...+ An) = 3 (A+ A? +...4+A,”). 

[ Archimedes’ proof of this proposition is given above, p. 107— 

9, and it is there pointed out that the result is equivalent to 

SwrADs 

[tte ee ee OE DF 

Cor. 1. It follows from this proposition that 

n. A, <38(AP+ AP+...+ An’), 

and also that 

nN. Aw >3 (Ay ar A,’ ae 00 An’). 

[For the proof of the latter inequality see p. 109 above.] 

Cor. 2. All the results will equally hold if similar figures 
are substituted for squares. 

* See the note on the last proposition, 
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Proposition 11. 

If Ay, As,...An be n lines forming an ascending arith- 

metical progression [in which the cominon difference is equal to 
the least term <A,]*, then 

(w@—1) A," : (A," + Ap’ +... 4+ A,") 

= As, A, +4 (An — A,)"} 5 
but 

eee CA ete dt) 
SA A eee 

[Archimedes sets out the terms side by side in the manner 

shown in the figure, where BCO=A,, DE=A,_,,...RS = A,, and 

produces DH, FG,...RS until they are 

respectively equal to BC or A,, so that 6 y , + 

ELH, GI,...SU in the figure are re- | 

spectively equal to A,, A,...A,. He y 

further measures lengths Bk, DLJ, or 

FM,...PV along BC, DE, FG, ...PQ re- 

P 

U 

spectively each equal to RS. 

The figure makes the relations 

between the terms easier to see with K+ uf 

the eye, but the use of so large a is 
BeeDae number of letters makes the proof 

somewhat difficult to follow, and it 

may be more clearly represented as follows.] 

It is evident that (A, — A,) = An_y. 

The following proportion is therefore obviously true, viz. 

(n—1) A,’ : (1-1) (An. 41 4+4 42”) 

per {An.A,+4(An—Ay)}. 

* The proposition is true even when the common difference is not equal to 

A,, and is assumed in the more general form in Props, 25 and 26. But, as 

Archimedes’ proof assumes the equality of A, and the common difference, the 

words are here inserted to prevent misapprehension. 

11—2 
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In order therefore to prove the desired result, we have only 

to show that 

(n—1) An. Ai+$(m—1) Ani?< (An? + Ana’ +... + ia) 

but SAR + Ae a Ae 

I. To prove the first inequality, we have 

(n—1)An.A,+4(n—-1) Any’ 

=(n—1) A? +(n—1) A). Anat} (n—1) Ba Deena nb 

And 

At Ana tee ty 

=(Anit Ai)?+(Anot+Ai)?+...+ (41+ Ar)? 

(Age Ay Fee eA) 

+(n—1)A/? 

+2A,(An st+tAnot... +A) 

=(Agay + Akiak con Ag) 

+(n—1) A? 

HA Ana Ayn Agee stds 
+A, +A,g +...+An.+ An} 

=(A,-4 + Ane te Ae) 

+(n—1) A? 

He ThA a Ay Sebi Mien as <b eduewen de aene eee (2). 

Comparing the right-hand sides of (1) and (2), we see that 
(n—1) A,’ is common to both sides, and 

(n= 1) Al An <a 

while, by Prop. 10, Cor. 1, 

(= 1) AR? Ap Aas ee 

It follows therefore that 

(n=l) Ay As+4 (i — 1) dy (Ane AY): 

and hence the first part of the proposition is proved. 

II. We have now, in order to prove the second result, to 
show that 

(n—1)Ay.A,+4(n—1) An_?> (Ana? + An +... +A;7). 
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The right-hand side is equal to 

(An + Ai)'+ (Ans +A, +...4+(4, +4) +42 

=A, +A, + AY 

+(n—1)A/? 

+ 2A,(Anot Anot ... +A) 

= (Ans + An. +... +A,’) 

+(n—1)A/? 

sa An.t+An st... +A, ' 
+A, +A, +...+An 

= Age Aner tet A, ) 

+(n—1)A/? 

Seino eA A Gee ieetaaene renee (3). 

Comparing this expression with the right-hand side of (1) above, 

we see that (n—1) A,” is common to both sides, and 

(n—1)A,.An.>(n—2)A,. Ano, 

while, by Prop. 10, Cor. 1, 

4 (n—1) An? > (Ane + Ans +... + Ay’). 
Hence 

(n—1) An. A,+3(n—1) Any? > (An? + An’ +... + Ar’); 

and the second required result follows. 

Cor. The results in the above proposition are equally true of 
similar figures be substituted for squares on the several lines. 

DEFINITIONS. 

1. Ifa straight line drawn in a plane revolve at a uniform 

rate about one extremity which remains fixed and return to 

the position from which it started, and if, at the same time as 

the line revolves, a point move at a uniform rate along the 

straight line beginning from the extremity which remains fixed, 

the point will describe a spiral (€\€) in the plane. 

2. Let the extremity of the straight line which remains 
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fixed while the straight line revolves be called the origin* 

(apya) of the spiral. 

3. And let the position of the line from which the straight 

line began to revolve be called the initial line* in the 

revolution (apya Tas mepipopas). 

4, Let the length which the point that moves along the 

straight line describes in one revolution be called the first 

distance, that which the same point describes in the second 

revolution the second distance, and similarly let the distances 

described in further revolutions be called after the number of 

the particular revolution. 

5. Let the area bounded by the spiral described in the 
first revolution and the first distance be called the first area, 

that bounded by the spiral described in the second revolution 

and the second distance the second area, and similarly for the 

rest in order. 

6. If from the origin of the spiral any straight line be 

drawn, let that side of it which is in the same direction as that 

of the revolution be called forward (apoayovpeva), and that 

which is in the other direction backward (ézopeva). 

7. Let the circle drawn with the origin as centre and the 

first distance as radius be called the first circle, that drawn 

with the same centre and twice the radius the second circle, 

and similarly for the succeeding circles. 

Proposition 12. 

Tf any number of straight lines drawn from the origin to 
meet the spiral make equal angles with one another, the lines will 
be in arithmetical progression. 

[The proof is obvious. ] 

* The literal translation would of course be the “ beginning of the spiral” 
and ‘‘the beginning of the revolution ” respectively. But the modern names 
will be more suitable for use later on, and are therefore employed here. 
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Proposition 13. 

If a straight line touch the spiral, it will touch it in one pownt 
only. 

Let O be the origin of the spiral, and BC a tangent to it. 

If possible, let BC touch the spiral in two points P, Q. 
Join OP, OQ, and bisect the angle POQ by the straight line OR 
meeting the spiral in R. 

Then [Prop. 12] OF is an arithmetic mean between OP and 

OQ, or 
OP + 0Q = 20R. 

But in any triangle POQ, if the bisector of the angle POQ 

meets PQ in K, 
OF +00 > 20K*. 

Therefore OK < OR, and it follows that some point on BC 

between P and Q lies within the spiral. Hence BC cuts the 

spiral; which is contrary to the hypothesis. 

Proposition 14. 

If O be the origin, and P, Q two points on the first turn of 

the spiral, and if OP, OQ produced meet the ‘first circle’ 
AKP’Q’ in P’, Q’ respectively, OA being the initial line, then 

OP: 0Q=(are AKP’): (are AKQ’). 

For, while the revolving line OA moves about O, the point 

A on it moves uniformly along the circumference of the circle 

* This is assumed as a known proposition ; but it is easily proved. 
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AKP’Q’, and at the same time the point describing the spiral 

moves uniformly along OA. 

en Q’ 

K 

Thus, while A describes the are AK P’, the moving point on 

OA describes the length OP, and, while A describes the are 

AKQ’, the moving point on OA describes the distance OQ. 

Hence OP: OQ=(are AKP’): (arc AKQ’). [Prop. 2] 

Proposition 15. 

If P, Q be points on the second turn of the spiral, and OP, 

OQ meet the ‘first circle’ AKP’Q’ in P’, Q’, as in the last 

proposition, and vf c be the circumference of the first circle, then 

OP : OQ=c+ (arc AKP’) :c+(are AKQ’). 

For, while the moving point on OA describes the distance 

OP, the point A describes the whole of the circumference of 

the ‘first circle’ together with the arc AKP’; and, while the 

moving point on OA describes the distance OQ, the point A 
describes the whole circumference of the ‘first circle’ together 
with the are AKQ’. 

Cor. Similarly, if P, Q are on the nth turn of the spiral, 

OP : OQ =(n—-1)¢+(are AKP’) : (n—1)¢+(arc AKQ’). 
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Propositions 16, 17. 

If BC be the tangent at P, any point on the spiral, PC being 
the ‘ forward’ part of BC, and if OP be joined, the angle OPC 
as obtuse while the angle OPB is acute. 

I. Suppose P to be on the first turn of the spiral. 

Let OA be the initial line, AKP’ the ‘first circle” Draw 

the circle DEP with centre O and radius OP, meeting OA in 
D. This circle must then, in the ‘forward’ direction from P, 

fall within the spiral, and in the ‘backward’ direction outside 

it, since the radii vectores of the spiral are on the ‘ forward’ side 

greater, and on the ‘ backward’ side less, than OP. Hence the 

angle OPC cannot be acute, since it cannot be less than the 

angle between OP and the tangent to the circle at P, which is 

a right angle. 

It only remains therefore to prove that OPC is not a right 

angle. 

If possible, let it be a right angle. BC will then touch 

the circle at P. 

Therefore [Prop. 5] it is possible to draw a line OQC 

meeting the circle through P in Q and BC in C, such that 

COM OO (arc LO) (are DLP Yo iasnsasese(L). 
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Suppose that OC meets the spiral in R and the ‘ first circle ’ 

in R’; and produce OP to meet the ‘first circle’ in P’. 

From (1) it follows, componendo, that 

CO : OQ < (arc DEQ) : (arc DLP) 

< (arc AKR’): (arc AK P’) 

< Ol OF; [Prop. 14] 

But this is impossible, because OQ = OP, and OR < OC. 

Hence the angle OPC is not a right angle. It was also 

proved not to be acute. 

Therefore the angle OPC is obtuse, and the angle OPB 
consequently acute. 

II. If P is on the second, or the nth turn, the proof is the 

same, except that in the proportion (1) above we have to 

substitute for the arc DLP an are equal to (p+are DLP) or 
(n—1.p+are DIP), where p is the perimeter of the circle 

DLP through P. Similarly, in the later steps, p or (n—1) p 
will be added to each of the ares DIQ and DIP, and ¢ o1 
(n—1)c to each of the arcs AKR’, AKP’, where c is the 
circumference of the ‘first circle’ AKP’. 
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Propositions 18, 19. 

I. Lf OA be the initial line, A the end of the first turn of 
the spiral, and uf the tangent to the spiral at A be drawn, the 

straight line OB drawn from O perpendicular to OA will meet 

the said tangent in some point B, and OB will be equal to the 
circumference of the ‘ first circle. 

Il. Jf A’ be the end of the second turn, the perpendicular 

OB will meet the tangent at A’ in some point B’, and OB’ will 

be equal to 2 (circumference of ‘ second circle’). 

III. Generally, of A, be the end of the nth turn, and OB 
meet the tangent at A, in B,, then 

OB, = Nn; 

where Cy is the circumference of the ‘nth circle.’ 

I. Let AKC be the ‘first circle. Then, since the ‘ back- 

ward’ angle between OA and the tangent at A is acute [Prop. 

16], the tangent will meet the ‘first circle’ in a second point C. 

And the angles CAO, BOA are together less than two right 

angles; therefore OB will meet AC produced in some point B. 

Then, if c be the circumference of the first circle, we have 

to prove that 
OB =c. 

If not, OB must be either greater or less than c. 
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(1) If possible, suppose OB > c. 

Measure along OB a length OD less than OB but greater 

than c. 

We have then a circle AKC,a chord AC in it less than 

the diameter, and a ratio AO: OD which is greater than the 

ratio AO: OB or (what is, by similar triangles, equal to it) the 

ratio of $AC to the perpendicular from 0 on AC. Therefore 

[Prop. 7] we can draw a straight line OPF, meeting the circle 

in P and CA produced in F, such that 

FP: PA=A0: OD. 

Thus, alternately, since AO = PO, 

PP PO = PALZOD 

< (are PA): ¢, 

since (arc PA) > PA, and OD >«. 

Componendo, 
FO: PO <(c+are PA) :c 

= 00 20A;, 

where OF meets the spiral in Q. [Prop. 15] 

Therefore, since OA = OP, FO < OQ; which is impossible. 

Hence. OBE 

(2) If possible, suppose OB < ¢. 

Measure OF along OB so that OZ is greater than OB but 

less than c. 

In this case, since the ratio AO: OZ is less than the ratio 

AO: OB (or the ratio of 440 to the perpendicular from O 

on AC), we can [Prop. 8] draw a line OF’P’G, meeting AC in 

F’, the circle in P’, and the tangent at A to the circle in G, 

such that 

EP OTA Gaon Oe On, 

Let OP'G cut the spiral in Q’. 

Then we have, alternately, 

EP OA Gee 

dard, A) c. 

because AG > (are AP’), and OF <c. 
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Therefore 
F°O: PO <(arc AKP’): ¢ 

=) as UAL [Prop. 14] 

But this is impossible, since OA = OP’, and 0Q' < OF". 

Hence OB €c. 

Since therefore OB is neither greater nor less than c, 

OB=c. 

Il. Let A’K’C’ be the ‘second circle, A’O’ being the 

tangent to the spiral at A’ (which will cut the second circle, 

since the ‘backward’ angle O.A’C’ is acute). Thus, as before, 

the perpendicular OB’ to OA’ will meet A’C’ produced in some 
point B’. 

If then c’ is the circumference of the ‘second circle, we 

have to prove that OB’ = 2c’. 

For, if not, OB’ must be either greater or less than 2c’. 

(1) If possible, suppose OB’ > 2c’. 

Measure OD’ along OB’ so that OD’ is less than OB’ but 

greater than 2c’, 

Then, as in the case of the ‘ first circle’ above, we can diaw 

a straight line OPF meeting the ‘second circle’ in P and C’A’ 

produced in Ff, such that 

PE A= ACOs OD 
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Let OF meet the spiral in Q. 

We now have, since A’0 = PO, 

EP} PO = PA TOL 

(GEE TA eh) ace 

because (arc A’P) > A’P and OD’ > 2c". 

Therefore FO: PO <(2¢ + arc AP) : 2¢ 

00204. [Prop. 15, Cor.] 

Hence FO < 0Q; which is impossible. 

Thus OB’ > 2c’. 

Similarly, as in the case of the ‘first circle’, we can prove that 

OB’ + 2’. 

Therefore OB s=Ze, 

III. Proceeding, in like manner, to the ‘third’ and suc- 

ceeding circles, we shall prove that 

OB, = 1. 

Proposition 20. 

I If P be any pownt on the first turn of the spiral and OT 

be drawn perpendicular to OP, OT will meet the tangent at P to 

the spiral in some point T; and, if the circle drawn with centre 

O and radius OP meet the initial line in K, then OT is equal to 

the arc of this circle between K and P measured in the ‘forward’ 

direction of the spiral. 

Il. Generally, if P be a point on the nth turn, and the 

notation be as before, while p represents the circumference of the 
circle with radius OP, 

OT =(n—1)p+are KP (measured ‘ forward’). 

I. Let P be a point on the first turn of the spiral, 0A the 
initial line, PR the tangent at P taken in the ‘backward’ 
direction. 

Then [Prop. 16] the angle OPR is acute. Therefore PR 
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meets the circle through P in some point R; and also O7 will 

meet PR produced in some point 7’. 

If now OT is not equal to the are KRP, it must be either 

greater or less. 

(1) If possible, let OT be greater than the are KAP. 

Measure OU along OT less than OT but greater than the 

arc KRP. 

Then, since the ratio PO: OU is greater than the ratio 

PO: OT, or (what is, by similar triangles, equal to it) the 
ratio of 4PR to the perpendicular from O on P&, we can draw 

a line OQF, meeting the circle in Q and RP produced in F, 

such that 

HORE = tO eee [Prop. 7] 

Let OF meet the spiral in Q’. 

We have then 

FO] O00 = PQ): OU. 

< (are PQ) : (arc ARP), by hypothesis. 

Componendo, 

FO : QO < (are KRQ) : (arc KRP) 

=00% OF. [Prop. 14] 

But QO0= OP. 
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Therefore FO < 0Q'; which is impossible. 

Hence OT + (arc KEP). 

(2) The proof that OT ¢ (are K RP) follows the method of 

Prop. 18, I. (2), exactly as the above follows that of Prop. 18, 

eas ; 

Since then OT is neither greater nor less than the are KAP, 

it is equal to it. 

TI. If P be on the second turn, the same method shows 

that 
OT=p+(are KRP); 

and, similarly, we have, for a point P on the nth turn, 

OT =(n—1)p+ (are KRP). 

Propositions 21, 22, 23. 

Given an area bounded by any arc of a spiral and the lines 

joining the extremities of the arc to the origin, it 1s possible to 

circumscribe about the area one figure, and to inscribe in it 
another figure, each consisting of sumilar sectors of circles, and 

such that the circumscribed figure exceeds the inscribed by less 

than any assigned area. 

For let BC be any arc of the spiral, O the origin. Draw 

the circle with centre O and radius OC, where C is the ‘forward’ 

end of the are. 

Then, by bisecting the angle BOO, bisecting the resulting 
angles, and so on continually, we shall ultimately arrive at 

an angle COr cutting off a sector of the circle less than any 

assigned area. Let COr be this sector. 

Let the other lines dividing the angle BOC into equal parts 
meet the spiral in P, Q, and let Or meet it in R. With O as 
centre and radu OB, OP, OQ, OR respectively describe arcs of 
circles Bp’, bBq’, pQr’, qRc’, each meeting the adjacent radii as 
shown in the figure. In each case the are in the ‘forward’ 
direction from each point will fall within, and the are in the 
‘backward’ direction outside, the spiral, 
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We have now a circumscribed figure and an inscribed figure 
each consisting of similar sectors of circles. To compare their 
areas, we take the successive sectors of each, beginning from OC, 
and compare them. 

The sector OCr in the circumscribed figure stands alone. 

And (sector ORq) = (sector ORc’), 

(sector OQp) = (sector OQr’), 

(sector OPb) = (sector OP’), 

while the sector OBp’ in the inscribed figure stands alone. 

Hence, if the equal sectors be taken away, the difference be- 

tween the circumscribed and inscribed figures is equal to the 

difference between the sectors OCr and OBp’; and this difference 

is less than the sector OC?r, which is itself less than any 

assigned area. 
The proof is exactly the same whatever be the number of 

angles into which the angle BOC is 

divided, the only difference being 

that, when the arc begins from the 

origin, the smallest sectors OPb, OPq’ 
in each figure are equal, and there is 

therefore no inscribed sector standing 

by itself, so that the difference 

between the circumscribed and in- 

scribed figures is equal to the sector 

OCr itself. 

H. A. Wy) 
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Thus the proposition is universally true. 

Cor. Since the area bounded by the spiral is intermediate 
in magnitude between the circumscribed and inscribed figures, 

it follows that 

(1) a figure can be circumscribed to the area such that it 

exceeds the area by less than any assigned space, 

(2) a figure can be inscribed such that the area exceeds it by 

less than any assigned space. 

Proposition 24. 

The area bounded by the first turn of the spiral and the 

initial line is equal to one-third of the ‘first circle’ [=47 (27ra)’, 

where the spiral is r=a@]. 

[The same proof shows equally that, 7f OP be any radius 
vector in the first turn of the spiral, the area of the portion of 

the spiral bounded thereby is equal to one-third of that sector of 

the circle drawn with radius OP which is bounded by the initial 

line and OP, measured in the ‘forward’ direction from the 
watial line. | 

Let O be the origin, OA the initial line, A the extremity of 
the first turn. 

Draw the ‘first circle, i.e. the circle with O as centre and 

OA as radius. 

Then, if C, be the area of the first circle, R, that of the first 

turn of the spiral bounded by OA, we have to prove that 

R,=4 le 

For, if not, R, must be either greater or less than (4, 

I. If possible, suppose R, < 10). 

We can then circumscribe a figure about R, made up of 

similar sectors of circles such that, if / be the area of this 

figure, 
F-R,<13C,-R,, 

whence F< 1C. 
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Let OP, OQ, ... be the radii of the circular sectors, beginning 

from the smallest. The radius of the largest is of course OA. 

The radii then form an ascending arithmetical progression 

in which the common difference is equal to the least term OP. 

If x be the number of the sectors, we have [by Prop. 10, Cor. 1] 

n.0A’< 3 (OP* + 0Q?+...+ 0A"); 

and, since the similar sectors are proportional to the squares on 
their radu, it follows that 

Crear. 

or F>4C,. 

But this is impossible, since F' was less than 3C;. 

Therefore R, ¢ $C}. 

II. If possible, suppose R, > $C. 

We can then inscribe a figure made up of similar sectors of 

circles such that, if f be its area, 

R,-f< Rh, — 44, 
whence f> 1C,. 

If there are (n — 1) sectors, their radii, as OP, OQ,..., form 

an ascending arithmetical progression in which the least term 

is equal to the common difference, and the greatest term, as 

OY, is equal to (n—1) OP. 

12—2 
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Thus [Prop. 10, Cor. 1] 

n.0A?>3(OP? + 0Q’+...+ OY"), 

whence CO, > 3f, 

or f<4Gi; 

which is impossible, since f> 4$C,- 

Therefore R, + 4C,. 

Since then R, is neither greater nor less than $C, 

R= 4C;. 

[Archimedes does not actually find the area of the spiral 

cut off by the radius vector OP, where P is any point on the 
first turn; but, in order to do this, we have only to substitute 

PL 

L 

in the above proof the area of the sector KLP of the circle 

drawn with O as centre and OP as radius for the area C, of 

the ‘first circle’, while the two figures made up of similar sectors 

have to be circumscribed about and inscribed in the portion 

OEP of the spiral. The same method of proof then applies 
exactly, and the area of OH P is seen to be 4 (sector KLIP). 

We can prove also, by the same method, that, if P be a 

point on the second, or any later turn, as the nth, the complete 

area described by the radius vector from the beginning up to 

the time when it reaches the position OP is, if C denote the 

area of the complete circle with O as centre and OP as radius, 
4 (C+ sector KLP) or  (n—1.C + sector KLP) respectively. 

The area so described by the radius vector is of course not 
the same thing as the area bounded by the last complete turn 



ON SPIRALS. 181 

of the spiral ending at P and the intercepted portion of the 
radius vector OP. Thus, suppose R, to be the area bounded 

by the first turn of the spiral and OA, (the first turn ending at 
A, on the initial line), R, the area added to this by the second 

complete turn ending at A, on the initial line, and so on. R, has 

then been described twice by the radius vector when it arrives 

at the position 0.4,; when the radius vector arrives at the 
position OA,, it has described R, three times, the ring R, twice, 

and the ring R, once; and so on. 

Thus, generally, if C,, denote the area of the ‘nth circle, we 

shall have 

4n0,, = Rn + 2Raa + 38Raot... +nR, 

while the actual area bounded by the outside, or the complete 
nth, turn and the intercepted portion of OA, will be equal to 

Rat Brat Ryot... +h. 

It can now be seen that the results of the later Props. 25 
and 26 may be obtained from the extension of Prop, 24 just 

given. 

To obtain the general result of Prop. 26, suppose BC to be 
an are on any turn whatever of the spiral, being itself less than 
a complete turn, and suppose B to be beyond A, the extremity 

of the nth complete turn, while C is ‘forward’ from B. 

Let ; be the fraction of a turn between the end of the nth 

turn and the point B. 

Then the area described by the radius vector up to the 

position OB (starting from the beginning of the spiral) is 

equal to 

4 @ sa) (circle with rad. OB). 

Also the area described by the radius vector from the beginning 

up to the position OC is 

4 \( n a7 (circle with rad. OC) + (sector BMO). 
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The area bounded by OB, OC and the portion BHC of the 

spiral is equal to the difference between these two expressions ; 

and, since the circles are to one another as OB* to OC”, the 

difference may be expressed as 

ro 
But, by Prop. 15, Cor., 

(» + 4 (circle B’MC) : \(n + 7) (cirele B’MC) + (sector B’M 0) 

ae) (circle with rad. OC) + (sector BuO. 

=OB: OC, 

so that 

(n + ) (circle B’MC) : (sector B’MO)=OB : (OC — OB). 

Thus —2te2 BEC a i( OB ) (1 OB ) +3} 
Co sector B’/MC OC 0O)F OC? 

_ 1, OB(OC + OB) + OC” 
3 OC# - 

_ OC. OB+14(00— OBy 

OC 

The result of Prop. 25 is a particular case of this, and the 
result of Prop. 27 follows immediately, as shown under that 
proposition. ] 
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Propositions 25, 26, 27. 

[Prop. 25.] If A, be the end of the second turn of the spiral, 

the area bounded by the second turn and OA, is to the area 

of the ‘second circle’ in the ratio of 7 to 12, being the ratio of 
{ri t4(72—17)} to ro’, where ry, r, are the radii of the ‘first’ 

and ‘second’ circles respectively. 

[Prop. 26.] If BC be any arc measured in the ‘forward’ 

direction on any turn of a spiral, not being greater than the 
complete turn, and if a circle be drawn with O as centre and OC 

as radius meeting OB in B’, then 

(area of spiral between OB, OC) : (sector OB’C) 

= {00.0B+4(00— OBY} : OC’. 

[Prop. 27.] If R, be the area of the first turn of the spiral 

bounded by the initial line, R, the area of the ring added by the 
second complete turn, R; that of the ring added by the third turn, 

and so on, then 

Be=2h,, f= 3he kh, =A, ..., i, = (0 — Lie 

Also t= Olly. 

[Archimedes’ proof of Prop. 25 is, mutatis mutandis, the 

same as his proof of the more general Prop. 26. The latter 

will accordingly be given here, and applied to Prop. 25 as a 

particular case. ] 

Let BC be an arc measured in the ‘forward’ direction on 
any turn of the spiral, CAB’ the circle drawn with O as centre 

and OC as radius. 

Take a circle such that the square of its radius is equal 
to OC.OB+1(00— OB)’, and let o be a sector in it whose 

central angle is equal to the angle BOC. 

Thus a: (sector OB’C) = {0C. OB +4(0C — OB)} : OC”, 

and we have therefore to prove that 

(area of spiral OBC) =c. 

For, if not, the area of the spiral OBC (which we will call S) 

must be either greater or less than o. 
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I. Suppose, if possible, S < o. 

Circumscribe to the area S a figure made up of similar 

sectors of circles, such that, if F' be the area of the figure, 

F-S<a-S, 

whence F<ao. 

Let the radii of the successive sectors, starting from OB, 

be OP, 0Q,...0C. Produce OP, OQ,... to meet the circle 

GB. 

If then the lines OB, OP, OQ,... OC be n in number, the 

number of sectors in the circumscribed figure will be (n — 1), 

and the sector OB’C will also be divided into (n—1) equal 

sectors. Also OB, OP, OQ,...OC will form an ascending 

arithmetical progression of » terms. 

Therefore [see Prop. 11 and Cor.] 

(n—1) OC? : (OP? + 0Q? +... + OC") 

< 0C? : {OC. OB + 4(0C — OB)*} 

< (sector OB’C) : , by hypothesis, 

Hence, since similar sectors are as the squares of their radii, 

(sector OB’C) : F< (sector OB’C) : c, 

so that F>c. 

But this is impossible, because F < o. 

Therefore S<o. 
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II. Suppose, if possible, S >. 

Inscribe in the area S a figure made up of similar sectors of 
circles such that, if f be its area, 

S—f<S-—a, 

whence fea. 

Suppose OB, OP,...OY to be the radii of the successive 
sectors making up the figure f, being (mn — 1) in number. 

We shall have in this case [see Prop. 11 and Cor.] 

(n—1) OC? : (OB? + OP? +...+ OY”) 

> 00? : {00.0B + 4(00 — OB)’}, 

whence (sector OB’C) : f > (sector OB’C) : a, 

so that i 

But this is impossible, because f > o. 

Therefore So. 

Since then S is neither greater nor less than o, it follows that 

S=c. 

In the particular case where B coincides with A,, the end 

of the first turn of the spiral, and C with A,, the end of the 

second turn, the sector OB’C becomes the complete ‘second 

circle, that, namely, with OA, (or 7.) as radius. 

Thus 

(area of spiral bounded by OA,) : (‘second circle’) 

= {9°ot" Sa 4(r, — ny} ae 

=(2+4):4 (since r,= 27) 

= (foils 

Again, the area of the spiral bounded by OA, is equal to 

R, +R, (ie. the area bounded by the first turn and OA,, 

together with the ring added by the second turn). Also the 
‘second circle’ is four times the ‘first circle, and therefore 

equal to 12 R,. 

Hence (RR) eR 2, 
or Ry + KR, = 71h, 

Thus Bile O ieee ek tatene si nts Ci: 
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Next, for the third turn, we have 

(R, + R, + Rs): (‘third circle’) = {ryrz + $ (13 — Tee 

=(8.2+4):3° 

Piedad ref 

and (‘third circle’) = 9 (‘first circle’) 

= 2d Las 

therefore Rett, ait geel Ole 

and, by (1) above, it follows that 

Ree li 

= AM rt, eA CON ce (2), 
and so on. 

Generally, we have 

(Rf, + B+... +R.) : (ath circle) = {rrr + 4 (12 — Taa)} 2 Tn 

(R, + BR, +...+ Ry) : (n— 1th circle) 

= 1a Png bt Ce — ee) ee 

and (nth circle) : (n—] 1th Circle vest), in es 

Therefore 

(Rh, + R,+...+ Ry): (R,+ RB, +...+ Ra.) 

={n(n-1) +4}: {(@-I(m-2+¥ 
= {8n(n—1)4+1}: {8 (m—-—1)(m—-2) 41. 

Dirimendo, 

R, : (f+ B,+...+ Ras) 

=6(n—1): {3(n—1)(n—2) 41} ......... (a). 
Similarly 

Raa: (Ri + By +... + Ra») = 6 (n —2): {3 (n — 2) (n— 3) + 1}, 

from which we derive 

Ry: (Ry + Byo+...+ Ra.) 

= 6 (n— 2): {6 (n — 2) + 3(m— 2) (n—3) +1} 

=6(n—2).3(3 (7 —1)(n—2) 4-1)... ai (2). 
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Combining (a) and (8), we obtain 

Fit tenes = (8 — 1) 2 (1 — 2), 
Thus 

R,, R;, Ry, ... Ry are in the ratio of the successive numbers 

1, 2,3...(n—1). 

Proposition 28. 

If O be the origin and BC any arc measured in the ‘forward’ 

direction on any turn of the spiral, let two circles be drawn 

(1) with centre O, and radius OB, meeting OC in OC’, and 

(2) with centre O and radius OC, meeting OB produced in B’. 

Then, of E denote the area bounded by the larger circular are 

B’C, the line B’B, and the spiral BC, while F denotes the area 

bounded by the smaller arc BO’, the line CC’ and the spiral BC, 
E:F={0B+2(0C— OB)} : {OB +4(OC— OB). 

Let o denote the area of the lesser sector OBC’; then the 

larger sector OB’C is equal too + H+ #. 

Thus [Prop. 26] 

(o+ F):(o + F+£)={0C.0B+4(0C— OBY 0G Ly) 

whence 

E:(o+F)={0C(00 — OB) —4(0C — OBY} 

: {0C.0B +4(0C — OBY} 

= {OB (OC — OB) + 3 (OC — OBY} 

:{0C.0B+ 4 (OC — OBY’}......ee (2), 
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Again 
(c+ F+H):c=O0C: OB’. 

Therefore, by the first proportion above, ea aequalt, 

(c+ F):¢={00.0B+4(0C— OB)*} : OB’, 
whence : 

(c+ fF): F={0C.0B+14(00 — OB)’} 

: {OB (OC — OB) + 4(0C — OBY. 

Combining this with (2) above, we obtain 

E: F={OB(0C — OB) + (00 — OB)Y} 

: {OB (OC — OB) + 4(0C — OB)} 

= {0B + 2(0C — OB)} : {0B + 1(0C— OB)}. 



ON THE EQUILIBRIUM OF PLANES 

OR 

THE CENTRES OF GRAVITY OF PLANES. 

BOOK I. 

“T POSTULATE the following: 

1. Equal weights at equal distances are in equilibrium, 

and equal weights at unequal distances are not in equilibrium 

but incline towards the weight which is at the greater distance. 

2. If, when weights at certain distances are in equilibrium, 
something be added to one of the weights, they are not in 

equilibrium but incline towards that weight to which the 

addition was made. 

3. Similarly, if anything be taken away from one of the 

weights, they are not in equilibrium but incline towards the 

weight from which nothing was taken. 

4. When equal and similar plane figures coincide if applied 

to one another, their centres of gravity similarly coincide. 

5. In figures which are unequal but similar the centres ot 

gravity will be similarly situated. By points similarly situated 

in relation to similar figures I mean points such that, if straight 
lines be drawn from them to the equal angles, they make equal 

angles with the corresponding sides. 
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6. If magnitudes at certain distances be in equilibrium, 

(other) magnitudes equal to them will also be in equilibrium at 

the same distances. 

7. In any figure whose perimeter is concave in (one and) 

the same direction the centre of gravity must be within the 

figure.” 

Proposition l. 

Weights which balance at equal distances are equal. 

For, if they are unequal, take away from the greater the 

difference between the two. The remainders will then not 
balance [Post. 3]; which is absurd. 

Therefore the weights cannot be unequal. 

Proposition 2. 

Unequal weights at equal distances will not balance but will 
incline towards the greater weight. 

For take away from the greater the difference between the 

two. The equal remainders will therefore balance [Post. 1]. 

Hence, if we add the difference again, the weights will not 

balance but incline towards the greater [Post. 2]. 

Proposition 3. 

Unequal weights will balance at unequal distances, the greater 
weight being at the lesser distance. 

Let A, B be two unequal weights (of which A is the 

greater) balancing about C at distances AC, BC respectively. 

Then shall AC be less than BO. For, if not, take away 
from A the weight (A —B.) The remainders will then incline 
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towards B [Post. 3]. But this is impossible, for (1) if AC = CB, 

the equal remainders will balance, or (2) if AC > OB, they will 
incline towards A at the greater distance [Post. 1]. 

Hence AC < OB. 

Conversely, if the weights balance, and AC<OB, then 

A> B. 

Proposition 4. 

If two equal weights have not the same centre of gravity, the 

centre of gravity of both taken together is at the middle point of 
the line joining their centres of gravity. 

[Proved from Prop. 3 by reductio ad absurdwm. Archimedes 
assumes that the centre of gravity of both together is on the 
straight line joining the centres of gravity of each, saying that 

this had been proved before (apodédecxtat). The allusion is no 

doubt to the lost treatise On levers (epi Cuyar).] 

Proposition 5. 

Tf three equal magmtudes have their centres of gravity on a 

straight line at equal distances, the centre of gravity of the 
system will coincide with that of the middle magnitude. 

[This follows immediately from Prop. 4.] 

Cor 1. The same is true of any odd number of magnitudes 

if those which are at equal distances from the middle one are 
equal, while the distances between their centres of gravity are 

equal. 

Cor. 2. If there be an even number of magnitudes with 

their centres of gravity situated at equal distances on one straight 
line, and wf the two middle ones be equal, while those which are 

equidistant from them (on each side) are equal respectively, the 

centre of gravity of the system is the middle point of the line 
joining the centres of gravity of the two middle ones. 
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Propositions 6, 7. 

Two magnitudes, whether commensurable [Prop. 6] or m- 
commensurable [Prop. 7], balance at distances reciprocally 
proportional to the magnitudes. . 

I. Suppose the magnitudes A, B to be commensurable, 

and the points A, B to be their centres of gravity. Let DE be 

a straight line so divided at C that 

A; B=DC: CE, 

We have then to prove that, if A be placed at # and B at 
D, C is the centre of gravity of the two taken together. 

lilo 
aNS 

Since A, B are commensurable, so are DC, CE. Let N be 

a common measure of DC, CH. Make DH, DK each equal to 

CE, and EL (on CE produced) equal to CD. Then HH =CD, 

since DH=CE. Therefore ZH is bisected at H, as HK is 

bisected at D. 

Thus LH, HK must each contain NV an even number of 

times. 

Take a magnitude O such that O is contained as many 

times in A as JN is contained in LH, whence 

A:O=Ld :N. 

But BA =CR SDC 

=AK: LH, 

Hence, ex aequali, B: O=HK: N, or O is contained in B as 
many times as JV is contained in HK. 

Thus 0 is a common measure of A, B. 
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Divide LH, HK into parts each equal to NV, and A, B into 

parts each equal to 0. The parts of A will therefore be equal 

in number to those of LH, and the parts of B equal in number 

to those of HK. Place one of the parts of A at the middle 

point of each of the parts V of ZH, and one of the parts of B 

at the middle point of each of the parts V of HK. 

Then the centre of gravity of the parts of A placed at equal 
distances on LH will be at L, the middle point of LH [Prop. 5, 

Cor. 2], and the centre of gravity of the parts of B placed at 

equal distances along HK will be at D, the middle point of HK. 

Thus we may suppose A itself applied at #, and B itself 

apphed at D. 

But the system formed by the parts O of A and B together 

is a system of equal magnitudes even in number and placed at 

equal distances along LX. And, since LE = CD, and EC = Dk, 

LC= CK, so that Cis the middle point of LK. Therefore C is 

the centre of gravity of the system ranged along LK. 

Therefore A acting at # and B acting at D balance about 

the point C. 

II. Suppose the magnitudes to be incommensurable, and 

let them be (4+a) and B respectively. Let DE be a line 

divided at C so that 
(A+a):B=DC: CE. 

D Cc E 
YH 

Then, if (A +a) placed at # and B placed at D do not 

balance about C, (A +a) is either too great to balance 5, or not 

great enough. 

Suppose, if possible, that (A +c) is too great to balance R. 

Take from (A +a) a magnitude a smaller than the deduction 

which would make the remainder balance B, but such that the 

remainder A and the magnitude B are commensurable. 

H. A. 13 
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Then, since A, B are commensurable, and 

ABA DC CE, 

A and B will not balance [Prop. 6], but D will be depressed. 

But this is impossible, since the deduction a@ was an 

insufficient deduction from (A +) to produce equilibrium, so 

that HL was still depressed. 

Therefore (A +a) is not too great to balance B; and 

similarly it may be proved that B is not too great to balance 

(A + @). 

Hence (A+a), B taken together have their centre of 

gravity at C. 

Proposition 8. 

If AB be a magnitude whose centre of gravity is C, and AD 

a part of wt whose centre of gravity is F, then the centre of 
gravity of the remaining part will be a point G on FC produced 
such that 

GO> CF=(AD a Dez). 

D B 

For, if the centre of gravity of the remainder (DE) be not 

G, let it be a point H. Then an absurdity follows at once from 

Props. 6, 7. 

Proposition 9. 

The centre of gravity of any parallelogram lies on the 
straight line joining the middle points of opposite sides. 

Let ABCD be a parallelogram, and let EF join the middle 

points of the opposite sides AD, BC. 

If the centre of gravity does not lie on HF, suppose it to be 
H, and draw HK parallel to AD or BC meeting EF in K. 
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Then it is possible, by bisecting FD, then bisecting the 
halves, and so on continually, to arrive at a length HL less 

A a D 

than KH. Divide both AH and ED into parts each equal 

to £L, and through the points of division draw parallels to AB 

or CD. 

We have then a number of equal and similar parallelograms, 

and, if any one be applied to any other, their centres of gravity 

coincide [Post. 4]. Thus we have an even number of equal 

magnitudes whose centres of gravity lie at equal distances along 

a straight line. Hence the centre of gravity of the whole 

parallelogram will lie on the line joining the centres of gravity 

of the two middle parallelograms [Prop. 5, Cor. 2]. 

But this is impossible, for H is outside the middle 

parallelograms. 

Therefore the centre of gravity cannot but le on HF. 

Proposition 10. 

The centre of gravity of a parallelogram is the point of 

intersection of rts diagonals. 

For, by the last proposition, the centre of gravity les on 

each of the lines which bisect opposite sides. Therefore it 

is at the point of their intersection; and this is also the 

point of intersection of the diagonals. 

Alternative proof. 

Let ABCD be the given parallelogram, and BD a diagonal. 
Then the triangles ABD, CDB are equal and similar, so that 

[Post. 4], if one be applied to the other, their centres of gravity 

will fall one upon the other. 

13—2 
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Suppose F' to be the centre of gravity of the triangle ABD. 

Let G be the middle point of BD. 
Join FG and produce it to H, so 

that PG = GH. 
If we then apply the triangle 

ABD to the triangle CDB so that 
AD falls on CB and AB on CD,the 8 c 

point F will fall on H. 

But [by Post. 4] # will fall on the centre of gravity of 

CDB. Therefore H is the centre of gravity of CDB. 

Hence, since F’, H are the centres of gravity of the two 

equal triangles, the centre of gravity of the whole parallelogram 

is at the middle point of FH, 1. at the middle point of BD, 
which is the intersection of the two diagonals. 

A D 

Proposition 11. 

If abc, ABC be two similar triangles, and g, G two points in 
them similarly situated with respect to then respectively, then, if 

g be the centre of gravity of the triangle abc, G must be the centre 
of gravity of the triangle ABC. 

Suppose ab: be: ca=AB: BC: CA. 

Cc 

The proposition is proved by an obvious reductio ad 
absurdum. For, if G be not the centre of gravity of the 
triangle ABC, suppose H to be its centre of gravity. 

Post. 5 requires that g, H shall be similarly situated with 
respect to the triangles respectively; and this leads at once 
to the absurdity that the angles HAB, GAB are equal. 
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Proposition 12. 

Given two similar triangles abc, ABC, and d, D the middle 
points of be, BC respectively, then, if the centre of gravity of abe 
lie on ad, that of ABC will lie on AD. 

Let g be the point on ad which is the centre of gravity 
of abe. 

A 

g 

a) ad ¢ B D Cc 

Take G on AD such that 

ad -ag=AD: AG, 

and join gb, gc, GB, GC. 

Then, since the triangles are similar, and bd, BD are the 

halves of be, BC respectively, 

ap: bd =AB: BD; 

and the angles abd, ABD are equal. 

Therefore the triangles abd, ABD are similar, and 

Z0aU =" DAL), 

Also ba: ad=BA : AD, 

while, from above, 00 =A eG 

Therefore ba: ag= BA: AG, while the angles bag, BAG 

are equal. 

Hence the triangles bag, BAG are similar, and 

Zabg = 2 ABG. 

And, since the angles abd, ABD are equal, it follows that 

Z gbd = 2 GBD. 

In exactly the same manner we prove that 

Z29ac=ZGAC, 

Zaeg=Z ACG, 

Z gcd = 2 GOD. 
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Therefore g, G are similarly situated with respect to the 

triangles respectively ; whence [Prop. 11] @ is the centre of 

gravity of ABC. 

Proposition 13. 

In any triangle the centre of gravity lies on the straight line 

joining any angle to the middle point of the opposite side. 

Let ABC be a triangle and D the middle point of BC. 
Join AD. Then shall the centre of gravity lie on AD. 

For, if possible, let this not be the case, and let H be the 

centre of gravity. Draw HJ parallel to CB meeting AD in J. 

Then, if we bisect DC, then bisect the ‘halves, and so on, 

we shall at length arrive at a length, as DH, less than HJ. 

Divide both BD and DC into lengths each equal to DE, and 
through the points of division draw lines each parallel to DA 

meeting BA and AC in points as K, LZ, M and N, P, Q 

respectively. 

Join MN, LP, KQ, which lines will then be each parallel 
to BC. 

We have now a series of parallelograms as FQ, TP, SN, 
and AD bisects opposite sides in each. Thus the centre 
of gravity of each parallelogram lies on AD [Prop. 9], and 
therefore the centre of gravity of the figure made up of them 
all lies on AD. 
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Let the centre of gravity of all the parallelograms taken 

together be O. Join OH and produce it; also draw CV 
parallel to DA meeting OH produced in V. 

Now, if n be the number of parts into which AC is divided, 

AADC : (sum of triangles on AN, NVP,...) 

SC (AN Ne oa.) 

= 

=n: 1 

=A SAN, 
Similarly 

A ABD : (sum of triangles on AM, ML,...)\=AB: AM. 

And AC AN= Ab AM, 

It follows that 

A ABC: (sum of all the small As)=CA: AN 

> VO: OF, by parallels. 
Suppose OV produced to X so that 

A ABC: (sum of small As)= XO : OH, 

whence, dividendo, 

(sum of parallelograms) : (sum of small As)= XH: HO. 

Since then the centre of gravity of the triangle ABC is at H, 

and the centre of gravity of the part of it made up of the 

parallelograms is at O, it follows from Prop. 8 that the centre 

of gravity of the remaining portion consisting of all the small 

triangles taken together is at X. 

But this is impossible, since all the triangles are on one side 

of the line through X parallel to AD. 

Therefore the centre of gravity of the triangle cannot but 

lie on AD. 

Alternative proof. 

Suppose, if possible, that H, not lying on AD, is the centre 
of gravity of the triangle ABC. Join AH, BH, CH. Let 

E, F be the middle points of CA, AB respectively, and join 

DE, EF, FD. Wet EF meet AD in M. 
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Draw FK, EL parallel to AH meeting BH, CH in K, L 

respectively. Join KD, HD, LD, KL. Let KL meet DH in 

N, and join MN. 

Since DE is parallel to AB, the triangles ABC, EDC are 

similar. 

And, since CH= EA, and EL is parallel to AH, it follows 

that CL=LH. And CD=DB. Therefore BH is parallel 

to DL. 

Thus in the similar and similarly situated triangles ABC, 

EDC the straight lines AH, BH are respectively parallel to 

EL, DL; and it follows that H, LZ are similarly situated with 

respect to the triangles respectively. 

But H is, by hypothesis, the centre of gravity of ABC. 

Therefore LZ is the centre of gravity of HDC. [Prop. 11] 

Similarly the point AK is the centre of gravity of the 

triangle FBD. 

And the triangles FBD, EDC are equal, so that the centre 

of gravity of both together is at the middle point of KZ, i.e. at 

the point JV. 

The remainder of the triangle ABO, after the triangles FBD, 

EDC are deducted, is the parallelogram AFDE, and the centre 

of gravity of this parallelogram is at M, the intersection of its 
diagonals. 

It follows that the centre of gravity of the whole triangle 
ABC must le on MN; that is, MN must pass through H, which 

is impossible (since MN is parallel to 4H). 

Therefore the centre of gravity of the triangle ABC cannot 
but le on AD. 
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Proposition 14. 

It follows at once from the last proposition that the centre 

of gravity of any triangle is at the intersection of the lines drawn 

Jrom any two angles to the middle points of the opposite sides 
respectively. 

Proposition 15. 

If AD, BC be the two parallel sides of a trapezium ABCD, 

AD being the smaller, and if AD, BC be bisected at H, F 

respectively, then the centre of gravity of the trapezium ws at a 

point G on EF such that 

GE: GF=(2BC+ AD): (2AD+ BC). 

Produce BA, CD to meet at O. Then FE produced will 

also pass through O, since AH = HD, and BF = FC. 

Now the centre of gravity of the triangle OAD will le on 

OE, and that of the triangle OBC will le on OF. [Prop. 13] 

It follows that the centre of gravity of the remainder, the 

trapezium ABCD, will also lie on OF. [ Prop. 8] 

Join BD, and divide it at LZ, M into three equal parts. 

Through LZ, M draw PQ, RS parallel to BC meeting BA in 

P, R, FE in W, V, and CD in Q, S respectively. 

Join DF, BE meeting PQ in H and RS in K respectively. 

Now, since BL=iBD, 

FH =i FD. 
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Therefore H is the centre of gravity of the triangle DBO*. 

Similarly, since HK =} BE, it follows that K is the centre 

of gravity of the triangle ADB. 

Therefore the centre of gravity of the triangles DBC, ADB 

together, i.e. of the trapezium, lies on the line HK. 

But it also lies on OF. 

Therefore, if OF, HK meet in G, G is the centre of gravity 

of the trapezium. 

Hence [Props. 6, 7] 

DL DBC =A ABD=KG GH 

=VG: GW. 

But A DBC: A ABD=BC: AD. 

Therefore BC: AD=VG: GW. 

It follows that 

(2BC0+ AD):(2AD+ BO)=(2VG+ GW): (2GW+VG) 

=EHG : GF, 
©. ESD: 

* This easy deduction from Prop. 14 is assumed by Archimedes without 

proof. 
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BOOK IL. 

Proposition l. 

If P, P’ be two parabolic segments and D, E' their centres 

of gravity respectively, the centre of gravity of the two segments 

taken together will be at a point C on DE determined by the 
relation 

Pee OL OD 

In the same straight line with DH measure HH, EL each 

equal to DCU, and DK equal to DH; whence it follows at once 

that DK =CE, and also that KC =CL. 

* This proposition is really a particular case of Props. 6, 7 of Book I. and 

is therefore hardly necessary. As, however, Book II. relates exclusively to 

parabolic segments, Archimedes’ object was perhaps to emphasize the fact 

that the magnitudes in I. 6, 7 might be parabolic segments as well as 

rectilinear figures. His procedure is to substitute for the segments rect- 

angles of equal area, a substitution which is rendered possible by the results 

obtained in his separate treatise on the Quadrature of the Parabola. 
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Apply a rectangle MN equal in area to the parabolic 

segment P to a base equal to KH, and place the rectangle so 

that KH bisects it, and is parallel to its base. 

Then D is the centre of gravity of MN, since KD= DH. 

Produce the sides of the rectangle which are parallel to KH, 

and complete the rectangle VO whose base is equal to HL. 

Then Z£ is the centre of gravity of the rectangle VO. 

Now (MN) :(NO)=KH: HL 

= DH > EH 

= CE CD 

=P es. 

But (MN) =P. 

Therefore (NO)\=LP%. 

Also, since C is the middle point of KZ, C is the centre 

of gravity of the whole parallelogram made up of the two 

parallelograms (MN), (NO), which are equal to, and have the 

same centres of gravity as, P, P’ respectively. 

Hence C is the centre of gravity of P, P’ takeu together. 

Definition and lemmas preliminary to Proposition 2. 

“Tf in a segment bounded by a straight line and a section 

of a right-angled cone [a parabola] a triangle be inscribed 
having the same base as the segment and equal height, if again 

triangles be inscribed in the remaining segments having the 
same bases as the segments and equal height, and if in the 

remaining segments triangles be inscribed in the same manner, 

let the resulting figure be said to be inscribed in the 

recognised manner (yvwpijiws éyypadeoOar) in the segment. 

And it is plain 

(1) that the lines joining the two angles of the figure so inscribed 

which are nearest to the vertex of the segment, and the neat 
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pairs of angles in order, will be parallel to the base of the 
segment, 

(2) that the said lines will be bisected by the diameter of the 

segment, and 

(3) that they will cut the diameter in the proportions of the 

successive odd numbers, the number one having reference to [the 
length adjacent to] the vertex of the segment. 

And these properties will have to be proved in their proper 

places (€év tats ta&eou).” 

[The last words indicate an intention to give these pro- 

positions in their proper connexion with systematic proofs; but 

the intention does not appear to have been carried out, or at 

least we know of no lost work of Archimedes in which they 

could have appeared. The results can however be easily 

derived from propositions given in the Quadrature of the 
Parabola as follows. 

(1) Let BRQPApgrb be a figure inscribed ‘in the recog- 

nised manner’ in the parabolic segment BAb of which Bb is 

the base, A the vertex and AO the diameter. 

Bisect each of the lines BQ, BA, QA, Ag, Ab, gb, and 

through the middle points draw lines parallel to AO meeting 

Bb in G, F, £, e, fg respectively. 
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These lines will then pass through the vertices R, Q, P, 

p,q rv of the respective parabolic segments [Quadrature of the 
Parabola, Prop. 18], ie. through the angular points of the 

inscribed figure (since the triangles and segments are of equal 

height). 

Also BG=@F=FE=E0, and Oe=ef=fg=gb. But 
BO = Ob, and therefore all the parts mto which Bb is divided 

are equal. 

If now AB, RG meet in L, and Ab, rg in 1, we have 

BG: GL = BO: OA, by parallels, 

=60:0A 

= bg > gl, 
whence GL = gl. 

Again [zbed., Prop. 4] 

GL: LR=BO : 06 

=b0: Og 

=Ol lr; 
and, since GL =gl, LR=lIr. 

Therefore GR, gr are equal as well as parallel. 

Hence Gfrg is a parallelogram, and Rr is parallel to Bo. 

Similarly it may be shown that Pp, Qq are each parallel 
to Bo. 

(2) Since RGgr is a parallelogram, and RG, rg are 

parallel to AO, while GO= Og, it follows that Rr is bisected 

by AO. 

And similarly for Pp, Qq. 

(3) Lastly, if V, W,X be the points of bisection of Py, 

Qy, Rr, 
AV: AW SAX = A0=PV*-OW* RX BO. 

=] 54.59.16) 

whence AY AVG all gee) ed ess ee Fe 
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Proposition 2. 

Lf w figure be ‘inscribed in the recognised manner’ in a 

parabolic segment, the centre of gravity of the figure so inscribed 
will lie on the diameter of the segment. 

For, m the figure of the foregoing lemmas, the centre of 

gravity of the trapezium BRrb must lie on XO, that of the 

trapezium RQgr on WX, and so on, while the centre of gravity 

of the triangle PAp lies on AV. 

Hence the centre of gravity of the whole figure lies on AO. 

Proposition 3. 

If BAB’, bab’ be two similar parabolic segments whose 

diameters are AO, ao respectively, and if a figure be inscribed 
in each segment ‘in the recognised manner, the number of sides 

in each figure being equal, the centres of gravity of the inscribed 

jigures will divide AO, ao in the same ratio. 

[Archimedes enunciates this proposition as true of similar 

segments, but it is equally true of segments which are not 

similar, as the course of the proof will show.] 

Suppose BRQPAP’Q'R’B’, brqpap’qr'b’ to be the two 
figures inscribed ‘in the recognised manner. Join PP’, QQ’, 

RR’ meeting AO in L, M, N, and pp’, qq’, rr’ meeting ao 

in l, m, n. 

Then [Lemma (3)] 

AW Re BOE I Wa INGO) 

= eo Ocal, 

=al:lm:mn : no, 

so that AO, ao are divided in the same proportion. 

Also, by reversing the proof of Lemma (3), we see that 

PP pp =Q0 290 =A 2 tr = BB: 0b: 

Since then RR’: BB'=rr’: bb’, and these ratios respec- 

tively determine the proportion in which VO, no are divided 



208 ARCHIMEDES 

by the centres of gravity of the trapezia BRR’B’, brr’b’ [1. 15], 

it follows that the centres of gravity of the trapezia divide NO, 

no in the same ratio. 

Similarly the centres of gravity of the trapezia RQQ’R’, 

rqqv’ divide MN, mn in the same ratio respectively, and so on. 

Lastly, the centres of gravity of the triangles PAP’, pap’ 

divide AL, al respectively in the same ratio. 

Moreover the corresponding trapezia and triangles are, each 

to each, in the same proportion (since their sides and heights 

are respectively proportional), while AO, ao are divided in 

the same proportion. 

Therefore the centres of gravity of the complete inscribed 

figures divide AO, ao in the same proportion. 

Proposition 4. 

The centre of gravity of any parabolic segment cut off by a 

straight line lies on the diameter of the segment. 

Let BAB’ be a parabolic segment, A its vertex and AO its 
diameter. 

Then, if the centre of gravity of the segment does not lie on 

AO, suppose it to be, if possible, the point F. Draw FE 

parallel to AO meeting BB’ in £. 
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Inscribe in the segment the triangle ABB’ having the same 
vertex and height as the segment, and take an area S such 
that 

AZBD: S=BE HO. 

We can then inscribe in the segment ‘in the recognised 

manner’ a figure such that the segments of the parabola left 
over are together less than S. [For Prop. 20 of the Quadrature 

of the Parabola proves that, if in any segment the triangle with 
the same base and height be inscribed, the triangle is greater 

than half the segment; whence it appears that, each time that 

we increase the number of the sides of the figure inscribed ‘in 

the recognised manner, we take away more than half of the 
remaining segments. | 

Let the inscribed figure be drawn accordingly ; its centre 

of gravity then lies on AO [Prop. 2]. Let it be the point H. 

Join HF and produce it to meet in K the line through B 

parallel to AO. 

Then we have 

(inscribed figure) : (remainder of segmt.) > A ABB’: S 

> BE: HO 

Sod SL ad id a & 

Suppose Z taken on HK produced so that the former ratio is 

equal to the ratio LF : FH. 

H. A. 14 
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Then, since H is the centre of gravity of the inscribed 

figure, and F that of the segment, I must be the centre 

of gravity of all the segments taken together which form the 

remainder of the original segment. [I. 8] 

But this is impossible, since all these segments lie on one 

side of the line drawn through L parallel to AO [Cf. Post. 7]. 

Hence the centre of gravity of the segment cannot but lie 

on AO. 

Proposition 5. 

If in a parabolic segment a figure be inscribed ‘in the 

recognised manner, the centre of gravity of the segment is nearer 

to the vertex of the segment than the centre of gravity of the 

inscribed figure 1s. 

Let BAB’ be the given segment, and AO its diameter. 
First, let ABB’ be the triangle in- 

scribed ‘in the recognised manner.’ 

Divide AO in F so that AF=2F0; 

F is then the centre of gravity of the 

triangle ABB’. 

Bisect AB, AB’ in D, D" respec- 

tively, and join DD’ meeting AO in £. 

Draw DQ, D’Q’ parallel to OA to meet 

the curve. QD, Q'D’ will then be the 

diameters of the segments whose bases 

are AB, AB’, and the centres of gravity 

of those segments will le respectively 
on QD, Q'D’ [Prop. 4]. Let them be H, H’, and join HH’ 
meeting AO in K. 

Now QD, Q’D’ are equal*, and therefore the segments of 
which they are the diameters are equal [On Conoids and 
Spheroids, Prop. 3}. 

* This may either be inferred from Lemma (1) above (since QQ’, DD’ are 
both parallel to BB’), or from Prop. 19 of the Quadrature of the Parabola, which 
applies equally to Q or Q’. 
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Also, since QD, Q’D’ are parallel*, and DE = ED’, K is the 

middle point of HH’. 

Hence the centre of gravity of the equal segments AQB, 

AQ’B’ taken together is K, where K lies between H and A. 

And the centre of gravity of the triangle ABB’ is F. 

It follows that the centre of gravity of the whole segment 

BAB’ lies between K and F, and is therefore nearer to the 

vertex A than F is. 

Secondly, take the five-sided figure BQAQ’B’ inscribed ‘in 

the recognised manner, QD, Q’D’ being, as before, the diameters 

of the segments AQB, AQ’B’. 

Then, by the first part of this proposition, the centre of 
gravity of the segment AQB (lying of course on QD) is nearer 

to @ than the centre of gravity of the triangle AQB is. Let 

the centre of gravity of the segment be H, and that of the 

triangle J. 

Similarly let H’ be the centre of gravity of the segment 

AQ’B’,and J’ that of the triangle AQ’B’. 

It follows that the centre of gravity 

of the two segments AQB, AQ’ B’ taken 

together is K, the middle point of HH’, 

and that of the two triangles AQB, AQ’B’ 

is J, the middle point of IL’. 

If now the centre of gravity of the 

triangle ABB’ be F, the centre of gravity 

of the whole segment BAB’ (i.e. that of 
the triangle ABB’ and the two segments 

AQB, AQ’B’ taken together) is a point 

G on KF determined by the proportion 

(sum of segments AQB, AQ’B’): AABB’=FG: GK. [I1.6, 7] 

* There is clearly some interpolation in the text here, which has the words 

kal érel mapadrd\ndoypaymov éorc 70 OZHI. It is not yet proved that H’D'DH is 

a parallelogram ; this can only be inferred from the fact that H, H’ divide QD, 

Q'D’ respectively in the same ratio. But this latter property does not appear 

till Prop. 7, and is then only enunciated of similar segments. The interpolation 

must have been made before Eutovius’ time, because he has a note on the 

phrase, and explains it by gravely assuming that H, H’ divide QD, Q’D’ respec- 

tively in the same ratio. 

14—2 
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And the centre of gravity of the inscribed figure BQAQ’B’ 
is a point F’ on LF determined by the proportion 

(AAQBS AAQ BS) AASB a iE TP TG 

[Hence TUG AGA Ga Ee 4 i Aes BY by 

or Gig: PG ahh E 

and, componendo, FK:FG<FL: FF’, while FK> FL] 

Therefore FG > FI’, or G lies nearer than F” to the vertex A. 

Using this last result, and proceeding in the same way, 

we can prove the proposition for any figure inscribed ‘in the 

recognised manner.’ 

Proposition 6. 

Given a segment of a parabola cut off by a straight line, rt ws 

possible to inscribe in it ‘in the recognised manner’ a figure such 

that the distance between the centres of gravity of the segment and 

of the inscribed figure ws less than any assigned length. 

Let BAB’ be the segment, AO its diameter, G its centre 
of gravity, and ABB’ the triangle inscribed ‘in the recognised 
manner,’ 

Let D be the assigned length and S an area such that 

AGE DAB HS 

In the segment inscribe ‘in the recognised manner’ a figure 

such that the sum of the segments left over is less than WN. 

Let F be the centre of gravity of the inscribed figure. 

We shall prove that F@ < D. 

For, if not, #G must be either equal to, or greater than, D. 

And clearly 

(inscribed fig.) : (sum of remaining segmts.) 

SABES 

A GD 

> AG: FG, by hypothesis (since FG < D). 
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Let the first ratio be equal to the ratio KG : FG (where K 

lies on GA produced); and it follows that K is the centre of 

gravity of the small segments taken together. ES 

B 

19) 

But this is impossible, since the segments are all on the 

same side of a line drawn through K parallel to BB’. 

Hence FG cannot but be less than D. 

Proposition 7. 

If there be two similar parabolic segments, their centres of 

gravity dinde their diameters in the same ratio. 

[This proposition, though enunciated of similar segments 

only, like Prop. 3 on which it depends, is equally true of 

any segments. This fact did not escape Archimedes, who 

uses the proposition in its more general form for the proof of 

Prop. 8 immediately following. ] 

Let BAB’, bab’ be the two similar segments, AO, ao thei 

diameters, and G, g their centres of gravity respectively. 

Then, if G, g do not divide AO, ao respectively in the same 

ratio, suppose H to be such a point on AO that 

AH : HO=ag: 90; 
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and inscribe in the segment BAB’ ‘in the recognised manner’ 
a figure such that, if F be its centre of gravity, 

GF < GH. [Prop. 6] 

Inscribe in the segment bab’ ‘in the recognised manner’ a 
similar figure; then, if f be the centre of gravity of this figure, 

ag < af. [ Prop. 5] 

And, by Prop. 3, af: fo= AF: FO. 

But APO ai oO 

< ag : go, by hypothesis. 

Therefore af : fo<ag : go; which is impossible. 

It follows that G, g cannot but divide AO, ao in the same 

ratio, 

Proposition 8. 

If AO be the diameter of a parabolic segment, and G tts 
centre of gravity, then 

AG=8 GO. 

Let the segment be BAB’. Inscribe the triangle ABB’ ‘in 

the recognised manner,’ and let #’ be its centre of gravity. 

Bisect AB, AB’ in D, D’, and draw DQ, D’Q’ parallel to OA 

to meet the curve, so that QD, Q’D’ are the diameters of the 

segments AQB, AQ’B’ respectively, 

Let H, H’ be the centres of gravity of the segments AQB, 

AQ’B' respectively. Join QQ’, HH’ meeting AO in V, K 

respectively, 
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Kis then the centre of gravity of the two segments AQB, 
AQ’ B’ taken together. 

Now AG<GQ0s0H fH), 

[Prop. 7] 

whence AO: 0G=QD: HD. 

But AO=4QD [as is easily proved 
by means of Lemma (3), p. 206]. 

Therefore OG=4HD; 

and, by subtraction, AG=4Q4H. 

Also, by Lemma (2), QQ’ is paral- 

lel to BB’ and therefore to DD’. It 

follows from Prop. 7 that HH’ is also parallel to QQ’ or DD’, 

and hence OH= Vi, 

Therefore AG=4VK, 

and AV+KG=3VK. 

Measuring VL along VK so that VL =1AYV, we have 

Gee SL atawenie cc doe smit wesc e es (1) 

Again AO=4AV [Lemma (3)] 

=3AlL, since AV=3V ZL, 

whence Adv) AO = OF cssscessuuastaoe. (2). 

Now, by I. 6, 7, 

A ABB’ : (sum of segmts. AQB, AQ’B’)=KG : GF, 

and A ABB’ =3 (sum of segments AQB, AQ’B’) 

[since the segment ABB’ is equal to 4A ABB’ (Quadrature of 

the Parabola, Props. 17, 24)]. 

Hence KG =3GF. 

But KG=3LK, from (1) above. 

Therefore LF=LK+KG4+GF 

= 5GF. 
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And, from (2), 
LF=(AO—-AL- OF)=1A0= OF. 

Therefore OF=5GF, 

and OG = 6GF. 
But AO =30F = 15GF. 

Therefore, by subtraction, ; 

AG=9GF 
=$ G0. 

Proposition 9 (Lemma). 

If a, b, ¢, d be four lines in continued proportion and in 

descending order of magnitude, and if 

d:(a—d)=x:2(a—-oc), 

and (2a+4b+6c+3d) : (5a+10b+10¢ + 5d)=y : (a—c), 

it is required to prove that 
e+y=2a, 

[The following is the proof given by Archimedes, with 

the only difference that it is set out in A 

algebraical instead of geometrical notation. 

This is done in the particular case simply in 

order to make the proof easier to follow. r 

Archimedes exhibits his lines in the figure 

reproduced in the margin, but, now that it is A 

possible to use algebraical notation, there is H 

no advantage in using the figure and the more 

cumbrous notation which only obscures the course 

of the proof. The relation between Archimedes’ 

figure and the letters used below is as follows; B 

AB=a, TB=6, AB=c, EB=d, ZH =a, HO=y, AO =z.) 

We have sist g =e (1), 

mo 

whence 2S eS 

and therefore : Sent ere 

2(a+b)_a+b_at+b 6b _a-c b-—c a-—¢ 

2c Co bt bc oa eee 
Now 
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And, in like manner, 

Dee b+e ¢_a-—c 

d wd esd 

It follows from the last two relations that 

a—c 2a+3b4+¢c F ca Sa (3). 

Suppose z to be so taken that 

2a+ 4b+4c+2d a—c 4. ye Shana shoe etiere (4), 

so that z¢<(c—d). 

a-c+z_ 2a+4b+6ce+3d 
a—c 2(a+d)+4(b+c) 

And, by hypothesis, 

a-—c_ 5(a+d)+10(b+c) 

Therefore 

y 2a+4b4+ 6c+3d ” 

a—c+z 5(a+d)+10(b+c) 5 “ 
so that Je SOUSA IUE aN) GOR C53) 

Again, dividing (8) by (4) crosswise, we obtain 

ne 2a+3b+¢ 

c—-d 2(a+d)+4(b+e)’ 

e—-d—-z 6+3¢+2d 
whence ide SOC ea rey (6). 

But, by (2), 

ec—d_ a—b 3(b-c) 2(¢-—d) 

i> = 6 ae 30 (asco ae: 

e—d_ (a—b)+3(b—c)+2(c—d) 
so that Fe eer a ae (7). 

Combining (6) and (7), we have 

c—-d-z SG=))F80— or 2(c—d) 

d 2(a+d)+4(b+¢) 

C—z 3a + 6b + 3¢ 
whence d aoe Leah ao) Fs Me ene oe 

And, since [by (1)] 
e~d b—c  a—b 

Cad eb hoe ab 
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h Cs c+d 
es a—c b+ce+a+t+b’ 

a-—d_ a+2b+2c+d_ 2(a+d)+4(b+c) 

nce a—-c @+2b+c¢  %a@+ce)+46 ~~ Co 
eR OAL 4. Thus a—d  2(a+d)+4(b+c) 

2(a—C) 2{2(a+c)+4b} ’ 

and therefore, by hypothesis, 

d_ 2(at+d)+4(b+0e) 

x  %{2(a+c)+ 4b} 

C—Z 3a+6b+3c | 
d  2(at+d)+4(b+c)’ 

and it follows, ex aequali, that 

But, by (8), 

C—28 23(G-e) +60) b> B® 
a  8{2(a+c)+4b} 3°2 2 

: a-c+z 95 
And, by (5), ee, 

Therefore 2 - 
ARES 

or a+y=?a 

Proposition 10. 

If PP'B'B be the portion of a parabola intercepted between 

two parallel chords PP’, BB’ bisected respectively in N, O by 
the diameter ANO (N being nearer than O to A, the vertex 
of the segments), and if NO be divided into five equal parts of 

which LM is the middle one (L being nearer than M to N), then, 

if G be a point on LM such that 

LG: GM=BO*.(2PN + BO): PN*.(2B0+ PN), 

G will be the centre of gravity of the area PP’ B' B. 

Take a line ao equal to AO, and an on it equal to AN. Let 

p, ¢ be points on the line ao such that 

GO SOP = GG SUNG ...<Svnaus ceeneeerces (1), 

Q0 2 ONS OG Op ese ccnetpooene (2), 

[whence ao : aq = aq : an=an : ap, or ao, ag, an, ap are lines in 

continued proportion and in descending order of magnitude]. 

Measure along GA a length GF such that 
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Then, since PN, BO are ordinates to ANO, 

BO? : PN? =A: AN 

= ao: an 

= ao’: aq’, by (1), 

so that BOLPN S002 09 

and BOS PN = 00 Lae 

= (ao: aqg).(aq : an).(an: ap) 

SON CUD ninsk eens oho oad osname (5). 

B' 

Thus (segment BAB’) : (segment PAP’) 

sh A Dg it abe 

= ROle PNY 

= a0: ap, 

whence 

(area PP’B’B) : (segment PAP’) =op : ap 

= O17 Gaby (3), 

Now BO? .(2PN + BO): BO? =(2PN + BO): BO 

=(2aq+ ao) : ao, by (4), 

BO EN =00.:ap, by (5), 

and PN*:PN’.2BO+PN)=PN : (2B0+ PN) 

=aq: (2a0+aq), by (4), 

= ap: (2an+ ap), by (2). 
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Hence, ex aequalt, 

BO’ .(2PN + BO): PN’.(2B0 + PN) = (2aq + ao) : (2an + ap), 

so that, by hypothesis, 

LG : GM =(2aq + ao) : (2an + ap). 

Componendo, and multiplying the antecedents by 5, 

ON : GM= {5 (ao+ap)+10 (aq +an)} : (2an + ap). 

Bat ON: OU=5 22 

= {5 (ao +ap)+10(aq+an)} : {2(ao+ap)+4(ag+an)}. 

It follows that 

ON : OG = {5 (ao + ap)+10 (aq +an)} : (2a0 + 4aq + Gan + 8ap). 

Therefore 

(2a0 + 4aq + Gan + 8ap) : {5 (ao+ap)+10(aqg+an)} = 0G: ON 

= OG : on. 
And ap : (ao —ap)=ap : op 

= GF: OL, by hypothesis, 

= GF : Son, 

while ao, aq, an, ap are in continued proportion. 

Therefore, by Prop. 9, 

GF + OG = OF = 2a0 =20A. 

Thus F’ is the centre of gravity of the segment BAB’. [Prop. 8] 

Let H be the centre of gravity of the segment PAP’, so 

that AH =3 AN. 

And, since AP =3A0, 

we have, by subtraction, HF =20N. 

But, by (6) above, 

(area PP’B’B) : (segment PAP’)=30N: GF 

et ORIG, 

Thus, since #’, H are the centres of gravity of the segments 

BAB’, PAP’ respectively, it follows [by I. 6, 7] that G is the 
centre of gravity of the area PP’B’B, 
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“THERE are some, king Gelon, who think that the number 

of the sand is infinite in multitude; and I mean by the sand 

not only that which exists about Syracuse and the rest of Sicily 

but also that which is found in every region whether inhabited 

or uninhabited. Again there are some who, without regarding 

it as infinite, yet think that no number has been named which 

is great enough to exceed its multitude. And it is clear that 
they who hold this view, if they imagined a mass made up of 

sand in other respects as large as the mass of the earth, in- 

cluding in it all the seas and the hollows of the earth filled up 
to a height equal to that of the highest of the mountains, 

would be many times further still from recognising that any 

number could be expressed which exceeded the multitude of 

the sand so taken. But I will try to show you by means of 

geometrical proofs, which you will be able to follow, that, of the 

numbers named by me and given in the work which I sent to 

Zeuxippus, some exceed not only the number of the mass of 

sand equal in magnitude to the earth filled up in the way 

described, but also that of a mass equal in magnitude to the 

universe. Now you are aware that ‘universe’ is the name 

given by most astronomers to the sphere whose centre is the 

centre of the earth and whose radius is equal to the straight 

line between the centre of the sun and the centre of the earth. 
This is the common account (Ta ypadopeva), as you have heard 

from astronomers. But Aristarchus of Samos brought out a 
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book consisting of some hypotheses, in which the premisses lead 

to the result that the universe is many times greater than that 
now so called. His hypotheses are that the fixed stars and the 

sun remain unmoved, that the earth revolves about the sun in 

the circumference of a circle, the sun lying in the middle of the 

orbit, and that the sphere of the fixed stars, situated about the 

same centre as the sun, is so great that the circle in which he 

supposes the earth to revolve bears such a proportion to the 

distance of the fixed stars as the centre of the sphere bears to 

its surface. Now it is easy to see that this is impossible; for, 

since the centre of the sphere has no magnitude, we cannot 

conceive it to bear any ratio whatever to the surface of the 

sphere. We must however take Aristarchus to mean this: 

since we conceive the earth to be, as it were, the centre of 

the universe, the ratio which the earth bears to what we 

describe as the ‘universe’ is the same as the ratio which the 

sphere containing the circle in which he supposes the earth to 

revolve bears to the sphere of the fixed stars. For he adapts 

the proofs of his results to a hypothesis of this kind, and in 

particular he appears to suppose the magnitude of the sphere 
in which he represents the earth as moving to be equal to what 

we call the ‘ universe.’ 

I say then that, even if a sphere were made up of the sand, 

as great as Aristarchus supposes the sphere of the fixed stars 

to be, I shall still prove that, of the numbers named in the 

Principles*, some exceed in multitude the number of the 

sand which is equal in magnitude to the sphere referred to, 

provided that the following assumptions be made. 

1. The perimeter of the earth is about 3,000,000 stadia and 

not greater. 

It is true that some have tried, as you are of course aware, 

to prove that the said perimeter is about 300,000 stadia. But 

I go further and, putting the magnitude of the earth at ten 

times the size that my predecessors thought it, I suppose its 

perimeter to be about 3,000,000 stadia and not greater. 

*Apxal was apparently the title of the work sent to Zeuxippus. Cf. the 

note attached to the enumeration of lost works of Archimedes in the Introduction, 

Chapter II., ad jin. 
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2. The diameter of the earth is greater than the diameter of 
the moon, and the diameter of the sun is greater than the diameter 
of the earth. 

In this assumption I follow most of the earlier astronomers. 

3. The diameter of the sun is about 30 times the diameter of 
the moon and not greater. 

It is true that, of the earlier astronomers, Eudoxus declared 

it to be about nine times as great, and Pheidias my father* 

twelve times, while Aristarchus tried to prove that the diameter 

of the sun is greater than 18 times but less than 20 times the 

diameter of the moon. But I go even further than Aristarchus, 

in order that the truth of my proposition may be established 

beyond dispute, and I suppose the diameter of the sun to be 
about 30 times that of the moon and not greater. 

4. The diameter of the sun is greater than the side of the 

chiliagon inscribed in the greatest circle in the (sphere of the) 
uniwerse. 

I make this assumption+ because Aristarchus discovered 

that the sun appeared to be about 4th part of the circle of 
the zodiac, and I myself tried, by a method which I will now 

describe, to find experimentally (épyavixdés) the angle sub- 

tended by the sun and having its vertex at the eye (ray ywviar, 

eis Gv 6 GdLos evappoler Tav Kopupay Exoveoay Trott TA Ower).” 

[Up to this point the treatise has been literally translated 

because of the historical interest attaching to the zpsissima 

verba of Archimedes on such a subject. The rest of the work 

can now be more freely reproduced, and, before proceeding to 

the mathematical contents of it, it 1s only necessary to remark 

that Archimedes next describes how he arrived at a higher and 
a lower limit for the angle subtended by the sun. This he did 

* ro} duod marpos is the correction of Blass for rod ’Axovmarpos (Jahrb. f. 

Philol. cxxvu1. 1883). 

+ This is not, strictly speaking, an assumption; it is a proposition proved 

later (pp. 224—6) by means of the result of an experiment about to be 

described. 
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by taking a long rod or ruler (xavev), fastening on the end of it 

a small cylinder or disc, pointing the rod in the direction of the 

sun just after its rising (so that it was possible to look directly 

at it), then putting the cylinder at such a distance that it just 

concealed, and just failed to conceal, the sun, and lastly measur- 

ing the angles subtended by the cylinder. He explains also the 

correction which he thought it necessary to make because “the 

eye does not see from one point but from a certain area” (éret 

ai dues ovK adh’ évds capeltou Bré€rovtt, adXa ard TiVOS 

peye0cos). } 

The result of the experiment was to show that the angle 

subtended by the diameter of the sun was less than ;4,th part, 
and greater than ytjth part, of a right angle. 

To prove that (on this assumption) the diameter of the sun 

is greater than the side of a chiliagon, or figure with 1000 equal 

sides, inscribed wn a great circle of the ‘universe. 

Suppose the plane of the paper to be the plane passing 

through the centre of the sun, the centre of the earth and the 

eye, at the time when the sun has just risen above the horizon. 
Let the plane cut the earth in the circle HHL and the sun 

in the circle FXG, the centres of the earth and sun being CO, O 
respectively, and # being the position of the eye. 

Further, let the plane cut the sphere of the ‘ universe’ (ie. 

the sphere whose centre is C and radius CQ) in the great 
circle AOB, 

Draw from # two tangents to the circle FAG touching it 

at P, Q, and from C draw two other tangents to the same circle 
touching it in F, @ respectively. 

Let CO meet the sections of the earth and sun in H, K 

respectively ; and let CF, CG produced meet the great circle 
AOB in A, B. 

Join HO, OF, OG, OP, OQ, AB, and let AB meet CO in MW. 

Now CO > 0, since the sun is just above the horizon. 

Therefore Z£PEQ > ZFCG. 
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And 4 PEQ> xi,R 
but <iikh 

where F represents a right angle. 

Thus ZLECG < <4,R, a fortior, 

and the chord AB subtends an arc of the great circle which is 

less than ;4,th of the circumference of that circle, Le. 

AB <(side of 656-sided polygon inscribed in the circle). 

Now the perimeter of any polygon inscribed in the great 

circle is less than 4400. [Cf Measurement of a circle, Prop. 3.] 

Therefore AB: CO <11: 1148, 

and, a fortiori, ALB raha CO coca svacennccoetess+ oe (a). 

Again, since CA =CO, and AWM is perpendicular to CO, 

while OF is perpendicular to CA, 

AM = OF. 

Therefore AB=2AM = (diameter of sun). 

Thus (diameter of sun) < 73,00, by (a), 

and, a fortior, 

(diameter of earth) < 71,00. [Assumption 2] 

H. A. 15 
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Hence CH + OK < 33,00, 

so that HK > 23,00, 

or COM ea LOOr 09, 

And CO>CF, 
while HK < EQ. 

Therefore CREO NOOO Oe fas caer eter (B). 

Now in the right-angled triangles CFO, LQO, of the sides 

about the right angles, 

OF = OQ, but EQ < CF (since EO < CO). 

Therefore ZOEQ: ZOCF>CO: EO, 

but < CF: EQ*. 

Doubling the angles, 

Ze EQ LACB A ORZ EO 

< 100 : 99, by (8) above. 

But — ZPEQ > xt5h, by hypothesis. 

Therefore ZACB > 3235R 

> tg fh. 

It follows that the arc AB is greater than ,1,th of the circum- 

ference of the great circle AOB. 

Hence, a fortiort, 

AB >(side of chiliagon inscribed in great circle), 

and AB is equal to the diameter of the sun, as proved above. 

The following results can now be proved : 

(diameter of ‘universe’) < 10,000 (diameter of earth), 

and (diameter of ‘ universe’) < 10,000,000,000 stadia. 

* The proposition here assumed is of course equivalent to the trigonometrical 

formula which states that, if a, 8 are the circular measures of two angles, each 

less than a right angle, of which a is the greater, then 

tana 4 sin a 
——_ > - > —— , 
tang BB sing 
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(1) Suppose, for brevity, that d, represents the diameter 

of the ‘universe,’ d, that of the sun, d, that of the earth, and d,, 

that of the moon. 

By hypothesis, ds > 30d», [Assumption 3] 

and hs > Ole: [Assumption 2] 

therefore di.< 300x 

Now, by the last proposition, 

d, > (side of chiliagon inscribed in great circle), 

so that (perimeter of chilagon) < 1000d; 

< 30,000d,. 

But the perimeter of any regular polygon with more sides 

than 6 inscribed in a circle is greater than that of the inscribed 

regular hexagon, and therefore greater than three times the 

diameter. Hence 

(perimeter of chiliagon) > 3d,. 

It follows that dy, < 10,000d,. 

(2) (Perimeter of earth) + 3,000,000 stadia. 

[Assumption 1] 
and (perimeter of earth) > 3d. 

Therefore d, < 1,000,000 stadia, 

whence dy, < 10,000,000,000 stadia. 

Assumption 5. 

Suppose a quantity of sand taken not greater than a poppy- 

seed, and suppose that it contains not more than 10,000 grains. 

Next suppose the diameter of the poppy-seed to be not less 

than jth of a finger-breadth. 

Orders and periods of numbers. 

I. We have traditional names for numbers up to a 

myriad (10,000); we can therefore express numbers up to a 

myriad myriads (100,000,000). Let these numbers be called 

numbers of the first order. 

Suppose the 100,000,000 to be the unit of the second order, 

and let the second order consist of the numbers from that unit 

up to (100,000,000)’. 

15—2 
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Let this again be the unit of the third order of numbers 
ending with (100,000,000)’; and so on, until we reach the 

100,000,000tA order of numbers ending with (100,000,000)1:0, 

which we will call P. 

II. Suppose the numbers from 1 to P just described to 

form the first period. 

Let P be the unit of the first order of the second period, and 
let this consist of the numbers from P up to 100,000,000 P. 

Let the last number be the unit of the second order of the 

second perind, and let this end with (100,000,000)? P. 

We can go on in this way till we reach the 100,000,000th order 

of the second period ending with (100,000,000) P, or P?. 

III. Taking P’ as the unit of the first order of the third 
period, we proceed in the same way till we reach the 

100,000,000th order of the third period ending with P*. 

IV. Taking P* as the unit of the first order of the fourth 

period, we continue the same process until we arrive at the 

100,000,000th order of the 100,000,000th period ending with 

P10,000,00, This last number is expressed by Archimedes as “a 

myriad-myriad units of the myriad-myriad-th order of the 

myriad-myriad-th period (ai wuptaxiopupiocras Tmeptodov mupia- 

KigpuplooT@y apLOuay pupiar wupiddes),” which is easily seen 

to be 100,000,000 times the product of (100,000,000) and 
P%,990,999 he), P200,000,000 

[The scheme of numbers thus described can be exhibited 
more clearly by means of indices as follows. 

FIRST PERIOD. 

First order. Numbers from 1 to 10°, 

Second order. ; LOS 467108. 

Third order. * 5» = 0" foros. 

(10°)th order. - » LOS 'to TOM (Psa 
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SECOND PERIOD. 

First order. Numbers from P.1 to P.108, 

Second order. ¥ re 2-107 to PS LOY. 

(108)th order. :: » — P.108- 82 to 

P.108: (or PSY, 

(10*)TH PERIOD. 

First order. 

Second order. 

: SAE tore elo 

>» SP LP YO toe hae 

(10*)th order. a » P1081 108-00) to 

Ee 10S Geri 

The prodigious extent of this scheme will be appreciated 

when it is considered that the last number in the first period 
would be represented now by 1 followed by 800,000,000 ciphers, 
while the last number of the (10°)th period would require 

100,000,000 times as many ciphers, i.e. 80,000 million millions 

of ciphers. ] 

Octads. 

Consider the series of terms in continued proportion of 
which the first is 1 and the second 10 [1.e. the geometrical 

progression 1, 10%, 10°, 10°, ...]. The first octad of these terms 

[z.e. 1, 10%, 102,... 107] fall accordingly under the first order 
of the first period above described, the second octad [Le. 
108, 10°,... 10] under the second order of the first period, the 

first term of the octad being the unit of the corresponding 
order in each case. Similarly for the third octad, and so on. 
We can, in the same way, place any number of octads. 

Theorem. 

If there be any number of terms of a series in continued 
proportion, say A,,A,, Az,... Am,... An,-»» Amin—as--- of which 

A,=1, A,=10 [so that the series forms the geometrical pro- 

oression 110% 10*.07-45..10">,... 10" ...], and of any 

two terms as Am, An be taken and multiplied, the product 
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A,,.A, will be a term in the same series and will be as many 

terms distant from Ay as A,» is distant from A,; also it will be 

distant from A, by a number of terms less by one than the sum 

of the numbers of terms by which Am and A, respectively are 
distant from A,. : 

Take the term which is distant from A, by the same 
number of terms as A,, is distant from A,. This number of 

terms is m (the first and last being both counted). Thus the 

term to be taken is m terms distant from A,, and is therefore 

the term Amini. 

We have therefore to prove that 

7s : Ay, = Ae 

Now terms equally distant from other terms in the con- 

tinued proportion are proportional. 

Am — Amsn— 
Thus ie ioe 

But Am= Am. A, since A, = 1. 

Therefore A cr tA A pic tone taa eden eee Cone (1): 

The second result is now obvious, since A,, is m terms 

distant from A,, A, is n terms distant from A,, and A,» is 

(m+n—1) terms distant from A,. 

Application to the number of the sand. 

By Assumption 5 [p. 227], 

(diam. of poppy-seed) ¢ ,j, (finger-breadth) ; 

and, since spheres are to one another in the triplicate ratio 

of their diameters, it follows that 

(sphere of diam. 1 finger-breadth) + 64,000 poppy-seeds 

+ 64,000 x 10,000 

+ 640,000,000 
+6 units of second | grains 

order + 40,000,000 > of 
units of first order | sand. 

(a fortiori) < 10 units of second 

order of numbers. 
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We now gradually increase the diameter of the supposed 

sphere, multiplying it by 100 each time. Thus, remembering 
that the sphere is thereby multiplied by 100* or 1,000,000, the 

number of grains of sand which would be contained in a sphere 
with each successive diameter may be arrived at as follows. 

Diameter of sphere. 

(1) 100 finger-breadths 

(2) 10,000 finger-breadths 

(3) 1 stadium 

(< 10,000 finger-breadths) 

(4) 100 stadia 

(5) 10,000 stadia 

(6) 1,000,000 stadia 

(7) 100,000,000 stadia 

(8) 10,000,000,000 stadia 

But, by the proposition 

Corresponding number of grains of sand. 

< 1,000,000 x 10 units of second order 

<(7th term of series) x (10th term of 
series) 

< 16th term of series {i.e. 1015] 
<[10’ or] 10,000,000 units of the second 

order. 

< 1,000,000 x (last number) 

< (7th term of series) x (16th term) 

< 22nd term of series [i-e. 1024] 

< [10° or] 100,000 units of third order. 
< 100,000 units of third order. 

< 1,000,000 x (last number) 

< (7th term of series) x (22nd term) 

< 28th term of series 

<[103 or] 1,000 units of fourth order. 
< 1,000,000 x (last number) 

< (7th term of series) x (28th term) 

< 34th term of series 

< 10 units of fifth order. 
< (7th term of series) x (34th term) 

< 40th term [10°] 

<[107 or] 10,000,000 units of fifth order. 
< (7th term of series) x (40th term) 

< 46th term [10*] 
<[10® or] 100,000 units of sexth order. 

< (7th term of series) x (46th term) 

< 52nd term of series [1051] 
< [103 or] 1,000 units of seventh order. 

[10*] 

[10%] 

above [p. 227], 

(diameter of ‘ universe’) < 10,000,000,000 stadia. 

Hence the number of grains of sand which could be contained 
in a sphere of the size of our ‘universe’ is less than 1,000 units 
of the seventh order of numbers [or 10%]. 
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From this we can prove further that a sphere of the size 

attributed by Aristarchus to the sphere of the fixed stars would 
contain a number of grains of sand less than 10,000,000 wnits 

of the eighth order of numbers [or 10%*7 = 10*]. 

For, by hypothesis, : 

(earth) : (‘ universe’) = (‘ universe’) : (sphere of fixed stars). 

And [p. 227] 

(diameter of ‘ universe’) < 10,000 (diam. of earth) ; 

whence 

(diam. of sphere of fixed stars) < 10,000 (diam. of ‘ universe’). 

Therefore 

(sphere of fixed stars) < (10,000)’. (‘universe’). 

It follows that the number of grains of sand which would be 

contained in a sphere equal to the sphere of the fixed stars 

< (10,000) x 1,000 units of seventh order 

< (13th term of series) x (52nd term of series) 

< 64th term of series [i.e. 10°] 

< [10’ or] 10,000,000 units of etghth order of numbers. 

Conclusion. 

“TI conceive that these things, king Gelon, will appear 

incredible to the great majority of people who have not studied 
mathematics, but that to those who are conversant therewith 

and have given thought to the question of the distances and 
sizes of the earth the sun and moon and the whole universe the 
proof will carry conviction. And it was for this reason that 

I thought the subject would be not inappropriate for your 
consideration.” 



QUADRATURE OF THE PARABOLA. 

“ ARCHIMEDES to Dositheus greeting. 

“When I heard that Conon, who was my friend in his life- 

time, was dead, but that you were acquainted with Conon and 

withal versed in geometry, while I grieved for the loss not only 

of a friend but of an admirable mathematician, I set myself the 

task of communicating to you, as I had intended to send to 
Conon, a certain geometrical theorem which had not been 

investigated before but has now been investigated by me, and 

which I first discovered by means of mechanics and then 
exhibited by means of geometry. Now some of the earlier 
geometers tried to prove it possible to find a rectilineal area 
equal to a given circle and a given segment of a circle; and 

after that they endeavoured to square the area bounded by the 

section of the whole cone* and a straight line, assuming lemmas 
not easily conceded, so that it was recognised by most people 

that the problem was not solved. But I am not aware that 

any one of my predecessors has attempted to square the 

segment bounded by a straight line and a section of a right- 

angled cone [a parabola], of which problem I have now dis- 

covered the solution. For it is here shown that every segment 

bounded by a straight line and a section of a right-angled cone 

[a parabola] is four-thirds of the triangle which has the same base 
and equal height with the segment, and for the demonstration 

* There appears to be some corruption here: the expression in the text is 

Tas Oov ToO Kdvov Tovas, and it is not easy to give a natural and intelligible 

meaning to it. The section of ‘the whole cone’ might perhaps mean a section 

cutting right through it, i.e. an ellipse, and the ‘ straight line’ might be an axis 

or a diameter. But Heiberg objects to the suggestion to read ras dfvywvlou 

Kdvou Touas, in view of the addition of cal evdeias, on the ground that the former 

expression always signifies the whole of an ellipse, never a segment of it 

(Quaestiones Archimedeae, p. 149). 
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of this property the following lemma is assumed: that the 
excess by which the greater of (two) unequal areas exceeds 

the less can, by being added to itself, be made to exceed any 
given finite area. The earlier geometets have also used this 
lemma; for it is by the use of this same lemma that they have 

shown that circles are to one another in the duplicate ratio of 

their diameters, and that spheres are to one another in the 

triplicate ratio of their diameters, and further that every 

pyramid is one third part of the prism which has the same base 

with the pyramid and equal height; also, that every cone is 
one third part of the cylinder having the same base as the cone 
and equal height they proved by assuming a certain lemma 

similar to that aforesaid. And, in the result, each of the afore- 

said theorems has been accepted* no less than those proved 

without the lemma. As therefore my work now published has 

satisfied the same test as the propositions referred to, I have 
written out the proof and send it to you, first as investigated 

by means of mechanics, and afterwards too as demonstrated by 

geometry. Prefixed are, also, the elementary propositions in 

conics which are of service in the proof (ctovyeta cwvixd ypetav 
éyovta és Tay amddeEw). Farewell.” 

Proposition 1. 

If from a point on a para- 

bola a straight line be drawn 

whach is erther itself the axts or 

parallel to the axis, as PV, and 

uf QQ’ be a chord parallel to 
the tangent to the parabola at P 

and meeting PV in V, then 

OVie V0. 

Conversely, if QV = VQ’, the 

chord QQ’ will be parallel to the 
tangent at P. 

* The Greek of this passage is: cvuBalver d¢ r&v mpoeipnucvwr Gewpnudrwv 

éxaorov pndev nooov Trav dvev TrovToU TOU rjluaros amodederyuevwy tmemirevKév a. 

Here it would seem that memiorevxévac must be wrong and that the passive 
should have been used. 
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Proposition 2. 

If in a parabola QQ’ be a chord parallel to the tangent at P, 
and vf a straight line be drawn through P which is either itself 
the axis or parallel to the aais, and which meets QQ’ in V and 
the tangent at Q to the parabola in T, then 

PV = PT. 

Proposition 3S. 

If from a point on a parabola a straight line be drawn 
which ts either itself the axis or parallel to the axis, as PV, 
and if from two other points Q, Q’ on the parabola straight 
lines be drawn parallel to the tangent at P and meeting PV in 
V, V’ respectively, then 

PV: PV’ =QV?: Q’V2. 
“ And these propositions are proved in the elements of conics.*” 

Proposition 4. 

Tf Qq be the base of any segment of a parabola, and P the 
vertex of the segment, and if the diameter through any other point 

R meet Qq in O and QP (produced if necessary) in F, then 

OVA V OOF 2 FR. 

Draw the ordinate RW to PV, meeting QP in K. 

* i.e. in the treatises on conics by Euclid and Aristaeus. 
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Then BV GP Wee Vice hee; 

whence, by parallels, 

PO PIG EOP ie 

In other words, PQ, PF, PK are in continued proportion ; 

therefore 
POR i =P yer ie 

= PQ+PF:PF+PK 
= OF KP: 

Hence, by parallels, 

OV SVS Or zER. 

[It is easily seen that this equation is equivalent to a change of 

axes of coordinates from the tangent and diameter to new axes 

consisting of the chord Qq (as axis of wz, say) and the diameter 
through Q (as axis of y). 

Kori OV =a. P Ve a where p is the parameter of the 

ordinates to PV. 

Thus, if QO = a, and RO = y, the above result gives 

a OF 

pitts (Opie y? 

ee 

a OF ; 
whence mo= = 

or py =a (2a—2).] 
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Proposition 5. 

If Qq be the base of any segment of a parabola, P the vertex 
of the segment, and PV its diameter, and if the diameter of the 
parabola through any other point R meet Qq in O and the 
tangent at Q in E, then 

000g = ER» KO: 

Let the diameter through R meet QP in F. 

Then, by Prop. 4, 

OV V0 = OF FR: 

Since QV = Vq, it follows that 

Vis Ol OR OBS... sists sees dy: 

Also, if VP meet the tangent in 7’, 

PT =PY, and therefore HF = OF. 

Accordingly, doubling the antecedents in (1), we have 

Qg- 90 = O02: OR, 

whence 00: 0qg=ER: RO. 
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Propositions 6, 7*. 

Suppose a lever AOB placed horizontally and supported at 

its middle point O. Let a triangle BOD in which the angle C is 
right or obtuse be suspended from B and O, so that C is attached 

to O and CD is in the same vertical line with O. Then, of P be 
‘such an area as, when suspended from A, will keep the system in 

equilibrium, 
P=tABCD. 

Take a point Z on OB such that BE = 20£, and draw EFH 

parallel to OCD meeting BC, BD in F, H respectively. Let G 
be the middle point of FH. 

A ie) = 

eas 3 

D 

Then G is the centre of gravity of the triangle BCD. 

Hence, if the angular points B, C be set free and the 

triangle be suspended by attaching F to £, the triangle will 

hang in the same position as before, because HFG is a vertical 
straight line. “For this is proved.” 

Therefore, as before, there will be equilibrium. 

Thus P:ABCD=0OE: AO 

Ss Ibbes} 

or P= ABCD. 

* In Prop. 6 Archimedes takes the separate case in which the angle BCD of 

the triangle is a right angle so that C coincides with O in the figure and F with 

E, He then proves, in Prop. 7, the same property for the triangle in which 

BCD is an obtuse angle, by treating the triangle as the difference between two 

right-angled triangles BOD, BOC and using the result of Prop. 6. I have com- 

bined the two propositions in one proof, for the sake of brevity. The same 

remark applies to the propositions following Props. 6, 7. 

+ Doubtless in the lost book wept ¢vyav. Cf. the Introduction, Chapter II., 

ad jin. 
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Propositions 8, 9. 

Suppose a lever AOB placed horizontally and supported at 

ats nuiddle point O. Let a triangle BCD, right-angled or obtuse- 

angled at O, be suspended from the points B, E on OB, the 

angular point C being so attached to E that the side CD is in the 

same vertical line with E. Let Q be an area such that 

AO: OE=ABCD: Q. 

Then, if an area P suspended from A keep the system in 

equilibrium, 
P<ABCD but >Q. 

Take G the centre of gravity of the triangle BCD, and draw 

GH parallel to DC, i.e. vertically, meeting BO in H. 

A ey 1S H B 

We may now suppose the triangle BCD suspended from H, 

and, since there is equilibrium, 

D 

PBC Dire msl oN OL &, Miles, Ose tae, Ch); 

whence DEIN AON UD, 

Also ABCD: 0 =A0.; OL. 

Therefore, by (1), ABCD:Q>ABCD: P, 

and PS). 

Propositions 10, 11. 

Suppose a lever AOB placed horizontally and supported at O, 
its middle point. Let CDEF be a trapezium which can be so 

placed that its parallel sides CD, FE are vertical, while C ts 

vertically below O, and the other sides CF, DE meet in B. Let 

EF meet BO in H, and let the trapezium be suspended by attaching 
F to H and Cto O. Further, suppose Q to be an area such that 

AO: OH = (trapezium CDEF) : Q. 
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Then, if P be the area which, when suspended from A, keeps the 

system in equilibrium, 
fe ead) 

The same is true in the particular case where the angles at 

C, F are right, and Oe ay C, F coincide with O, H 

respectively. 

Divide OH in K so that 

(2CD+ FE): (2FE+CD)=HK : KO. 

A 

Draw KG parallel to OD, and let G be the middle point of 
the portion of KG intercepted within the trapezium. Then G 
is the centre of gravity of the trapezium [On the equilibrium of 

planes, I. 15). 

Thus we may suppose the trapezium suspended from K, and 
the equilibrium will remain undisturbed. 

Therefore 
AO: OK = (trapezium CDEF) : P, 

and, by hypothesis, 

AO: OH =(trapezium CDEF) : Q. 

Since OK < OH, it follows that 

Pm. 

Propositions 12, 13. 

If the trapezium CDEF be placed as in the last propositions, 
except that CD is vertically below a point L on OB instead of 

being below O, and the trapezium is suspended from L, H, 
_ suppose that Q, R are areas such that 

AO: OH = (trapezium CDEP) : Q, 

and AO: OL = (trapezium CDEF) : R. 
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If then an area P suspended from A keep the system in 
equilibrium, 

P>KR but < Q: 

Take the centre of gravity G of the trapezium, as in the 

last propositions, and let the line through @ parallel to DC 

meet OB in K. 

A fe) [en AS H B 

Then we may suppose the trapezium suspended from K, 
and there will still be equilibrium. 

Therefore (trapezium CDEF): P= AO: OK. 

Hence 

(trapezium CDEF) : P > (trapezium CDEF) : Q, 

but < (trapezium CDEF) : R. 

It follows that DE EM) 1 SVs eae 

Propositions 14, 15. 

Let Qg be the base of any segment of a parabola. Then, 1f 
two lines be drawn from Q, g, each parallel to the axis of the 
parabola and on the same side of Qq as the segment is, either 

(1) the angles so formed at Q, q are both right angles, or 

(2) one is acute and the other obtuse. In the latter case let 

the angle at q be the obtuse angle. 

Divide Qg into any number of equal parts at the points 

O,, O:,... On. Draw through q, 0,, O,,... On diameters of the 

parabola meeting the tangent at Qin #, &,, F,,... Bn and the 

parabola itself in g, R,, R,, ... Rn. Join QR,, QR, ... QR, 

mectingegl 00, 0,05, 3. Only nF, Py, yy Ppa 

H. A. 16 
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Let the diameters Hg, £,0,,... #,0, meet a straight line _ 

QOA drawn through Q perpendicular to the diameters in the 
points O, H,, H,,... H, respectively. (In the particular case 

where Qg is itself perpendicular to the diameters q will coincide 
with O, O, with H,, and so on.) 

It is required to prove that 

(1) A £qQ<3(sum of trapezia FO,, F,Oz,...Fn+~On and A E,OnQ), 

(2) AEqQ>3(sumof trapezia R, 03, R,0;,...Rn»zOnand A R,OnQ). 

ro) Hy Ho Hn-1 Hn Q 

Suppose AO made equal to OQ, and conceive QOA as a 

lever placed horizontally and supported at O. Suppose the 

triangle HqQ suspended from OQ in the position drawn, and 

suppose that the trapezium /#O, in the position drawn is 

balanced by an area P, suspended from A, the trapezium £0, 

in the position drawn is balanced by the area P, suspended 
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from A, and so on, the triangle #,0,Q being in like manner 

balanced by Pris. 

Then P,+P,+...+Pni will balance the whole triangle 

EqQ as drawn, and therefore 

Pi+ Pot... t+ Pry =tALqQ. [Props. 6, 7] 

Again AO? OH, =Q0 : OH; 

= Q¢y : qO, 

= £0, : O.R, [by means of Prop. 5] 

= (trapezium #O,): (trapezium FO,) ; 
whence [Props. 10, 11] 

CEO i> Ee. 

Next TARO WEN OY § Bee OREO ce 

CL Oye On) tccne: soon: (a), 

while ASOT = 1.0) <0 Rk. 

a= COAG EG MG) soatare ren (8); 

and, since (a) and (8) are simultaneously true, we have, by 

Props. 12, 13, 

CHO; ) = Pa (i03). 

Similarly it may be proved that 

(2,0;) > P; > (£05), 

and so on, 

Lastly [Props. 8, 9] 

AE,O,0 > Pate &B,0,9. 

By addition, we obtain 

(1) (FO,)+(F,02)+..-+(Pn~aOn)+ A EnOnQ> Pit Po+...+ Pris 

>sAHQQ, 
or A EqQ <3 (FO, + F,0, +... + Fn~»On+ A E,0,Q). 

(2) (R,0.)+(B.03)+...+(Rn+On)+ARnOnQ< Pot Pst+...+ Pris 

<P,+P,4+...+ Pan, & fortior, 

<A LQ, 
or A EqQ>3 (RO, + B.0,+... + Bran + A RnrOnQ). 

16—2 
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Proposition 16. 

Suppose Qq to be the base of a parabolic segment, q being 

not more distant than Q from the vertex of the parabola. Draw 

through q the straight line qE parallel to the axis of the parabola 

to meet the tangent at Qin E. It is required to prove that 

(area of segment)=4 AKgQ. 

For, if not, the area of the segment must be either greater 

or less than 1 A XqQ. 

I. Suppose the area of the 
segment greater than 4 AXqQ. 

Then the excess can, if con- 

tinually added to itself, be 

made to exceed A#qQ. And 
it is possible to find a submul- 

tiple of the triangle HqQ less 

than the said excess of the 
segment over 4 ALgQ. 

Let the triangle F¢Q be such 

a submultiple of the triangle 

EqQ. Divide Eq into equal 

parts each equal to gf, and let 

all the points of division in- 

cluding F be joined to Q meet- 

ing the parabola in f,, Ry, ... 

Q 

R, respectively. Through R,, R,, ... Ry, draw diameters of the 

parabola meeting gQ in 0,, Oy, ... 

Let O,R, meet QR, in F;. 

Let O,R, meet QR, in D, and QR, in F,. 

Let O,R, meet QR, in D, and QR, in F,;, and so on. 

We have, by hypothesis, 

A F9Q < (area of segment) — 1A LqQ, 

or (area of segment) — AFqQ >4 ALqQ 

O, respectively. 
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Now, since all the parts of gH, as gF and the rest, are equal, 

O,R, = R,F,, 0O.D, = D,R, = R,F,, and so on; therefore 

A FqQ =(FO, + R,O, + D,O; +...) 

4 =(F0,+ FLD, + FLD, +... +P nDn_y +A En RnQ)...(B). 
ut 

(area of segment) < (FO, + F,O, +... +P n+On +A EnOnQ). 

Subtracting, we have 

(area of segment) — A FqQ < (RO, + R.O3+... 

ie pea Oh +A R,,0,Q), 

whence, a fortiort, by (a), 

4A EqQ < (R,0,4+ B03 +... + RnarOn + ARO Q). 

But this is impossible, since [Props. 14, 15] 

LA EqQ > (RO, + B.0; +... + Rn Ont AR,OnQ). 

Therefore 
(area of segment) +4+A LqQ. 

II. If possible, suppose the area of the segment less than 

$A £qQ. 
Take a submultiple of the triangle HqQ, as the triangle 

FqQ, less than the excess of A HqQ over the area of the 

segment, and make the same construction as before. 

Since AFqQ< it AL GQ — (area of segment), 

it follows that 

A FqQ + (area of segment) < LA HqQ 

< (FO, + F,O. +... + Fai0n + AF,0nQ). 

[ Props. 14, 15] 

Subtracting from each side the area of the segment, we have 

A FqQ < (sum of spaces gF'R,, RFR, ... HrRnQ) 

<(FO,+ FD, +...+ FriDrit AEL,R,Q), a fortior; 

which is impossible, because, by (8) above, 

A FqQ = FO, + FD, +... + PraDnat+ AEnRnQ. 

Hence (area of segment) ¢ 4A HqQ. 

Since then the area of the segment is neither less nor 

greater than 4A HqQ, it is equal to it. 
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Proposition 17. 

It is now manifest that the area’ of any segment of a 
parabola is four-thirds of the triangle which has the same base 

as the segment and equal height. * 

Let Qq be the base of the segment, P its vertex. Then 

PQ is the inscribed triangle with the 

same base as the segment and equal vie be 

height. 

Since P is the vertex* of the seg- 

ment, the diameter through P bisects 

Qq. Let V be the point of bisection. 

Let VP, and gH drawn parallel to 

it, meet the tangent at Q in 7’, E re- ic 

spectively, 

Then, by parallels, 

ghia 2VT, 

and er ds [Prop. 2] 

so that Vi=2PV. E 

Hence AHqQ =4APQq. 

But, by Prop. 16, the area of the segment is equal to 1A £qQ. 

Therefore (area of segment) = 4A PQg. 

Der. “In segments bounded by a straight line and any 

curve I call the straight line the base, and the height the 

greatest perpendicular drawn from the curve to the base of the 
segment, and the vertex the point from which the greatest 

perpendicular is drawn.” 

* Tt is curious that Archimedes uses the terms base and vertex of a segment 

here, but gives the definition of them later (at the end of the proposition), 

Moreover he assumes the converse of the property proved in Prop. 18. 
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Proposition 18. 

Tf Qq be the base of a segment of a parabola, and V the 
middle point of Qq, and if the diameter through V meet the 

curve m P, then P is the vertex of the segment. 

Q 

eel 

gi 

For Qq is parallel to the tangent at P [Prop. 1]. Therefore, 
of all the perpendiculars which can be drawn from points on the 
segment to the base Qg, that from P is the greatest. Hence, 

by the definition, P is the vertex of the segment. 

Proposition 19. 

If Qq be a chord of a parabola bisected in V by the diameter 
PV, and if RM be a diameter bisecting QV in M, and RW 

be the ordinate from R to PV, then 

PV =4RM. 

For, by the property of the parabola, 

Vere Wee OV ae Ww 

=4RW =: RW, 

so that PV-=4PYW, 

whence PV =4RM. 



248 ARCHIMEDES 

Proposition 20. 

If Qq be the base, and P the vertex, of a parabolic segment, 

then the triangle PQq ts greater than half the segment PQq. 

For the chord Qq is parallel to the tangent at P, and the 

triangle PQq is half the parallelogram Q 

formed by Qq, the tangent at P, and the 

diameters through Q, q. 

Therefore the triangle PQgq is greater 

than half the segment. P v 

Cor. It follows that 7 2 possible 
to inscribe in the segment a polygon such 

that the segments left over are together 

less than any assigned area. 

Proposition 21. 

If Qq be the base, and P the vertex, of any parabolic 
segment, and if R be the vertex of the segment cut off by PQ, 

then 
APUG SL ERG: 

The diameter through R& will bisect the chord PQ, and 

therefore also QV, where PV is the 

diameter bisecting Qg. Let the dia- 

meter through & bisect PQ in Y and 

QVin M. Join PM. 

By Prop, 19) 
PV =4£RM. 

Also PY = 2 M, 

Therefore YM =2hY, 

and DNPOMe 2 PRO. 

Hence APOV =4 24 2RY, 

and APQ¢=S8APRQ, 
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Also, if RW, the ordinate from R to PV, be produced to 

meet the curve again in 7, 

RW=rW, 

and the same proof shows that 

APQg = 8A Pr¢. 

Proposition 22. 

If there be a series of areas A, B, C, D, ... each of which is 
Jour times the neat in order, and vf the largest, A, be equal to the 

triangle PQg inscribed in a parabolic segment PQq and having 
the same base with rt and equal height, then 

(A+B+C0+D+...)< (area of segment PQq). 

For, since APQq =8APRQ =8APaqr, where R, rv are the 

vertices of the segments cut off by PQ, 

Pq, as in the last proposition, 

A PQ¢ =4(APQR+ APgqr). 

Q 

R 

Therefore, since A PQq = 4, 

APQR + APgqr= B. P Vv 

In like manner we prove that the \ 

triangles similarly inscribed in the re- 

maining segments are together equal to 

the area C, and so on. q 

Therefore A+B+C+D+... is equal to the area of a 

certain inscribed polygon, and is therefore less than the area of 

the segment. 

Proposition 23. 

Given a series of areas A, B, C, D, ... Z, of which A is the 

greatest, and each is equal to four tumes the neat in order, then 

AGB Oy af gZ= 4A. 
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Take areas b, c, d, ... such that 

b=1B, 

c=1C, 

d = 1D, and so on. 

Then, since b=4B, 

and B=}HA, 

B+b=i4 

Similarly C+ 6=45B. 
Oe ee 

B+C+D+...4+Z4+b+c+d+...42=3(A+B+C+H... 

But db+ct+dt+...4y=4(B+O+D+...+Y). 

Therefore, by subtraction, 

B+C04+D+...4+Z+4+2=1A 

or A+B+4+C+4+...4Z4+4Z=4A. 

+Y). 
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|The algebraical equivalent of this result is of course 

1+$+(4)+...4+(4)"7=4-4@7 

ete Gy | 
I=} 

Proposition 24. 

Every segment bounded by a parabola and a chord Qq is 
equal to four-thirds of the triangle which has the same base as 
the segment and equal height. 

Suppose K=4APQq, 

where P is the vertex of the segment; and we have then to 

prove that the area of the segment is 
equal to K, 

For, if the segment be not equal to 

K, it must either be greater or less. 

I. Suppose the area of the segment 
greater than K. 

If then we inscribe in the segments 

cut off by PQ, Pq triangles which have 
the same base and equal height, Le. 
triangles with the same vertices R, r as 

those of the segments, and if in the 
remaining segments we inscribe triangles in the same manner, 

and so on, we shall finally have segments remaining whose sum 

is less than the area by which the segment PQgq exceeds K. 

Therefore the polygon so formed must be greater than the 

area K ; which is impossible, since [Prop. 23] 

A+B+4+C0+...4Z< 4A, 

where A=A PQq. 

Thus the area of the segment cannot be greater than K. 

II. Suppose, if possible, that the area of the segment is 

less than K. 
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If then APQG=A, B=1A, C=4B, and so on, until we 

arrive at an area X such that X is less than the difference 

between K and the segment, we have 

ACE BIO (gee kee pee [Prop. 23] 

: =K. 

Now, since K exceeds 4+ B+ C+...4+X by an area less 

than X,and the area of the segment by an area greater than X, 

it follows that 

A+B+C+...+ X > (the segment); 

which is impossible, by Prop. 22 above. 

Hence the segment is not less than KX. 

Thus, since the segment is neither greater nor less than K, 

(area of segment PQq) = K =4A PQq. 



ON FLOATING BODIES. 

BOOK, I 

Postulate 1. 

“Let it be supposed that a fluid is of such a character that, 
its parts lying evenly and being continuous, that part which is 

thrust the less is driven along by that which is thrust the 

more; and that each of its parts is thrust by the fluid which is 

above it in a perpendicular direction if the fluid be sunk in 

anything and compressed by anything else.” 

Proposition 1. 

If a surface be cut by a plane always passing through a 

certain point, and wf the section be always a circumference [of a 

circle] whose centre is the aforesaid point, the surface rs that of 
a sphere. 

For, if not, there will be some two lines drawn from the 

point to the surface which are not equal. 

Suppose O to be the fixed point, and A, B to be two points 
on the surface such that OA, OB are unequal. Let the surface 
be cut by a plane passing through OA, OB. Then the section 

is, by hypothesis, a circle whose centre is 0. 

Thus O0A=OB; which is contrary to the assumption. 

Therefore the surface cannot but be a sphere. 
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Proposition 2. 

The surface of any fluid at rest is the surface of a sphere 

whose centre is the same as that of the earths,,.° 

Suppose the surface of the fluid cut by a plane through 0, 

the centre of the earth, in the curve ABCD. 

ABCD shall be the circumference of a circle. 

For, if not, some of the lines drawn from O to the curve 

will be unequal. Take one of them, OB, such that OB is 

greater than some of the lines from O to the curve and less 

than others. Draw a circle with OB as radius. Let it be HBF, 

which will therefore fall partly within and partly without the 
surface of the fluid. 

EA P 12) DF 

Draw OGH making with OB an angle equal to the angle 

HOB, and meeting the surface in H and the circle in G. Draw 

also in the plane an arc of a circle PQR with centre O and 
within the fluid. 

Then the parts of the flud along PQR are uniform and 
continuous, and the part PQ is compressed by the part between 

it and AB, while the part QR is compressed by the part 

between QR and BH. Therefore the parts along PQ, QR will 

be unequally compressed, and the part which is compressed the 

less will be set in motion by that which is compressed the 
more. 

Therefore there will not be rest; which is contrary to the 
hypothesis. 

Hence the section of the surface will be the circumference 

of a circle whose centre is 0; and so will all other sections by 
planes through 0. 

Therefore the surface is that of a sphere with centre O. 
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Proposition 3. 

Of solids those which, size for size, are of equal weight with | 

a fluid will, if let down into the fluid, be immersed so that they 
‘do not project above the surface but do not sink lower. 

If possible, let a certain solid HFHG of equal weight, 

volume for volume, with the fluid remain immersed in it so 

that part of it, HBOF, projects above the surface. 

Draw through OQ, the centre of the earth, and through the 
solid a plane cutting the surface of the fluid in the circle 
ABCD. | 

Conceive a pyramid with vertex O and base a, parallelogram 
at the surface of the fluid, such that it includes the immersed 

portion of the solid. Let this pyramid be cut by the plane of 

ABCD in OL, OM.. Also let a sphere within the fluid and 

below GH be described with centre O, and let the plane of 
ABCD cut this sphere in PQR. 

Conceive also another pyramid in the fluid with vertex 0, 
continuous with the former’ pyramid and equal and similar to 

it. Let the pyramid so described be cut in OM, ON by the 
plane of ABCD. 

Lastly, let S7?UV be a part of the fluid within the second 
pyramid equal and similar to the part BG HC of the solid, and 
let SV be at the surface of the fluid. 

Then the pressures on PQ, QR are unequal, that on PQ 

being the greater. Hence the part at QA will be set in motion 
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by that at PQ, and the fluid will not be at rest; which is 

contrary to the hypothesis. 

Therefore the solid will not stand out above the surface. 

Nor will it sink further, because all the parts of the fluid 
will be under the same pressure. , 

Proposition 4. 

A solid lighter than a fluid will, if immersed in rt, not be 
completely submerged, but part of it will project above the 
surface. 

In this case, after the manner of the previous proposition, 

we assume the solid, if possible, to be completely submerged and 

the fluid to be at rest in that position, and we conceive (1) a 

pyramid with its vertex at O, the centre of the earth, including 

the solid, (2) another pyramid continuous with the former and 
equal and similar to it, with the same vertex O, (3) a portion of 

the fluid within this latter pyramid equal to the immersed solid 
in the other pyramid, (4) a sphere with centre O whose surface 

is below the immersed solid and the part of the fluid in the 

second pyramid corresponding thereto. We suppose a plane to 

be drawn through the centre O cutting the surface of the 

fluid in the circle ABO, the solid in S, the first pyramid in OA, 

OB, the second pyramid in OB, OC, the portion of the fluid in 

the second pyramid in K, and the inner sphere in PQR. 

Then the pressures on the parts of the fluid at PQ, QR are 

unequal, since S is lighter than K. Hence there will not be 

rest ; which is contrary to the hypothesis. 

Therefore the solid S cannot, in a condition of rest, be 

completely submerged. 
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Proposition 5. 

Any solid lighter than a fluid will, of placed in the fluid, 
be so far immersed that the weight of the solid will be equal to 

the weight of the fluid displaced. 

For let the solid be EGHF, and let BGHC be the portion 
of it immersed when the fluid is at rest. As in Prop. 3, 
conceive a pyramid with vertex O including the solid, and 

another pyramid with the same vertex continuous with the 

former and equal and similar to it. Suppose a portion of the 

fluid S7UV at the base of the second pyramid to be equal and 
similar to the immersed portion of the solid; and let the con- 

struction be the same as in Prop. 3. 

Then, since the pressure on the parts of the fluid at PQ, QR 

must be equal in order that the fluid may be at rest, it follows 

that the weight of the portion STUV of the fluid must be 

equal to the weight of the solid HGHF. And the former is 
equal to the weight of the fluid displaced by the immersed 
portion of the solid BGHC. 

Proposition 6. 

If a solid lighter than a fluid be forcibly immersed in it, the 

solid will be driven upwards by a force equal to the difference 
between its weight and the weight of the fluid displaced. 

For let A be completely immersed in the fluid, and let G 
represent the weight of A, and (G+ #) the weight of an equal 

volume of the fluid. Take a solid D, whose weight is H 

EPA: ly 
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and add it to A. Then the weight of (A + JD) is less than 

that of an equal volume of the fluid; and, if (A+) is 

immersed in the fluid, it will project so that its weight will 

be equal to the weight of the fluid displaced. But its weight 
is (4+ Hf). 

Therefore the weight of the fluid displaced is (@+ H), and 

hence the volume of the fiuid displaced is the volume of the 

solid A. There will accordingly be rest with A immersed 
and D projecting. 

Thus the weight of D balances the upward force exerted by 

the fluid on A, and therefore the latter force is equal to H, 

which is the difference between the weight of A and the weight 
of the fluid which A displaces. 

Proposition 7. 

A solid heavier than a fluid will, if placed in it, descend 

to the bottom of the fluid, and the solid will, when weighed 
in the fluid, be lighter than its true weight by the weight of the 
fluid displaced. 

(1) The first part of the proposition is obvious, since the 

part of the fluid under the solid will be under greater pressure, 

and therefore the other parts will give way until the solid 
reaches the bottom. 

(2) Let A be a solid heavier than the same volume of the 

fluid, and let (G+ HH) represent its weight, while G represents 

the weight of the same volume of the fluid. 
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Take a solid B lighter than the same volume of the fluid, 

and such that the weight of B is G, while the weight of the 

same volume of the fluid is (@+ H). 

Let A and B be now combined into one solid and immersed. 

Then, since (A+B) will be of the same weight as the same 

volume of fluid, both weights being equal to (@+H)+G, it 

follows that (4 +8) will remain stationary in the fluid. 

Therefore the force which causes A by itself to sink must 

be equal to the upward force exerted by the fluid on B by 

itself. This latter is equal to the difference between (G+ ZH ) 

and G [Prop. 6]. Hence A is depressed by a force equal to 

H, i.e. its weight in the fluid is H, or the difference between 

(G+H) and G. 

[This proposition may, I think, safely be regarded as decisive 

of the question how Archimedes determined the proportions of , 

gold and silver contained in the famous crown (ef. Introduction, 

Chapter I.). The proposition suggests in fact the following 

method. 

Let W represent the weight of the crown, w, and w, the 

weights of the gold and silver in it respectively, so that 

W =u, 4+ Wr. 

(1) Take a weight W of pure gold and weigh it in a fluid. 

The apparent loss of weight is then equal to the weight of 

the fluid displaced. If F, denote this weight, F, is thus known 
as the result of, the operation of weighing. 

It follows that the weight of fluid displaced by a weight w, 

a7: 1+ of gold is W 

17—2 
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(2) Take a weight W of pure silver and perform the same 

operation. If F, be the loss of weight when the silver is 

weighed in the fluid, we find in like manner that the weight 

of fluid displaced by w, is 7 Bes . 

(3) Lastly, weigh the crown itself in the fluid, and let / be 
the loss of weight. Therefore the weight of fluid displaced by 

the crown is Ff. 

M1 We £ 
It follows that v: F,+ W: fo= Lf, 

or WF, + w,F, = (w+ w,) F, 

Men wm  ,-F | whence Milend laa ah 

This procedure corresponds pretty closely to that described 

in the poem de ponderibus et mensuris (written probably about 

500 A.D.)* purporting to explain Archimedes’ method. Ac- 

cording to the author of this poem, we first take two equal 

weights of pure gold and pure silver respectively and weigh 

them against each other when both immersed in water; this 

gives the relation between their weights in water and therefore 

between their loss of weight in water. Next we take the 
mixture of gold and silver and an equal weight of pure silver 

and weigh them against each other in water in the same 
manner. 

The other version of the method used by Archimedes is 

that given by Vitruvius}, according to which he measured 

successively the volwmes of fluid displaced by three equal 

weights, (1) the crown, (2) the same weight of gold, (3) the 

same weight of silver, respectively. Thus, if as before the 

weight of the crown is W, and it contains weights w, and wy, of 

gold and silver respectively, 

(1) the crown displaces a certain quantity of fluid, V say. 

(2) the weight W of gold displaces a certain volume of 

* Torelli’s Archimedes, p. 364; Hultsch, Metrol. Script. m. 95 sq., and 

Prolegomena § 118. 

+ De architect. 1x. 3. 
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fluid, V; say; therefore a weight w, of gold displaces a volume 

ay LV, of fluid. 

(3) the weight W of silver displaces a certain volume of 

fluid, say V,; therefore a weight w, of silver displaces a volume 

Wo 
wel of fluid. 

It follows that = V=55.V, 4+ 77.V,, 

whence, since W=w,+ uw, 

as 

Ww, V-V,’ 

and this ratio is obviously equal to that before obtained, viz. 

oF ] 

F-F, 

Postulate 2. 

“ Let it be granted that bodies which are forced upwards in 

a fluid are forced upwards along the perpendicular [to the 

surface] which passes through their centre of gravity.” 

Proposition 8. 

If «a solid in the form of a segment of a sphere, and of a 

substance lighter than a fluid, be immersed in it so that rts base 
does not touch the surface, the solid will rest in such a position 

that its axis is perpendicular to the surface ; and, if the solid be 
forced into such a position that its base touches the fluid on one 
side and be then set free, it will not remain in that position but 

will return to the symmetrical position. 

[The proof of this proposition is wanting in the Latin 

version of Tartaglia. Commandinus supplied a proof of his 

own in his edition.] 

Proposition 9. 

If a solid in the form of a segment of a sphere, and of a 
substance lighter than a fluid, be immersed in tt so that its base 
is completely below the surface, the solid will rest in such a 

position that its avis is perpendicular to the surface. 
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[The proof of this proposition has only survived in a 

mutilated form. It deals moreover with only one case out of 

three which are distinguished at the beginning, viz. that in 

which the segment is greater than a hemisphere, while figures 

only are given for the cases where the segment is equal to, or 

less than, a hemisphere. ] ‘ 

Suppose, first, that the segment is greater than a hemisphere. 

Let it be cut by a plane through its axis and the centre of the 

earth ; and, if possible, let it be at rest in the position shown 

in the figure, where AB is the intersection of the plane with 

the base of the segment, DH its axis, C the centre of the 

sphere of which the segment is a part, O the centre of the 
earth. 

The centre of gravity of the portion of the segment outside 
the fluid, as F, lies on OC produced, its axis passing through C. 

Let G be the centre of gravity of the segment. Join FG, 
and produce it to H so that 

FG: GH =(volume of immersed portion) : (rest of solid). 
Join OH. 

Then the weight of the portion of the solid outside the fluid 

acts along #0, and the pressure of the fluid on the immersed 

portion along OH, while the weight of the immersed portion 

acts along HO and is by hypothesis less than the pressure of 
the fluid acting along OH. 

Hence there will not be equilibrium, but the part of the 
segment towards A will ascend and the part towards B descend, 

until DH assumes a position perpendicular to the surface of 
the fluid. 
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BOOK II. 

Proposition 1. 

If a solid lighter than a fluid be at rest in it, the weight of 

the solid will be to that of the same volume of the fluid as the 
mmmersed portion of the solid is to the whole. 

Let (4 +8) be the solid, B the portion immersed in the 

fluid. 

Let (C+ D) be an equal volume of the fluid, C being equal 

in volume to A and B to D. 

Further suppose the line # to represent the weight of the 

solid (A + B), (+ G) to represent the weight of (C+D), and 

G that of D. 

Then 

weight of (A + B) : weight of (C+ D)=F : (F+@)...(1). 
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And the weight of (4+) is equal to the weight of a 

volume B of the fluid [I. 5], ie. to the weight of D. 

That is to say, Y= G. 

Hence, by (1), 

weight of (A + B) : weight of (C+ D)=G:F+G4 

=D:C+D 

=B:A+ SB. 

Proposition 2. 

If a right segment of a paraboloid of revolution whose axis is 

not greater than 2p (where p is the principal parameter of the 
generating parabola), and whose specific gravity is less than that 
of a fluid, be placed in the fluid with its axis inclined to the 

vertical at any angle, but so that the base of the segment does not 
touch the surface of the fluid, the segment of the paraboloid will 
not remain in that position but will return to the position in 
which its axis is vertical. 

Let the axis of the segment of the paraboloid be AJ, and 

through AW draw a plane perpendicular to the surface of the 

fluid. Let the plane intersect the paraboloid in the parabola 

BAB’, the base of the segment of the paraboloid in BB’, and 

the plane of the surface of the fluid in the chord QQ’ of the 

parabola. 

Then, since the axis A is placed in a position not perpen- 
dicular to QQ’, BB’ will not be parallel to QQ’. 

Draw the tangent PT’ to the parabola which is parallel to 

QQ’, and let P be the point of contact*. 

[From P draw PV parallel to AN meeting QQ’ in JV. 

Then PV will be a diameter of the parabola, and also the 

axis of the portion of the paraboloid immersed in the fluid. 

* The rest of the proof is wanting in the version of Tartaglia, but is given 

in brackets as supplied by Commandinus. 
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Let C be the centre of gravity of the paraboloid BAB’, and 

F that of the portion immersed in the fluid. Join FC and 

produce it to H so that H is the centre of gravity of the 

remaining portion of the paraboloid above the surface. 

B’ 

LPKM 

Then, since AN =3AC*, 

and AN +#p, 

it follows that AC + f. 

Therefore, if CP be joined, the angle CPT is acutet. 

Hence, if CK be drawn perpendicular to PT, K will fall between 

Pand 7. And,if FL, HM be drawn parallel to CK to meet 

PT, they will each be perpendicular to the surface of the fluid. 

Now the force acting on the immersed portion of the 

segment of the paraboloid will act upwards along LF, while 
the weight of the portion outside the fluid will act downwards 

along HM. 

Therefore there will not be equilibrium, but the segment 

* As the determination of the centre of gravity of a segment of a paraboloid 

which is here assumed does not appear in any extant work of Archimedes, or 

in any known work by any other Greek mathematician, it appears probable that 

it was investigated by Archimedes himself in some treatise now lost. 

+ The truth of this statement is easily proved from the property of the sub- 

normal. For, if the normal at P meet the axis in G, AG is greater than £ 

except in the case where the normal is the normal at the vertex 4 itself. But 

the latter case is excluded here because, by hypothesis, AN is not placed vertically. 

Hence, P being a different point from 4, AG is always greater than AC; and, 

since the angle TPG is right, the angle TPC must be acute. 
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will turn so that B will rise and B’ will fall, until AW takes 

the vertical position. ] 

[For purposes of comparison the trigonometrical equivalent 

of this and other propositions will be appended. 

Suppose that the angle V TP, at which in the above figure 

the axis AW is inclined to the surface of the fluid, is denoted 

by @. 

Then the coordinates of P referred to AV and the tangent 

at A as axes are 

ata i 4 cot 6, 9 cot 6, 

where p is the principal parameter. 

Suppose that AV=h, PV=k. 

If now z’ be the distance from 7' of the orthogonal projection 

of F on TP, and « the corresponding distance for the point C, 
we have 

of =F cot? 0. a sind +5 k cos 6, 

C= F cot? 0. cos 0+ 5 a reste 

whence a’ —a#=cos at (cot? 6+ 2)-—s5 =(h _ bh. 

In order that the segment of the paraboloid may turn in 

the direction of increasing the angle PT, x’ must be greater 

than «, or the expression just found must be positive. 

This will always be the case, whatever be the value of 8, if 

Deak 
5) g ? 

or h>p.] 

Proposition 3. 

If aright segment of a paraboloid of revolution whose axis 
as not greater than $p (where p is the parameter), and whose 

specific gravity is less than that of a fluid, be placed in the fluid 
with its aais inclined at any angle to the vertical, but so that its 
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base ts entirely submerged, the solid will not remain in that posi- 
tion but will return to the position in which the awxts rs vertical. 

Let the axis of the paraboloid be AN, and through AN 

draw a plane perpendicular to the surface of the fluid inter- 

secting the paraboloid in the parabola BAB’, the base of the 

segment in BN B’, and the plane of the surface of the fluid in 

the chord QQ’ of the parabola. 

T MKPL 

A 

Then, since AWN, as placed, is not perpendicular to the 

surface of the fluid, QQ’ and BB’ will not be parallel. 

Draw PT parallel to QQ’ and touching the parabola at P. 

Let PT meet NA produced in 7. Draw the diameter PV 

bisecting QQ’ in V. PV is then the axis of the portion of the 

paraboloid above the surface of the fluid. 

Let C be the centre of gravity of the whole segment of the 

paraboloid, # that of the portion above the surface. Join FC 

and produce it to H so that H is the centre of gravity of 

the immersed portion. 

Then, since AC +F, the angle CPT is an acute angle, as in 

the last proposition. 

Hence, if CK be drawn perpendicular to P7, K will fall 

between P and 7. Also, if HM, FL be drawn parallel to CK, 

they will be perpendicular to the surface of the fluid. 

And the force acting on the submerged portion will act 

upwards along HWM, while the weight of the rest will act 

downwards along LF produced. 

Thus the paraboloid will turn until it takes the position 

in which AW is vertical. 
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Proposition 4. 

Gwen a right segment of a paraboloid of revolution whose 
axis AN is greater than 2p (where p is the parameter), and 
whose specific gravity is less than that of a fluid but bears 

to wt a ratio not less than (AN—ip)’: AN’, if the segment 
of the paraboloid be placed in the fluid with its axis at any 

inclination to the vertical, but so that its base does not touch 

the surface of the flucd, it will not remain in that position but 

wil return to the position in which its axis is vertical. 

Let the axis of the segment of the paraboloid be AN, and 
let a plane be drawn through AW perpendicular to the surface 

of the fluid and intersecting the segment in the parabola BAB’, 

the base of the segment in BB’, and the surface of the fluid in 

the chord QQ’ of the parabola. 

Then AWN, as placed, will not be perpendicular to QQ’. 

Draw PT parallel to QQ’ and touching the parabola at P. 

Draw the diameter PV bisecting QQ’ in V. Thus PV will be 

the axis of the submerged portion of the solid. 

Let C be the centre of gravity of the whole solid, F that of 

the immersed portion, Join #0 and produce it to H so that H 

is the centre of gravity of the remaining portion. 

Now, since AN =3A0, 

and AN > 8p, 

it follows that AC> f. 
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Measure CO along CA equal to 7 and OR along OC equal to 

$A0. 

Then, since AN =3AC, 

and AR =3A0, 

we have, by subtraction, 
= 800. 

That is, . AN-AR=300 

=a), 

or AR =(AN — $p). 

Thus (AN —3p): AN? =AR’: AN’, 

and therefore the ratio of the specific gravity of the solid to 

that of the fluid is, by the enunciation, not less than the ratio 

make: AN. 

But, by Prop. 1, the former ratio is equal to the ratio 

of the immersed portion to the whole solid, Le. to the ratio 

PV?: AN? [On Conoids and Spheroids, Prop. 24). 

Hence 22 TANGA Te av 

or PV + AR. 
It follows that 

PF (=2PV)+¢ gAR 

egal(Oh 

If, therefore, OK be drawn from O perpendicular to OA, it will 

meet PF between P and F. 

Also, if CK be joined, the triangle ACO is equal and similar 

to the triangle formed by the normal, the subnormal and the 

ordinate at P (since CO=4p or the subnormal, and KO is 

equal to the ordinate). 

Therefore CK is parallel to the normal at P, and therefore 

perpendicular to the tangent at P and to the surface of the 

fluid. 

Hence, if parallels to CK be drawn through F’, H, they will 

be perpendicular to the surface of the fluid, and the force 

acting on the submerged portion of the solid will act upwards 
along the former, while the weight of the other portion will 

act downwards along the latter. 
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Therefore the solid will not remain in its position but will 

turn until AW assumes a vertical position. 

[Using the same notation as before (note following Prop. 2), 

we have 

eae {i (cot* 6+ 2) —5 (h- Dh, 

and the minimum value of the expression within the bracket, 

for different values of 0, is 

eee ES (hh), 
corresponding to the position in which AJ is vertical, or @= a 

Therefore there will be stable equilibrium in that position only, 

provided that 
k< (h— {p), 

or, if s be the ratio of the specific gravity of the solid to that of 
the fluid (= k’/h’ in this case), 

st (h— Spy?) 

Proposition 5. 

Given a right segment of a paraboloid of revolution such that 
us axis AN is greater than 3p (where p is the parameter), and 

its specific gravity is less than that of a fluid but in a ratio to 
wt not greater than the ratio {AN*—(AN—8p)}: AN, if the 

segment be placed in the fluid with its axis inclined at any angle 
to the vertical, but so that rts base is completely submerged, wt will 

not remain wm that position but will return to the position in 
which AN is vertical. 

Let a plane be drawn through AW, as placed, perpendicular 

to the surface of the fluid and cutting the segment of the 
paraboloid in the parabola BAB’, the base of the segment in 

BB’, and the plane of the surface of the fluid in the chord 
QQ’ of the parabola. 

Draw the tangent PZ’ parallel to QQ’, and the diameter 

PV, bisecting QQ’, will accordingly be the axis of the portion 

of the paraboloid above the surface of the fluid. 
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Let F be the centre of gravity of the portion above the 
surface, C that of the whole solid, and produce FC to H, the 

centre of gravity of the immersed portion, 

As in the last proposition, AC > a and we measure CO along 

CA equal to x and OR along OC equal to $40. 

Then AN =3AC, and AR =3A0; 

and we derive, as before, 

AR=(AN — 8p). 

Now, by hypothesis, 

(spec. gravity of solid) : (spec. gravity of fluid) 

> {AN?— (AN —3p)} : AN? 

> (AN? — AR’): AN’. 

Therefore 

(portion submerged) : (whole solid) 

> (AN? — AR’): AN’, 

and (whole solid) : (portion above surface) 

eA Ache, 

Thus AN SPY AN] A i, 

whence PY «AR, 

and PF £3AR 

¢ AO. 
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Therefore, if a perpendicular to AC be drawn from QO, it will 
meet PF in some point K between P and F. 

And, since CO =4p, CK will be ey metas es to PT, as in 

the last proposition. 

Now the force acting on the submerged portion of the solid 

will act upwards through H, and the weight of the other 

portion downwards through Ff’, in directions parallel in both 
eases to Ck; whence the proposition follows. 

Proposition 6. 

Tf a right segment of a paraboloid lighter than a fluid be 
such that its awis AM is greater than 3p, but AM: 4p< 15: 4, 

and wf the segment be placed in the fluid with its axis so inclined 

to the vertical that its base touches the flucd, it will never remain 

in such a position that the base touches the surface in one point 
only. 

Suppose the segment of the paraboloid to be placed in the 

position described, and let the plane through the axis AM 

perpendicular to the surface of the fluid intersect the segment 

of the paraboloid in the parabolic segment BAB’ and the plane 

of the surface of the fluid in BQ. 

Take C on AM such that AC =2CM (or so that C is the 

centre of gravity of the segment of the paraboloid), and measure 
CK along CA such that 

AM: CK =15-; 4 

Thus 4M :Ck > AM: tp, by hypothesis; therefore CK < tp. 
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Measure CO along CA equal to $p. Also draw KR per- 
pendicular to AC meeting the parabola in R. 

Draw the tangent PT parallel to BQ, and through P draw 
the diameter PV bisecting BQ in V and meeting KR in J. 

Then 1 ol NY edb eae KM: AK, 

“for this ts proved.” * 

And CK =4,AM=240; 
whence AK =AC-CK =2A0 =2AM. 

Thus KM =8AM. 

Therefore KM =3AK. 

It follows that 

FOV ee lal 

so that did be. Soe 5 Ag 

Let F be the centre of gravity of the immersed portion of 

the paraboloid, so that PF=2FV. Produce FC to H, the 

centre of gravity of the portion above the surface. 

Draw OL perpendicular to PV. 

* We have no hint as to the work in which the proof of this proposition was 

contained. The following proof is shorter than Robertson’s (in the Appendix 

to Torelli’s edition). 

Let BQ meet AM in U, and let PN be the ordinate from P to AM. 

We have to prove that PV. AK oy~ PI.KM, or in other words that 

(PV .AK-—PI.KM) is positive or zero. 

Now PV.AK-PI.KM=AK.PV-(AK-AN)(AM- AK) 

=AK*-AK(AM+AN-PV)+4AM.AN 

=AK*-AK.UM+4AM.AN, 
(since AN=AT). 

Now UM : BM=NT: PN. 

Therefore UM? :p.AM=4AN?: p.AN, 

whence UM?2=44AM . AN, 
2 

or AM. AN=UE : 

é UM? 
Therefore PV.AK-PI.KM=AK?-AK.UM+ ie 

UM \?2 

=(ax-). 
and accordingly (PV. AK — PI. KM) cannot be negative. 

H. A. 18 
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Then, since CO =1p, CL must be perpendicular to PT and 
therefore to the surface of the fluid. 

And the forces acting on the immersed portion of the 

paraboloid and the portion above the surface act respectively 

upwards and downwards along lines through F and # parallel 

to CL. 

Hence the paraboloid cannot remain in the position in which 

B just touches the surface, but must turn in the direction of 

increasing the angle PTM. 

The proof is the same in the case where the point J is not 
on VP but on VP produced, as in the second figure*. 

B 

[With the notation used on p. 266, if the base BB’ touch 
the surface of the fluid at B, we have 

BM=BV sin 6+ PN, 

and, by the property of the parabola, 

BV? =(p+4AN) PV 

= pk (1 + cot? @). 

Therefore Vph = pk +5 cot 0. 

To obtain the result of the proposition, we have to eliminate 
k between this equation and 

wf —w=c0s Off (oot? 04 2)-5(b—-W) 

* It is curious that the figures given by Torelli, Nizze and Heiberg are all 

incorrect, as they all make the point which I have called J lie on BQ instead of 

VP produced. 
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We have, from the first equation, 

k=h—Wphcot 0+7 cot" 0, 

or h—-k=N ph cot 0-7 cot" 0. 

Therefore 

x’ —x=cos 0 : (cot? 6+ 2) — 2 (ph cot gf cot ay} 

= eos oF (g cot? 8+ 2) — 2 V/ph cot of. 

If then the solid can never rest in the position described, 

but must turn in the direction of increasing the angle P7'M, 

the expression within the bracket must be positive whatever 

be the value of 0. 

Therefore (2)° ph < Bp’, 

or h<4Pp.] 

Proposition 7. 

Given a right segment of a paraboloid of revolution lighter 

than a fluid and such that its axis AM is greater than }p, but 

AM :$p<15: 4, of the segment be placed in the fluid so that 

its base ws entirely submerged, vt will never rest in such a position 

that the base touches the surface of the fluid at one point only. 

Suppose the solid so placed that one point of the base 

only (B) touches the surface of the fluid. Let the plane 

through B and the axis AM cut the solid in the parabolic 
segment BAB’ and the plane of the surface of the fluid in the 

chord BQ of the parabola. 

Let C be the centre of gravity of the segment, so that 

AC =2CM; and measure CK along CA such that 

AM: CKi=15 «4. 

It follows that CK <p. 

Measure CO along CA equal to $p. Draw KR perpen- 

dicular to AM meeting the parabola in A. 

18—2 
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Let PT, touching at P, be the tangent to the parabola 

which is parallel to BQ, and PV the diameter bisecting BQ, Le. 

the axis of the portion of the paraboloid above the surface. 

Then, as in the last proposition, we prove that 

ie age BE 

and PL ae = DIY. 

Let F be the centre of gravity of the portion of the solid 

above the surface; join FO and produce it to H, the centre of 

gravity of the portion submerged. 

Draw OL perpendicular to PV; and, as before, since 

CO=tp, CL is perpendicular to the tangent PY. And the 
lines through H, #’ parallel to CZ are perpendicular to the 

surface of the fluid; thus the proposition is established as 

before. 

The proof is the same if the point J is not on VP but on 

VP produced. 

Proposition 8. 

Given a solid in the form of a right segment of a paraboloid 
of revolution whose avis AM is greater than }p, but such that 

AM :3p<15: 4, and whose specific gravity bears to that of a 

fiud a ratio less than (AM—} py: AM, then, if the solid be 

placed in the fluid so that its base does not touch the fluid and 
its axis is inclined at an angle to the vertical, the solid will not 

return to the position in which its axis is vertical and will not 
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remain in any position except that in which its axis makes with 

the surface of the fluid a certain angle to be described. 

Let am be taken equal to the axis AM, and let ¢ be a point 
on am such that ac=2cm. Measure co along ca equal to 4p, 
and or along oc equal to 4 ao. 

Let X + Y be a straight line such that 

(spec. gr. of solid) : (spec. gr. of fluid) =(X + VY)’: am?...... (a), 

and suppose X = 2Y. 

Now ar =8a0=3(2am—}tp) 

=am—% p 
=AM-—p. 

Therefore, by hypothesis, 

(X+Y)?: am’? <ar’: am’, 

whence (X + Y)<ar, and therefore X < ao. 

Measure ob along oa equal to X, and draw bd perpendicular 

to ab and of such length that 

DOG e CO OD s-ceg.ncacssecis ves cdees (f). 
Join ad. 

Now let the solid be placed in the fluid with its axis AM 

inclined at an angle to the vertical. Through AM draw a 

plane perpendicular to the surface of the fluid, and let this 
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plane cut the paraboloid in the parabola BAB’ and the plane 
of the surface of the fluid in the chord QQ’ of the parabola. 

Draw the tangent PT parallel to QQ’, touching at P, and 
let PV be the diameter bisecting QQ’ in V (or the axis of the 

immersed portion of the solid), and PN the ordinate from P. 

Measure AO along AM equal to ao, and OC along OM 
equal to oc, and draw OL perpendicular to PV. 

I. Suppose the angle O7'P greater than the angle dab. 

Thus PN? YNT- > ab = 0% 

But PNOONT =p 4A, 

= CO oN LT. 

and db? : ba? =4co : ab, by (8). 

Therefore NT < 2ab, 

or AN <ab, 

whence NO>bo (since ao= AO) 

ade 

Now (X + Y)’ : am’ =(spec. gr. of solid) : (spec. gr. of fluid) 

= (portion immersed) : (rest of solid) 

= A 

so that X+Y=PY. 

But PIQ=NO) x. 

>3(X+4+ Y), since X =2Y, 

>2PYV, 

or PV <8PL, 

and therefore PL>2LV, 

Take a point f on PV so that PF=2FV, i.e. so that F is 

the centre of gravity of the immersed portion of the solid. 

Also AC =ac = 2am=2AWM, and therefore C is the centre 

of gravity of the whole solid. 

Join FC and produce it to H, the centre of gravity of the 

portion of the solid above the surface. 
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Now, since CO = $p, CL is perpendicular to the surface of 

the fluid; therefore so are the parallels to CZ through F and 

H. But the force on the immersed portion acts upwards 

through F and that on the rest of the solid downwards 

through H, 

Therefore the solid will not rest but turn in the direction of 

diminishing the angle M7'P. 

II. Suppose the angle O7'P less than the angle dab. In 

this case, we shall have, instead of the above results, the 

following, 
AN >ab, 

NO<X. 

Also PV >8PL, 

and therefore PL a2. 

B! 

Make PF equal to 2F'V, so that F is the centre of gravity 

of the immersed portion. 

And, proceeding as before, we prove in this case that the 

solid will turn in the direction of increasing the angle MTP. 

III. When the angle MTP is equal to the angle dab, 

equalities replace inequalities in the results obtained, and L is 

itself the centre of gravity of the immersed portion. Thus all 

the forces act in one straight line, the perpendicular CL; 

therefore there is equilibrium, and the solid will rest in the 

position described. 



280 ARCHIMEDES 

[With the notation before used 

ee one [P(oot* +2) = 5-H}, 

and a position of equilibrium is obtained by equating to zero the 

expression within the bracket. Wehave then 

Poh Gee (he eye 4 cot 8 = 3 (h k) 3" 

It is easy to verify that the angle @ satisfying this equation 
is the identical angle determined by Archimedes. For, in the 

above proposition, 

= Re ae P whence ab =sh—G—ghk=sglh—k)—o- 

Also bd? =f ab. 

It follows that 
, ; erie hee P\ 

cot? dab = ab*/bd SF '5 (h—k) - 3} | 

Proposition 9. 

Given a solid in the form of a right segment of a paraboloid 
of revolution whose axis AM is greater than }p, but such that 

AM :}p<15:4, and whose specific gravity bears to that of a 

fluid a ratio greater than |AM*—(AM—$p)*} : AM’, then, if 

the solid be placed in the fluid with its axis inclined at an angle 

to the vertical but so that its base is entirely below the surface, 

the solid will not return to the position in which its axis is 

vertical and will not remain in any position except that in which 
its aas makes with the surface of the fluid an angle equal to that 
described in the last proposition. 

Take am equal to AM, and take ¢ on am such that ac = 2em. 

Measure co along ca equal to }p, and ar along ac such that 
ar = 3a0. 
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Let X + Y be such a line that 

(spec. gr. of solid) : (spec. gr. of fluid) = {am?—(X + Y)*} : am’, 

and suppose X =2Y. 

Now ar = a0 
=3 (2 1 
= $ (Jam — zp) 

=AM-— ip. 

Therefore, by hypothesis, 

am®—ar?: am’ < {am*® —(X + Y)*} : am?, 

whence X+/YV<ar, 

and therefore X < ao. 

Make ob (measured along oa) equal to X, and draw bd 
perpendicular to ba and of such length that 

bd’? =4co. ab. 

Join ad. 

Now suppose the solid placed as in the figure with its axis 

AM inclined to the vertical. Let the plane through AM 

perpendicular to the surface of the fluid cut the solid in the 

parabola BAB’ and the surface of the fluid in QQ’. 

Let PT be the tangent parallel to QQ’, PV the diameter 

bisecting QQ’ (or the axis of the portion of the paraboloid above 

the surface), PN the ordinate from P. 
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I. Suppose the angle M7P greater than the angle dab. 
Let AM be cut as before in C and O so that AC=2CM, 

OC =p, and accordingly AM, am are equally divided. Draw 

OL perpendicular to PV. 

‘Then, we have, as in the last proposition, 

PN*:NT* > db? : ba‘, 

whence co: NT'>4co : ab, 

and therefore AN < ab. 

It follows that NO > bo 

> Xx. 

Again, since the specific gravity of the solid is to that of 

the fluid as the immersed portion of the solid to the whole, 

AM?—(X+Y)?: AM’=AM*— PV?: AM’, 
or (X + Yi) ASP Ve AM 

That is, XA4+Y=PV. 

And PI (or N Oy aX 

Sahl, 

so that PL>2LYV. 

Take F on PV so that PF=2FV. Then Fis the centre 

of gravity of the portion of the solid above the surface. 

Also Cis the centre of gravity of the whole solid. Join FC 

and produce it to H, the centre of gravity of the immersed 

portion. 

Then, since CO = tp, CL is perpendicular to PT and to the 
surface of the fluid; and the force acting on the immersed 

portion of the solid acts upwards along the parallel to CZ 

through H, while the weight of the rest of the solid acts down- 

wards along the parallel to CL through F. 

Hence the solid will not rest but turn in the direction of 

diminishing the angle M7P. 

II. Exactly as in the last proposition, we prove that, if the 

angle MT7'P be less than the angle dab, the solid will not remain 
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in its position but will turn in the direction of increasing the 

angle MTP. 

B 

III. If the angle M7'P is equal to the angle dab, the solid 
will rest in that position, because Z and f will coincide, and all 

the forces will act along the one line OL. 

Proposition 10. 

Gwen a solid in the form of a right segment of a paraboloid 

of revolution in which the axis AM is of a length such that 
AM :4p>15:4, and supposing the solid placed in a fluid 

of greater specific gravity so that rts base is entirely above the 

surface of the fluid, to investigate the positions of rest. 

(Preliminary.) 

Suppose the segment of the paraboloid to be cut by a plane 

through its axis AM in the parabolic segment BAB, of which 

BB, is the base. 

Divide AM at C so that AC = 20M, and measure CK along 

OA so that 
PALM es OC Rter 1S) Ase Zee eee (a), 

whence, by the hypothesis, CK > $p. 

Suppose CO measured along C'A equal to $p, and take a 

point R on AM such that MR = 3C0. 

Thus AR=AM-MkR 

= 3(AC —CO) 

= 8A0. 
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Join BA, draw KA, perpendicular to AM meeting BA in A, 

bisect BA in A;,and draw A,M,, A,M, parallel to AM meeting 

BM in M,, M, respectively. 

B Ms M2 D M Bo Bi 

be en Se ee 

On A,M,, A;M; as axes describe parabolic segments similar 

to the segment BAB,. (It follows, by similar triangles, that 

BM will be the base of the segment whose axis is A,/M/, and 
BB, the base of that whose axis is A,M,, where BB, = 2BM,.) 

The parabola BA,B, will then pass through C. 

[For BM, MM = IBM Ask 

=KM:AK 

=0M+CK:AC—CK 

=G+%)4U:@-4)AM 

=MA: AC. 
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Thus C is seen to be on the parabola BA,B, by the converse 

of Prop. 4 of the Quadrature of the Parabola.] 

Also, if a perpendicular to AM be drawn from 0, it will 

meet the parabola BA,B, in two points, as Q,, P,. Let Q:Q,Q;D 

be drawn through Q, parallel to AM meeting the parabolas 

BAB,, BA,M respectively in Q,, Q; and BM in D; and let 

P,P.P; be the corresponding parallel to AM through P,. Let 

the tangents to the outer parabola at P,, Q, meet MA produced 

in 7,, U respectively. 

Then, since the three parabolic segments are similar and 

similarly situated, with their bases in the same straight line 

and having one common extremity, and since Q,Q.Q;D is a 

diameter common to all three segments, it follows that 

Q,Q. : QQ; = (B.B, : B,B).(BM : MB,)*. 
Now BBs BB = MM,-BM (dividing by 2) 

= 2529, by means of (8) above. 

And BM : MB,= BM : (2BM, — BM) 

=5:(6—5), by means of (8), 

=5:1. 

* This result is assumed without proof, no doubt as being an easy deduction 

from Prop. 5 of the Quadrature of the Parabola. It may be established 

as follows. 

First, since 44,4,B is a straight line, and AN=AT with the ordinary 

notation (where PT is the tangent at P and PN the ordinate), it follows, by 

similar triangles, that the tangent at B to the outer parabola is a tangent to 

each of the other two parabolas at the same point B. 

Now, by the proposition quoted, if DQ;Q,Q, produced meet the tangent BT’ 

in H, 
#£Q;: Q;D=BD : DM, 

whence HQ;: HD=BD: BM. 

Similarly JIKO}, 8 JID IBV ONG ISTE 

and EQ,: ED=BD: BB,. 

The first two proportions are equivalent to 

£Q,: ED=BD.BB,: BM. BB, 

and EQ, : ED=BD.BM : BM .BB,. 
By subtraction, 

Q.Q3: ED=BD.MB,: BM. BB. 
Similarly 0105; HD=BD. BLB,: BB, .BB,. 

It follows that 

Q19> ? Q20;= (BoB, : BB) .(BM : MB). 
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It follows that 

QQ. : 0:0; = ated, 

De QiQs = 2Q.0s. 

Similarly PrP ee LP a ‘| 

Also, since MR =38C0 = 3p, 

AR=AM—MR 

= AM — 3p. 

(Enunciation.) 

If the segment of the paraboloid be placed in the fluid with 

its base entirely above the surface, then 

(L) of 
(spec. gr. of solid) : (spec. gr. of fluid) ¢ AR? : AM? 

[< (AM — 3p): AM"), 
the solid will rest in the position in which its axis AM is vertical; 

(IL) if 
(spec. gr. of solid) : (spec. gr. of fluid) < AR’ : AM’ 

but = 0,05: Ale 

the solid will not rest with its base touching the surface of the 

fluid in one point only, but in such a position that its base does 

not touch the surface at any point and its axis makes with the 

surface an angle greater than U; 

(IIa) 

(spec. gr. of solid) : (spec. gr. of fluid) = QQ" : AMP, 

the solid will rest and remain in the position in which the base 

touches the surface of the fluid at one point only and the axis 

makes with the surface an angle equal to U ; 

(IIT. b) if 

(spec. gr. of solid) : (spec. gr. of fluid) = P,P? : AM’, 

the solid will rest with its base touching the surface of the fluid 

at one point only and with its avis inclined to the surface at an 
angle equal to T; ; 

(LY.) of 

(spec. gr. of solid) : (spec. gr. of fluid) > P,P,’ : AM? 

but < Q,Q;' : ADM?, 
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the solid will rest and remain in a position with its base more 
submerged ; 

(V.) of 
(spec. gr. of solid) : (spec. gr. of flud) < P,P? : AM’, 

the solid will rest in a position in which rts axis rs inclined to the 
surface of the flud at an angle less than T,, but so that the base 
does not even touch the surface at one point. 

(Proof.) 

(1.) Since AM > 3p, and 

(spec. gr. of solid) : (spec. gr. of fluid) ¢ (AM — 3p): AM’, 

it follows, by Prop. 4, that the solid will be in stable equilibrium 

with its axis vertical. 

(IL.) In this case 

(spec. gr. of solid) : (spec. gr. of fluid) < AR*: AM? 

but > Q,Q;" : AM”. 

By 

Suppose the ratio of the specific gravities to be equal to 

l?; AM’, 

so that 1< AR but > Q,Q; 

Place P’V’ between the two parabolas BAB,, BP;Q;M equal 
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to J and parallel to AM*; and let P’V’ meet the intermediate 

parabola in F”. 

Then, by the same proof as before, we obtain 

PE =o. 

Let P’T7’, the tangent at P’ to the outer parabola, meet 

MA in T’, and let P’N’ be the ordinate at P’. 

Join BV’ and produce it to meet the outer parabola in Q’. 

Let 0Q,P, meet P’V’ in J. 

Now, since, in two similar and similarly situated parabolic 

* Archimedes does not give the solution of this problem, but it can be 

supplied as follows. 

Let BR,Q,, BRQ, be two similar and similarly situated parabolic segments 

with their bases in the same straight line, and let BE be the common tangent 

at B. 

Qy 

Suppose the problem solved, and let ERR,O, paralleljto the axes, meet the 

parabolas in R, R, and BQ, in O, making the intercept RR, equal to U. 

Then, we have, as usual, 

ER, : EO=B0: BQ, 

=BO.BQ,: BQ,. BQ:; 

and ER: EO=B0O: BQ, 

By subtraction, meee ts 
RR, : EO=BO. QQ, : BQ, - BQe: 

BQ, BQ, 
QQ. 

And the ratio BO: OF is known. Therefore BO?, or OH, can be found, and 

therefore O, 

or BO.OE=l. , Which is known, 
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segments with bases BM, BB, in the same straight line, BV’, BQ’ 

are drawn making the same angle with the bases, 

SVE = Da Obie 

= Il 394, 

so that BV es VANS 

Suppose the segment of the paraboloid placed in the fluid, 

as described, with its axis inclined at an angle to the vertical, 

and with its base touching the surface at one point B only. 

Let the solid be cut by a plane through the axis and per- 

B’ 

pendicular to the surface of the fluid, and let the plane intersect 
the solid in the parabolic segment BAB’ and the plane of the 

surface of the fluid in BQ. 

Take the points C, O on AM as before described. Draw 

* To prove this, suppose that, in the figure on the opposite page, BR, is 

produced to meet the outer parabola in Ry. 

We have, as before, 
ER, : EO=BO: BQ, 

ER: EO=BO: BQs, 

whence HR, : HR=BQ, : BQ,. 

And, since R, is a point within the outer parabola, 

ER: ER,=BR, : BR,, in like manner. 

Hence BOWER Oy = Bins Dia. 

H. A. 19 
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the tangent parallel to BQ touching the parabola in P and 

meeting AM in 7; and let PV be the diameter bisecting BQ 

(i.e. the axis of the immersed portion of the solid). 

Then 

P : AM* =(spec. gr. of solid) : (spec. gr. of fluid) 

= (portion immersed) : (whole solid) 

= Vea 

whence P'V’=l=PV. 

Thus the segments in the two figures, namely BP’Q’, 

BPQ, are equal and similar. 

Therefore LZ PEN = Zire 

Also AT=4AT, AN—=ANTEN =F N. 

Now, in the first figure, P’I < 21V’. 

Therefore, if OZ be perpendicular to PV in the second 

figure; 

PL < 2LV. 

Take F on LV so that PF = 2F'V, i.e. so that F is the centre 

of gravity of the immersed portion of the solid. And Cis the 

centre of gravity of the whole solid. Join FC and produce it to 

H, the centre of gravity of the portion above the surface. 

Now, since CO = tp, CL is perpendicular to the tangent at 

P and to the surface of the fluid. Thus, as before, we prove 

that the solid will not rest with B touching the surface, but will 

turn in the direction of increasing the angle PTV. 

Hence, in the position of rest, the axis AM must make with 

the surface of the fluid an angle greater than the angle U which 
the tangent at Q, makes with AM. 

(III. a) In this case 

(spec. gr. of solid) : (spec. gr. of fluid) = Q,Q,? : AM’. 

Let the segment of the paraboloid be placed in the fluid so 
that its base nowhere touches the surface of the fluid, and its 

axis is inclined at an angle to the vertical. 
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Let the plane through AM perpendicular to the surface of 
the fluid cut the paraboloid in the parabola BAB’ and the 

B/ 

plane of the surface of the fluid in QQ’. Let PT’ be the tangent 

parallel to QQ’, PV the diameter bisecting QQ’, PN the ordinate 

abel? 

Divide AWM as before at C, 0. 

192 
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In the other figure let Q,V’ be the ordinate at Q,. Join 

BQ, and produce it to meet the outer parabola in g. Then 

BQ; = Q,q, and the tangent Q,U is parallel to By. Now 

Q,Q,? : AM? = (spec. gr. of solid) : (spec. gr. of fluid) 

= (portion immersed) : (whole solid) 

a P V2 AM? 

Therefore Q,Q; = PV; and the segments QPQ’, BQ. of the 

paraboloid are equal in volume. And the base of one passes 

through B, while the base of the other passes through Q, a point 

nearer to A than B is. 

It follows that the angle between QQ’ and BB’ is less than 

the angle B,Bq. 

Therefore Le OPENS 

whence AN’> AN, 

and therefore NON or Oye EE 

where OL is perpendicular to PV. 

It follows, since Q,Q. = 2Q.Q;, that 

PL S25 V. 

Therefore F, the centre of gravity of the immersed portion 

of the solid, is between P and L, while, as before, CZ is perpen- 

dicular to the surface of the fluid. 

Producing FC to H, the centre of gravity of the portion of 

the solid above the surface, we see that the solid must turn in 

the direction of diminishing the angle P7'N until one point B 

of the base just touches the surface of the fluid. 

When this is the case, we shall have a segment BPQ equal 

and similar to the segment BQ,g, the angle PTN will be equal 

to the angle U, and AW will be equal to AN’. 

Hence in this case PL =2LV, and F, L coincide, so that F, 
C, H are all in one vertical straight line. 

Thus the paraboloid will remain in the position in which 
one point B of the base touches the surface of the fluid, and the 
axis makes with the surface an angle equal to U. 
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(III. b) In the case where 

(spec. gr. of solid) : (spec. gr. of fluid) = P,P,?: AM’, 

we can prove in the same way that, if the solid be placed in the 

fluid so that its axis is inclined to the vertical and its base does 
not anywhere touch the surface of the fluid, the solid will take 
up and rest in the position in which one point only of the base 

touches the surface,and the axis is inclined to it at an angle 

equal to 7, (in the figure on p. 284). 

(IV.) In this case 

(spec. gr. of solid) : (spec. gr. of fluid) > P,P: AM* 

but< 0,003 AM 

Suppose the ratio to be equal to 1’: AM’, so that 1 is greater 

than P,P, but less than Q,Q). 

Place P’V’ between the parabolas BP,Q,, BP;Q; so that 

P’V’ is equal tol and parallel to AM, and let P’V’ meet the 

intermediate parabola in F’ and OQ,P, in J. 

Join BV’ and produce it to meet the outer parabola in g. 

Then, as before, BV’ = V'gq, and accordingly the tangent 
P’T’ at P’ is parallel to Bg. Let P’N’ be the ordinate of P’. 
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1. Now let the segment be placed in the fluid, first, with 

its axis so inclined to the vertical that its base does not 

anywhere touch the surface of the fluid. 

Let the plane through AWM perpendicular to the surface of 

the fluid cut the paraboloid in the parabola BAB’ and the 

plane of the surface of the fluid in QQ’. Let PT be the 

tangent parallel to QQ’, PV the diameter bisecting QQ’. 

Divide AM at C, O as before, and draw OL perpendicular to PV. 

Then, as before, we have PV =1 = P’V’. 

Thus the segments BP’q, QPQ’ of the paraboloid are equal 

in volume; and it follows that the angle between QQ’ and BB’ 

is less than the angle B,Bq. 

Therefore 7a etd ON pak lead ail MANY 

and hence AN’>AN, 

so that NO>WN’O, 

Le. Pip See 

> P’F’, a fortiori, 

Thus PL >2LV, so that F, the centre of gravity of the 

immersed portion of the solid, is between Z and P, while CL 

is perpendicular to the surface of the fluid. 
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If then we produce FC to H, the centre of gravity of the 

portion of the solid above the surface, we prove that the solid 

will not rest but turn in the direction of diminishing the 

angle PT'N. 

2, Next let the paraboloid be so placed in the fluid that 

its base touches the surface of the fluid at one point B only, 
and let the construction proceed as before. 

Then PV = P’V’, and the segments BPQ, BP’g are equal 
and similar, so that 

LN = 2 een 

It follows that AN= ANNO NO; 

and therefore Pek= PT. 

whence PES 2LV, 

Thus F again lies between P and J, and, as before, the 

paraboloid will turn in the direction of diminishing the angle 

PTN, i.e. so that the base will be more submerged. 

(V.) In this case 

(spec. gr. of solid) : (spec. gr. of fluid) < P,P;’: AM”. 

If then the ratio is equal to 17: AM’, 1<P,P;. Place P’V’ 

between the parabolas BP,Q, and BP,Q; equal in length to / 
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and parallel to AM. Let P’V’ meet the intermediate parabola 
imp oand OP; ms. 

Join BV’ and produce it to meet the outer parabola in gq. 
Then, as before, BV’ = V’g, and the tangent P’7” is parallel 

to Bq. : 
8B M Ba B 

‘ 

1. Let the paraboloid be so placed in the fluid that its 

base touches the surface at one point only. 

B’ 
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Let the plane through AWM perpendicular to the surface 

of the fluid cut the paraboloid in the parabolic section BAB’ 
and the plane of the surface of the fluid in BQ. 

Making the usual construction, we find 

PV Stee Vs 

and the segments BPQ, BP,q are equal and similar. 

Therefore Re WN Zabel © 

and AN=AN', NO=NO. 

Therefore PL=P’'I, 

whence it follows that PL < 2LV. 

Thus F, the centre of gravity of the immersed portion of the 

solid, lies between Z and V, while CZ is perpendicular to the 

surface of the fluid. 

Producing FO to H, the centre of gravity of the portion 
above the surface, we prove, as usual, that there will not be 

rest, but the solid will turn in the direction of increasing the 

angle P7'N, so that the base will not anywhere touch the 

surface. 

2. The solid will however rest in a position where its axis 

makes with the surface of the fluid an angle less than 7%. 

B/ 
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For let it be placed so that the angle P7'N is not less 

than 7. 

Then, with the same construction as before, PV =1= P’V’. 

And, since Zola P, 

AN+AN,, 

and therefore VO ¢ NV,0, where P,N, is the ordinate of P,. 

Hence VEN a een ee 

But eM ee) 0 is 

Therefore RES EPV, 

so that F, the centre of gravity of the immersed portion of 

the solid, lies between P and L. 

Thus the solid will turn in the direction of diminishing 

the angle PTN until that angle becomes less than 7}. 

[As before, if x, «’ be the distances from 7’ of the orthogonal 

projections of C, F respectively on 7'P, we have 

of —2= 003 04H (cot? +2) —= Gene i (Ay 
) 

where h=AM,k=PYV. 

Also, if the base BB’ touch the surface of the fluid at one 

point B, we have further, as in the note following Prop. 6, 

Vph = Vpk +5 COLE ui Sk Chee ae (2), 

and h—k=" ph cot 0 -f COU G! tastes (3). 

Therefore, to find the relation between h and the angle 6 at 

which the axis of the paraboloid is inclined to the surface of the 

fluid in a position of equilibrium with B just touching the 

surface, we eliminate & and equate the expression in (1) to 
zero; thus 

Def ee 
F (cot? + 2)— 5 (vpn cot @—P cot” 6) = 0; 

or 5p cot? 0 — 8V ph cot 04+ 6p =0 wc... eee (4). 
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The two values of @ are given by the equations 

5Vp cot 0=4Vh + V16K — 80p occ. (5). 

The lower sign corresponds to the angle U, and the uppe 

sign to the angle 7, in the proposition of Archimedes, as cai 

be verified thus. 

In the first figure of Archimedes (p. 284 above) we have 

AK =#h, 

M,D* = 3p. OK =3p (gh — 3h — 4p) 
3p (4h =4 

72 Ges a5 

If P, P,P; meet BM in D’, it follows that 

a bee =MD 4M, 
MeD* 

3 l => 

ey ee cee 5) £19 

MD) aa 
and MD’ = MM, F M,D 

Bp (4h _p 
= Eph F ve (rs a 

Now, from the property of the parabola, 

cot V=2MD/p, 

cot T, =2MUD'/p, 

, P cot (Ut —2 Tey cae so that Bot nt = gh F 5 \q5 E 

= is ay fae a 
or 5p cot nfo anh V16h — 30p, 

which agrees with the result (5) above. 

To find the corresponding ratio of the specific gravities, o 

k’/h®, we have to use equations (2) and (5) and to express k i 

terms of h and p. 
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Equation (2) gives, on the substitution in it of the value of 

cot 6 contained in (5), 

Vk =Vh— a (4Vh + V1IGK — 30p) 

a VEF a, VIGh— B0p, 
whence we obtain, by squaring, 

k=}8h—3,p $ &VA(16h— 30p)......... (6). 

The lower sign corresponds to the angle U and the upper to 
the angle 7), and, in order to verify the results of Archimedes, 

we have simply to show that the two values of k are equal to 

Q,9;, Pi Ps respectively. 

Now it is easily seen that 

Q, 93 = h/2 — MD?/p + 2M, D?/p, 

P,P; =h/2 — MD” /p + 2M,D"/p. 

Therefore, using the values of MD, MD’, M;D, M;D' above 

found, we have 

eet =5 +3 (45-3) 2) aU ay ee 4h 
Ide) 15 

=12h-—2.0+ pe 

which are the values of k& given in (6) above.] 
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Proposition 1. 

If two circles touch at A, and if BD, EF be parallel diamete 
in them, ADF is a straight line. 

[The proof in the text only applies to the particular ca: 
where the diameters are perpendicular to the radius to th 

point of contact, but it is easily adapted to the more gener: 
case by one small change only.] 

Let O, C be the centres of the circles, and let OC be joine 

and produced to A. Draw DH parallel to AO meeting O 

aed © 

A 

S. : 
E 

Then, since OH =CD= CA, 

and OF = OA, 

we have, by subtraction, 

HF =CO0O = DH. 

Therefore ZHDF=2HFD. 
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Thus both the triangles CAD, HDF are isosceles, and the 

third angles ACD, DHF in each are equal. Therefore the 
equal angles in each are equal to one another, and 

ZADC=2DFH. 

Add to each the angle CDF, and it follows that 

ZADC+2C0DF=2C0DF4+2DFH 

= (two right angles). 

Hence ADF is a straight line. 

The same proof applies if the circles touch externally*. 

Proposition 2. 

Let AB be the diameter of a semicircle, and let the tangents 
to it at B and at any other point D on tt meet in T. If now DE 

be drawn perpendicular to AB, and if AT, DE meet in F, 

DF=FE. 

Produce AD to meet BZ produced in H. Then the angle 

ADB in the semicircle is right; therefore the angle BDH is 

also right. And 7'B, TD are equal. 

A E B 

Therefore 7 is the centre of the semicircle on BH as 
diameter, which passes through D. 

Hence AT = PB. 

And, since DE, HB are parallel, it follows that DF = FE. 

* Pappus assumes the result of this proposition in connexion with the 
dpBnros (p. 214, ed. Hultsch), and he proves it for the case where the circles 
touch externally (p. 840). 
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Proposition 3. 

Let P be any point on a segment of a circle whose base is 

AB, and let PN be perpendicular to AB. Take D on AB so 

that AN=ND, If now PQ be an are equal to the arc PA, and 

BQ be joined, 
BQ, BD shall be equal*. 

Join PA, PQ, PD, DQ. 
* The segment in the figure of the ms. appears to have been a semicircle, 

though the proposition is equally true of any segment. But the case where the 

segment is a semicircle brings the proposition into close connexion with a 

proposition in Ptolemy’s peydd7y otvraéis, I. 9 (p. 31, ed. Halma; ef. the repro- 

duction in Cantor’s Gesch. d. Mathematik, I. (1894), p. 389). Ptolemy’s object is 

to connect by an equation the lengths of the chord of an are and the chord of half 

the are. Substantially his procedure is as follows. Suppose AP, PQ to be 

equal arcs, 4B the diameter through 4; and let AP, PQ, AQ, PB, QB be joined. 

Measure BD along BA equal to BQ. The perpendicular PN is now drawn, and 

it is proved that PA=PD, and AN=ND. 

Then AN=43(BA-BD)=3}(BA-BQ)=}(BA-NBA?— AQ?) 
And, by similar triangles, AN ZAP=AP es 

Therefore AP?=AB.AN 

=} (4B -J/AB?- AQ?). A 

This gives 4P in terms of AQ and the known diameter 4B. If we divide by 

AB? throughout, it is seen at once that the proposition gives a geometrical 

proof of the formula 

The case where the segment is a semicircle recalls also the method used by 

Archimedes at the beginning of the second part of Prop. 3 of the Measurement 

of a circle. It is there proved that, in the figure above, 

AB+BQ:AQ=BP: PA, 

or, if we divide the first two terms of the proposition by AB, 

(1+ cos a)/sin a=cot;. 
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Then, since the arcs PA, PQ are equal, 

PA= Po. 

But, since AN = ND, and the angles at WV are night, 

PA =P, 

Therefore PQ =PD; 

and ZEOD=ZEDY, 

Now, since A, P, Q, B are concyclic, 

ZPAD + Z PQB = (two right angles), 

whence ZPDA+Z PQB =(two right angles) 

- - =2PDA PAPE, 
Therefore ZPOR=Z FP DE: 

and, since the parts, the angles PQD, PDQ, are equal, 

ZBQD=Z BPO, 

and BQ=BD. 

Proposition 4. J 

If AB be the diameter of a semicircle and N any point on AB, 

and if semicircles be described within the first semicircle and 

having AN, BN as diameters respectively, the figure included 

between the circumferences of the three semicircles is “what 

Archimedes called an adp8nros*” ; and its area is equal to the 

circle on PN as diameter, where PN is perpendicular to AB 

and meets the original semicircle in P. 

For AB’? =AN’+NB*+2AN.NB 

= AN’+ NB’? +2PN’. 

But cireles (or semicircles) are to one another as the squares of 
their radii (or diameters). 

* dpBndos is literally ‘a shoemaker’s knife.’ Cf. note attached to the remarks 
on the Liber Assumptorum in the Introduction, Chapter IT. 
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Hence 

(semicircle on AB) = (sum of semicircles on AV, NB) 

+ 2 (semicircle on PJ). 

P 

A N B 

That is, the circle on PN as diameter is equal to the 

difference between the semicircle on AB and the sum of the 

semicircles on AV, VB, i.e. is equal to the area of the dpBnros. 

Proposition 5. 

Let AB be the diameter of a semicircle, C any point on AB, 

and CD perpendicular to rt, and let semicircles be described 

within the first semicircle and having AC, CB as diameters. 

Then, if two circles be drawn touching CD on different sides 

and each touching two of the semicircles, the circles so drawn 
will be equal. 

Let one of the circles touch CD at H, the semicircle on AB 

in fF’, and the semicircle on AC in G. 

Draw the diameter HH of the circle, which will accordingly 
be perpendicular to CD and therefore parallel to AB. 

Join FH, HA, and FH, EB. Then, by Prop. 1, FHA, FEB 
are both straight lines, since HH, AB are parallel. 

For the same reason AGE, CGH are straight lines. 

Let AF produced meet CD in D, and let AL produced 
meet the outer semicircle in J. Join BI, JD. 

H. A. 20 
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Then, since the angles AFB, ACD are right, the straight 

lines A.D, AB are such that the perpendiculars on each from the 

extremity of the other meet in the point #. Therefore, by the 

properties of triangles, A# is perpendicular to the line joining 

B to D. ‘ 

A C B 

But AZ is perpendicular to BI. 

Therefore BID is a straight line. 

Now, since the angles at G, J are right, CH is parallel 

to BD. 

Therefore AB: BC=AD+DH 

=A, 

so that AC CB=AR HE: 

In like manner, if d is the diameter of the other circle, we can 

prove that AC CB =AB Ta 

Therefore d = HE, and the circles are equal*. 

* The property upon which this result depends, viz. that 

AB: BC=AC: HE, 

appears as an intermediate step in a proposition of Pappus (p. 230, ed. Hultsch) 

which proves that, in the figure above, 

AB: BC=CE?: HE?. 

The truth of the latter proposition is easily seen. For, since the angle CEH 

is a right angle, and WG is perpendicular to CH, 

60 Oba ON s ede OL CaP CD a | 

rl Ce ire 
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[As pointed out by an Arabian Scholiast Alkauhi, this 

proposition may be stated more generally. If, instead of one 

point C on AB, we have two points C, D, and semicircles be 

described on AC, BD as diameters, and if, instead of the 

perpendicular to AB through C, we take the radical axis of the 

two semicircles, then the circles described on different sides of 

the radical axis and each touching it as well as two of the 

semicircles are equal. The proof is similar and presents no 

difficulty. ] 

Proposition 6. 

Let AB, the diameter of a semicircle, be divided at C so that 

AC=3CB [or in any ratio]. Describe semicircles within the 

first semicircle and on AC, CB as diameters, and swppose a 

circle drawn touching all three semicircles. If GH be the 

diameter of this circle, to find the relation between GH and AB. 

Let GH be that diameter of the circle which is parallel to 

AB, and let the circle touch the semicircles on AB, AC, CB 

in D, E, F respectively. 

Join AG, GD and BH, HD. Then, by Prop. 1, AGD, BHD 

are straight lines. 

A N Cc P B 

For a like reason AHH, BFG are straight lines, as also 

are CHG, CFH. 

Let AD meet the semicircle on AC in J, and let BD meet 

the semicircle on CB in K. Join CJ, CK meeting AL, BF 

20—2 
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respectively in L, M, and let GL, HM produced meet AB in 

N, P respectively. 

Now, in the triangle AGC, the perpendiculars from 4, C on 

the opposite sides meet in Z. Therefore, by the properties of 

triangles, GLN is perpendicular to HC 

Similarly HP is perpendicular to CB. 

Again, since the angles at J, K, D are right, CK is parallel 

to AD, and CI to BD. 

Therefore AC: CB=AL: LH 

=AN:NP, 

and BC:CA=BM: MG 

= BP: PN. 
Hence AN:NP=NP: PB, 

or AN, NP, PB are in continued proportion*. 

Now, in the case where AC = 8 CB, 

AN =3 NP =2 PB, 
whence BP: PN: NA: AB=4:6:9:19. 

Therefore GH = NP =, AB. 

And similarly GH can be found when AC: CB is equal to 

any other given ratio‘. 

* This same property appears incidentally in Pappus (p. 226) as an inter- 

mediate step in the proof of the “‘ ancient proposition ” alluded to below. 

+ In general, if AC : CB=): 1, we have 

BP’ PN NAR A B= Ws Ne At (tN) 

and GH : AB=); (1+A+)°). 

It may be interesting to add the enunciation of the ‘ancient proposition ”’ 

stated by Pappus (p. 208) and proved by him after several auxiliary lemmas. 
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Proposition 7. 

If circles be circumscribed about and inscribed in a square, 

the circumscribed circle is double of the inscribed circle. 

For the ratio of the circumscribed to the inscribed circle is 

equal to that of the square on the diagonal to the square itself, 
ie. to the ratio 2 +1. 

Proposition 8. 

If AB be any chord of a circle whose centre is O, and if AB 

be produced to C so that BC is equal to the radius; of further CO 
meet the circle in D and be produced to meet the circle a second 
time in E, the arc AE will be equal to three times the are BD. 

Draw the chord EF parallel to AB, and join OB, OF. 

Let an dp8ndos be formed by three semicircles on AB, AC, CB as diameters, and 

let a series of circles be described, the first of which touches all three semicircles, 

while the second touches the first and two of the semicircles forming one end 

of the &pBdos, the third touches the second and the same two semicircles, and 

soon. Let the diameters of the successive circles be d,, d,, dy,... their centres 

O,, O2, O3,... and O,N,, O,N,, O3N3,... the perpendiculars from the centres on 

AB, Then it is to be proved that 

OLN, = d, ’ 
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Then, since the angles OZF, OFE are equal, 

Z£COF =220EF 

= 2 Z BCO, by parallels, 

= 22 BOD, since BC = BO, 
Therefore 

“ABO = 3 ZbOD, 

so that the arc BF is equal to three times the arc BD. 

Hence the arc AL, which is equal to the arc BF, is equal to 

three times the arc BD*. 

Proposition 9. 

If in a circle two chords AB, CD which do not pass through 
the centre intersect at right angles, then 

(arc AD)+(are CB)=(are AC)+ (are DB). 

Let the chords intersect at O, and draw the diameter HF 

parallel to AB intersecting CD in 

H. EF will thus bisect CD at 

right angles in H, and 

(arc HD) =(are EC). 

Also EDF, ECF are semi- 

circles, while 

(arc ED) = (are HA) + (arc AD). 

Therefore 

(sum of arcs CF, HA, AD) =(are 

of a semicircle). 

And the arcs AH, BF are equal. 

Therefore 

(arc CB) + (are AD) = (are of a semicircle). 

* This proposition gives a method of reducing the trisection of any angle, 

i.e. of any circular arc, to a problem of the kind known as vetoes. Suppose that 

AF is the arc to be trisected, and that ’D is the diameter through F of the circle 

of which AH isan are. In order then to find an are equal to one-third of AH, 

we have only to draw through A a line ABC, meeting the circle again in B and 

ED produced in C, such that BC is equal to the radius of the circle. For a 

discussion of this and other vevcevs see the Introduction, Chapter V. 
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Hence the remainder of the circumference, the sum of the 

ares AC, DB, is also equal to a semicircle; and the proposition 

is proved. 

Proposition 10. 

Suppose that TA, TB are two tangents to a circle, while TC 

cuts it. Let BD be the chord through B parallel to TC, and let 

AD meet TC in E. Then, if EH be drawn perpendicular to BD, 

ut will brsect it in H. 

Let AB meet TC in F, and join BE. 

Now the angle 7'AB is equal to the angle in the alternate 

segment, 1.e. 
ZTAB=2 ADB 

= Z AKT, by parallels. 

A 

Hence the triangles HAT, AFT have one angle equal and 

another (at 7’) common. They are therefore similar, and 

lea Ales 
Therefore 

Ey Poel eg 

=D. 

It follows that the triangles HBT’, BFT are similar. 

Therefore ZLEB=ZIBE 

= | ALD 

But the angle THB is equal to the angle HBD, and the 

angle TAB was proved equal to the angle HDB. 
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Therefore LEDB=2z EBD. 

And the angles at H are right angles. 

It follows that BH =HD*. 

4 

Proposition ll. 

If two chords AB, CD in a circle intersect at right angles in 

a point O, not being the centre, then 

AO? + BO’ + CO? + DO* = (diameter)’. 

Draw the diameter CH, and join AC, CB, AD, BE. 

Then the angle CAO is equal e 

to the angle CHB in the same seg- 

ment, and the angles AOC, HBC ; Vl 

are right; therefore the triangles 

AOC, EBC are similar, and 

ZACO =Z ECB. 

It follows that the subtended 

arcs, and therefore the chords AD, 

BE, are equal. DE 

* The figure of this proposition curiously recalls the figure of a problem 

given by Pappus (pp. 836-8) among his lemmas to the first Book of the treatise 

of Apollonius On Contacts (repli érapav). The problem is, Given a circle and 

two points H, F (neither of which is necessarily, as in this case, the middle 

point of the chord of the circle drawn through HE, F), to draw through E, F 

respectively two chords AD, AB having a common extremity A and such that DB 

is parallel to EF. The analysis is as follows. Suppose the problem solved, BD 

being parallel to FH. Let BT, the tangent at B, meet EF produced in T. (2 

is not in general the pole of 4B, so that 74 is not generally the tangent at 4.) 

Then ZTBF= Z BDA, in the alternate segment, 

= LAET, by parallels. 

Therefore A, H, B, T are concyclic, and 

TOD MG) ON ed OY BS 

But, the circle ADB and the point F being given, the rectangle 4/’. FB is given. 

Also EF is given. 

Hence F'T is known. 

Thus, to make the construction, we have only to find the length of FT from 

the data, produce EF to T so that FT has the ascertained length, draw the 

tangent 7'B, and then draw BD parallel to HF. DE, BF will then meet in A on 

the circle and will be the chords required. 
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Thus 

(AO? + DO’) + (BO? + CO’) = AD? + BC? 

= Bk’ + BC’ 

= Ch" 

Proposition 12. 

If AB be the diameter of a semicircle, and TP, TQ th 

tangents to it from any point T, and if AQ, BP be joined 

meeting in R, then TR is perpendicular to AB. 

Let TR produced meet AB in M, and join PA, QB. 

Since the angle APB is right, 

ZPAB+ 2 PBA =(a right angle) 

= 2 AQB. 

Add to each side the angle RBQ, and 

ZPAB+2QBA = (exterior) Z PRY. 

But ali = 74h AB and alo he Ab An 

in the alternate segments ; 

therefore ZEPRAZTOR=Z eR. 

It follows from this that 7P = 7TQ=TR. 

[For, if PT be produced to O so that TO= TQ, we have 

ZLO0G=Z 100, 

And, by hypothesis, 2 PRQ=ZTPR+T7QR. 

By addition, 2 POQ+2 PRQ=2ZTPR+ OQR. 
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It follows that, in the quadrilateral OPRQ, the opposite 
angles are together equal to two right angles. Therefore a 
circle will go round OPQR, and T is its centre, because 

TP=TO0=TQ. Therefore TR=TP.] 

Thus ZTRP=2TPR=2 PAM. 
Adding to each the angle PRM, 

ZPAM+2ZPRM=ZTRP+2ZPRM 

= (two right angles). 

Therefore ZAPR+2Z AMR = (two right angles), 

whence Z AMR =(a right angle)*. 

Proposition 13. 

If a diameter AB of a circle meet any chord CD, not a 

diameter, in E, and if AM, BN be drawn perpendicular to CD, 

then 
CN =DM+. 

Let O be the centre of the 

circle, and OH perpendicular to 

CD. Join BM, and produce HO to 
meet BM in kK. 

Then CH = HD. 

And, by parallels, 

since BO= OAs 

B= kM, 

Therefore NT = M 

Accordingly CN = DM. 

* TM is of course the polar of the intersection of PQ, AB, as it is the line 

joining the poles of PQ, AB respectively. 

+ This proposition is of course true whether M, N lie on CD or on CD 

produced each way. Pappus proves it for the latter case in his first lemma 

(p. 788) to the second Book of Apollonius’ vevcecs. 
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Proposition 14. v 

Let ACB be a semicircle on AB as diameter, and let AD. 

BE be equal lengths measured along AB from A, B respectively. 

On AD, BE as diameters describe semicircles on the side towards 

C, and on DE as diameter a semicircle on the opposite side. Let 

the perpendicular to AB through O, the centre of the first sems- 

circle, meet the opposite semicircles in C, F respectively. 

Then shall the area of the figure bounded by the circumferences 

of all the semicircles (“which Archimedes calls ‘Salinon’”*) be 

equal to the area of the circle on CF as diameter ft. 

By Eucl. 1. 10, since £D is bisected at O and produced 
to A, 

EA’ + AD? =2(HO’ + 0A’), 

and CF=0A+0E=EA, 

Cc 

* For the explanation of this name see note attached to the remarks on the 

Liber Assumptorum in the Introduction, Chapter II. On the grounds there 

given at length I believe oddvov to be simply a Graecised form of the Latin 

word salinum, ‘salt-cellar.’ 

+ Cantor (Gesch. d. Mathematik, 1. p. 285) compares this proposition 

with Hippocrates’ attempt to square the circle by means of lunes, but 

points out that the object of Archimedes may have been the converse of that 

of Hippocrates. For, whereas Hippocrates wished to find the area of a circle 

from that of other figures of the same sort, Archimedes’ intention was possibly 

to equate the area of figures bounded by different curves to that of a circle 

regarded as already known. 
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Therefore 

AB? + DE? =4 (EO + OA’) =2 (CF? + AD”). 

But circles (and therefore semicircles) are to one another as 

the squares on their radii (or diameters). 

Therefore 

(sum of semicircles on AB, DE) 

=(circle on CF’) + (sum of semicircles on AD, BEL). 

Therefore 

(area of ‘salinon’) = (area of circle on CF as diam.). 

Proposition 15. 

Let AB be the diameter of a circle, AC a side of an in- 

scribed regular pentagon, D the middle point of the are AC. 

Join OD and produce it to meet BA produced in E; join AC, 
DB meeting in F, and draw FM perpendicular to AB. Then 

EM =(radius of circle)*. 

Let O be the centre of the circle, and join DA, DM, DO, 

CB. 

Now Z ABC =2 (right angle), 

and ZABD=2 DBC =1 (right angle), 

whence Z AOD =2 (right angle). 

* Pappus gives (p. 418) a proposition almost identical with this among the 

lemmas required for the comparison of the five regular polyhedra. His enunci- 

ation is substantially as follows. If DH be half the side of a pentagon inscribed 

in a circle, while DH is perpendicular to the radius OHA, and if HM be made 

equal to AH, then O4 is divided at M in extreme and mean ratio, OM being the 

greater segment. 

In the course of the proof it is first shown that 4D, DM, MO are all equal, 

as in the proposition above, 

Then, the triangles ODA, DAM being similar, 

OA: AD=AD: AM, 

or (since 4D = OM) OA: OM=OM: MA. 
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Further, the triangles FOB, FMB are equal in all respects. 

Therefore, in the triangles DCB, DMB, the sides CB, ME 

being equal and BD common, while the angles CBD, MBD ave 
equal, 

ZBCD=2 BMD =§ (right angle). 

c 

D 

E A Hi M fe) B 
t 

: But ZBCD+2z BAD = (two right angles) 

a =ZBAD+2ZDAE 

f =2BMD+2 DMA, 

so that BUA = BCD. 

and ZBAD= 2AM D: 

Therefore AD= MD. 

Now, in the triangle DMO, 

Z MOD =2 (right angle), 

Z DMO =§ (right angle). 

Therefore 2 ODM=2(right angle) = AOD; 

whence OM = MD. 

Again Z EDA =(supplement of ADC) 

= DA 

= 2 (right angle) 

= ODM. 
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Therefore, in the triangles HDA, ODM, 

ADA ZA0 DM: 

ZHAD=ZLOMD, 

and the sides AD, MD are equal. : 

Hence the triangles are equal in all respects, and 

EA = MO. 

Therefore EM =AO. 

Moreover DE = DO; and it follows that, since DF is equal 

to the side of an inscribed hexagon, and DC is the side of an 

inscribed decagon, #C’is divided at D in extreme and mean 

ratio [i1e. HC: HD=HD: DC]; “and this is proved in the 

book of the Elements.” [Eucl. x1. 9, “If the side of the 

hexagon and the side of the decagon inscribed in the same 

circle be put together, the whole straight line is divided in 

extreme and mean ratio, and the greater segment is the 
side of the hexagon.” } 



THE CATTLE-PROBLEM. 

Ir is required to find the number of bulls and cows of each 

of four colours, or to find 8 unknown quantities. The first 

part of the problem connects the unknowns by seven simple 

equations ; and the second part adds two more conditions to 

which the unknowns must be subject. 

Let W,w be the numbers of white bulls and cows respectively, 

Ane + 4 black % e Ps 

Y,y FF yellow " r - 

LZ, 2% : » dappled _,, ys ‘ 

First part. 

(1) 1 oe Gee ea a aa Scene (a), 

DOTS Cuca cr SW AA ool RPE ere Me on (8), 

ZEAE) ae aes soe te ee (y), 

(II) QU (Pet) GX, Petts 5 ab Rs slpaeentes (8), 

Ae Lieb 2) snpeanresy mer enogene (e), 

BLA) (YB Y) oie base tes eneeee (3) 

P= ESE) CW PW) seve gis scamcee (n). 

Second part. 
Wag Ava an anna geais.c cet ante sor, co cenawres (0), 

Y+Z =a triangular number...............(t). 
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[There is an ambiguity in the language which expresses the 

condition (0). Literally the lines mean “ When the white bulls 

joined in number with the black, they stood firm (éuzredov) 

with depth and breadth of equal measurement (éoouertpor eis 
Babos ets evpos Te); and the plains ef Thrinakia, far-stretching 

all ways, were filled with their multitude” (reading, with 

Krumbiegel, 7A Govs instead of wAtvOov). Considering that, if 

the bulls were packed together so as to form a square figure, 

the number of them need not be a square number, since a bull 

is longer than it is broad, it is clear that one possible interpre- 

tation would be to take the ‘square’ to be a square figure, and 

to understand condition (@) to be simply 

W+X=a rectangle (i.e. a product of two factors). 

The problem may therefore be stated in two forms: 

(1) the simpler one in which, for the condition (@), there is 

substituted the mere requirement that 

_ W+X =a product of two whole numbers ; 

(2) the complete problem in which all the conditions have to 

be satisfied including the requirement (@) that 

W + X =a square number. 

The simpler problem was solved by Jul. Fr. Wurm and may 

be called 

Wurm’s Problem. 

The solution of this is given (together with a discussion of 

the complete problem) by Amthor in the Zeitschrift fiir Math. 

u. Physik (Hist. litt. Abtheilung), xxv. (1880), p. 156 sqq. 

Multiply (a) by 336, (8) by 280, (y) by 126, and add; thus 

297 Wi= 742Y, or 3°. 11 W=2.7-68Y «see 

Then from (y) and (8) we obtain 

891Z=1580Y, or 3*.11Z=27.5.79Y.......(8’), 
and 99x = 178Y, or'3*, 1X 22.80 F co weno 

Again, if we multiply (6) by 4800, (e) by 2800, (£) by 1260, 

(n) by 462, and add, we obtain 

4657w = 2800.X + 12607 + 462Y +143 W ; 
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and, by means of the values in (a’), (6’), (q’), we derive 

297. 4657w = 2402120Y, 

or 3°.11.4657w = 2°.5.7.23.378Y ........(8. 

Hence, by means of (7), (&), (e), we have 

3?.11.4657y = 18. 464897... eee (<’), 

| 88 46872 = 28.5.7. TOLD ecscscecesen (¢’), 

and So 4G = 2 el COOOL) cacesenee (7’). 

And, since all the unknowns must be whole numbers, we see 

from the equations (a’), (8’), ... (n’) that Y must be divisible by 

3°.11.4657, Le. we may put 

Y = 3*.11.4657n = 4149387n., 

Therefore the equations (a’), (8’),...(m’) give the following values 

for all the unknowns in terms of n, viz. 

W =2.3.7.53.4657n =10366482n 

X =2.37.89.4657n = 7460514 

Vi 3* 11.4657 = 4149387n 

Z=2.5.79.4657n = 7358060n\ (A), 

= 6d. Oo. 1, 2o.dlan = 62063607 

@=2.37.17.15991n = 4893246n 

y = 8° .13. 46489n 5439213n 

Z=oeogroed li s6ln= 3b15820n 

If now n= 1, the numbers are the smallest which will satisfy 

the seven equations (a), (8),..-(7); and we have next to find 

such an integral value for n that the equation (v) will be 

satisfied also. [The modified equation (@) requiring that W +X 

must be a product of two factors is then simultaneously 

satisfied. | 

Equation (v) requires that 

where g is some positive integer. 

H, A, 21 
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Putting for Y, Z their values as above ascertained, we have 

Ce = (8.11 +2?.5.79). 4657 

= 2471. 46574 

= 7.353. 4657n. 

Now gq is either even or odd, so that either g= 2s, or 

g=2s—1, and the equation becomes 

s(28 +1)=7.353. 4657n. 

Asn need not be a prime number, we suppose n = u. v, where 
wu is the factor in n which divides s without a remainder and v 

the factor which divides 2s +1 without a remainder; we then 

have the following sixteen alternative pairs of simultaneous ' 

equations : 

(1) s= u, ~ 28+1=7.3853. 46572, 

(2) = Zu, %+1T= 358.4657, 

(3) s= 353u, W%+1= 7.4657, 
(4) — 4657u, 2%t+1= 7. 353u, 

(5) = 72858u, 2+1= 46570, 

(6) c= 7.4657u, 2s+1= 3530, 

(7) s= 353.4657u, 2%+1= Tv, 

(8) s=7.353.4657u, %+1= v. 

In order to find the least value of » which satisfies all the 

conditions of the problem, we have to choose from the various 

positive integral solutions of these pairs of equations that 

particular one which gives the smallest value for the product 
uv or n. 

If we solve the various pairs and compare the results, we 
find that it is the pair of equations 

s=Tu, %—-—1=353.46570, 

which leads to the solution we want; this solution is then 

u=117423, v=1, 

so that: nm = uv = 117423 = 3°. 4349, 
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whence it follows that 

$= 7u=821961, 

and g = 2s — 1 = 1643921. 

Thus Y 4+ Z= 2471. 4657n 

= 2471. 4657 . 117423 

= 1351238949081 

_ 1643921 . 1643922 
5) , 

which is a triangular number, as required. 

The number in equation (@) which has to be the product of 

two integers is now 

W+X =2.3.(7.534 3.89). 4657n 

= 2°.3.11.29.4657n 

= 2?.3.11.29.4657 . 117423 

= 2? 3°. 11.29.4657. 4349 

= (2’. 3*. 4349). (11. 29. 4657) 

= 1409076 . 1485583, 

which is a rectangular number with nearly equal factors. 

The solution is then as follows (substituting for n its value 

117423): 

W = 1217263415886 

X = 876035935422 

Y= 487233469701 

Z= 864005479380 

w= 846192410280 

x= 574579625058 

y = 638688708099 

z= 412838131860 

and the sum = 5916837175686 
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The complete problem. 

In this case the seven original equations (a), (8),...(7) have 

to be satisfied, and the following further conditions must hold, 

W + X =a square number = p’, say, 

Y + Z=a triangular number = ae , Say. 

Using the values found above (A), we have in the first place 

p'=2.3.(7.53+ 3.89) .4657n 

= 27.3.11,29. 46577, 

and this equation will be satisfied if 

nm=3.11.29. 46578 = 4456749E" 

where & is any integer. 

Thus the first 8 equations (a), (@),...(7), (@) are satisfied by 

the following values : 

We 273i 211529, 09.4007 06 = 46200808287018 . &* 

A =2,3°.11.29.89. 46577. = = 33249638308986 . &” 

toa 11294650" e = 18492776362863 . &° 

Piers? oll 20249. 46050, = 32793026546940. &° 

w= 2°.3?.5.7.11.23. 29.373. 4657 . E° = 32116937723640. 

@=2.3°.11.17.29.15991. 4657.2? =21807969217254 08" 

y=3°.11.13.29. 46489 . 4657 . & = 24241207098537 . &° 

2=2?.3'.5.7.11*.29.761.4657.é =15669127269180. £ 

Tt remains to determine & so that equation (c) may be 
3 v 

satisfied, i.e. so that 

gy jen AED, —- 

Substituting the ascertained values of Y, Z, we have 

—=5 — = 51285802909803. &? 
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Multiply by 8, and put 

2gtl=t, 2.4657.&=4, 

and we have the “ Pellian” equation 

Gea = 2 oi, LI 29 353A | 

that is, CP — 4729494 =1. 

Of the solutions of this equation the smallest has to be 

chosen for which w is divisible by 2 . 4657. 

When this is done, 

E= 5-467 and is a whole number ; 

whence, by substitution of the value of & so found in the last 

system of equations, we should arrive at the solution of the 

complete problem. 

It would require too much space to enter on the solution o! 

the “ Pellian” equation 

t — 4729494 uw? = 1, 

and the curious reader is referred to Amthor’s paper itself 

Suffice it to say that he develops V4729494 in the form of a 
continued fraction as far as the period which occurs after 91 

convergents, and, after an arduous piece of work, arrives at the 

conclusion that 

W = 1598 (206541, 
where <206541 > represents the fact that there are 206541 more¢ 

digits to follow, and that, with the same notation, 

the whole number of cattle = 7766 < 206541). 

One may well be excused for doubting whether Archimedes 

solved the complete problem, having regard to the enormou 
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size of the numbers and the great difficulties inherent in the 

work. By way of giving an idea of the space which would be 
required for merely writing down the results when obtained, 

Amthor remarks that the large seven-figured logarithmic tables 

contain on one page 50 lines with 50“figures or so in each, say 

altogether 2500 figures; therefore one of the eight unknown 

quantities would, when found, occupy 824 such pages, and to 

write down all the eight numbers would require a volume of 

660 pages !] 
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